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Abstract: A compensation method for the sensitivity drift of a magnetoresistive (MR) 
Wheatstone bridge current sensor is proposed. The technique was carried out by placing a 
ruthenium temperature sensor and the MR sensor to be compensated inside a generalized 
impedance converter circuit (GIC). No internal modification of the sensor bridge arms is 
required so that the circuit is capable of compensating practical industrial sensors. The 
method is based on the temperature modulation of the current supplied to the bridge, which 
improves previous solutions based on constant current compensation. Experimental results 
are shown using a microfabricated spin-valve MR current sensor. The temperature 
compensation has been solved in the interval from 0 °C to 70 °C measuring currents from  
−10 A to +10 A. 

Keywords: electrical current measurement; magnetoresistance sensor; spin-valve sensor; 
temperature compensation 

 

  

OPEN ACCESS



Sensors 2011, 11                            
 

2448

1. Introduction 

Advances in the solid-state sensor manufacturing industries have allowed a significant improvement 
in the miniaturization, consumption and cost of instrumentation and measurement systems. The above 
benefits have been reached using semiconductors and transition metals as reference materials. 
However, the temperature dependence of their physical properties demands the use of specific 
compensation techniques, especially where the measurand of interest will not be the temperature 
(pressure, vibration, electrical current, etc.). In this way there are various and different efforts that have 
been dedicated to the reduction of the sensors temperature dependence. There are two main groups in 
which the temperature compensation techniques could be classified: hardware compensation and 
digital processing compensation methods. In [1] different hardware thermal compensation methods 
dedicated to a piezoresistive sensor are presented. Particularly, it is required to have complete 
accessibility to the sensor Wheatstone bridge terminals or the use of active components (like bipolar 
transistors). The temperature compensation of the fluid to be measured is of special relevance in a 
well-done flowmeter design. Following this goal, various solutions are proposed in [2,3] where some 
mathematical conditions must be satisfied or where two Wheatstone bridges were needed. In the power 
electronics field the techniques described in [4,5] are interesting. In [4], current sensing was done by 
temperature compensation of the inaccuracy caused by the inductor parasitic ohmic resistance 
temperature dependence. The compensation was successful but complex to satisfy in its mathematical 
requirements. The work described in [5] was based in a frequency domain compensation procedure 
and was used in a low voltage power supply situation. 

Digital processing algorithms have been applied reducing the thermal dependence in piezoresistive 
sensors [6], load cells [7] or in pressure capacitive sensors [8]. These techniques require an additional 
processing hardware based in digital intelligence (computer, microcontroller or digital signal processor) 
and dedicated software. All of them are, in a large number of industrial situations, difficult to apply. 

In this work the thermal drift of a microfabricated current sensor is reduced by the use of a simple 
hardware compensation method. This represents an improvement of a technique that was first 
developed in [9]. The sensor is a Wheatstone bridge implemented by four magnetoresistances of the 
spin-valve type [10]. The compensation is solved using a resistive temperature sensor by means of a 
simple procedure because no equilibrium Wheatstone bridge condition is needed, nor two bridge units 
or full access to the bridge terminals are required. The magnetoresistive current sensing technology has 
been successfully applied in power converters [11] or in instrumentation and measurement area 
(current probes design) [12]. In the present work the temperature compensation has been solved in the 
temperature interval from 0 °C to 70 °C measuring currents from −10 A to +10 A. 

2. Compensation Method 

A constant current driven Wheatstone bridge sensor is used to apply the compensation method 
(Figure 1). The driving sensor current source was described in [13,14] and is based in a Generalized 
Impedance Converter circuit (GIC). The choice of a constant current source as the sensor bridge power 
supply was based on previous works that show a remarkable reduction in the temperature coefficient 
of the bridge sensitivity [15-18]. 
  



S
 

b
(
n
c
v

d

w
th
ir

n
b

c
v

to
r
r
b
 

Sensors 201

If a curre

being i the 
in mV), t th

not be cons
change in te
variation, bu

Let 

driven by a c

where RB is 
he GIC circ
ref, [13,14]. 

Equation 
normalized 
before comp

The main
compensate 
vo,c(t) will ha

Figure 2 
o a 100 μA

replacement
resistance R
be to find a p

S ≡ S

1, 11  

Figure 1. V

ent sensor is

current to 
he temperat
idered if th
emperature 
ut without a

 be th

constant cur

the equiva
cuit and it i
As a conse

 (3) shows
sensitivity 

pensation ire

n purpose o
the drift in

ave no temp

depicts how
A reference 
t of one of
 will lead to
properly sel

S
vB ,nc

vo,nc

 

Variables de

s considered

be sensed 
ture (in °C)

his has been
will produ

any change i
he sensor se

rrent iB,nc th

alent bridge 
is equal to t
quence, the

s that the t
and bridge

ef  is a good 
f the compe

n vo,nc(t) cau
perature dep

w a practica
current iref.

f them by 
o accomplis
lected R res

 

v

c(t) = S (t) ⋅ v

         

efinition in 

d, its non-co

(measured 
) and S(t), t
n compensa
uce a chang
in the curren
ensitivity no

he voltage d

resistance.
the product 

e non-compe

temperature
 equivalent
reference c

ensation me
used by 
pendence: 

al GIC circu
. The gain f
a series as
sh equation 
sistance valu

vo,nc(

vB ,nc (t) = iB ,

vB ,nc(t) ⋅ i = S

S (

the Wheats

ompensated 

in amps), 
the sensor s
ated previou
ge in the se
nt i to be m
ormalized t

drop across i

 The consta
of the cons

ensated sen

e drift of t
t resistance 
current and 
ethod is to p

 and RB(t)

uit supplies
factor no de
ssociation o

(4). The fin
ue.  

(t) = S(t) ⋅ i

nc ⋅ RB (t) =

S (t) ⋅ iB ,nc ⋅ RB

t)

dvo,c (t)
dt

= 0

 

stone bridge

output, vo,n

 

vo,off the se
sensitivity (
usly by cali
ensor sensi

measured. 
to bridge vo

it will be: 

ant current 
stant no tim
sor bridge o

the sensor 
temperatur

it is not affe
place enoug
t). As a resu

. 

s to the brid
epends on G
of a temper
nal objectiv

+ vo,off

no ⋅ iref ⋅ RB (

B (t) ⋅ i = S (t)

0

e before com

 

nc could be g

ensor outpu
(in mV/A). 
ibration. As
itivity gener

oltage, vB,nc

 

iB,nc in equ
mes the GIC
output vo,nc w

output wil
re dependen
ected by the
gh temperatu
ult the com

dge sensor a
GIC resistan
rature senso
ve of the com

(t)

) ⋅ no ⋅ iref ⋅ RB

  

mpensation.

given by: 

ut at zero i
The output
s equation 
rating an o

c. If the sen

uation (2) is
C input refer

will be give

  

ll be provid
nces. It is a
e temperatu
ure depende

mpensated se

a current iB 
nces R1 to 
or Rs(t) and
mpensation

B (t) ⋅ i

      244

 

(1

input curren
t offset coul
(1) shows, 

output senso

nsor bridge 

(2

s supplied b
rence curren
en by: 

(3

ded by bot
assumed tha
re. 
ence in iref t
ensor outpu

(4

proportiona
R4, a prope
d a constan

n method wi

  49

1) 

nt  
ld 
a 

or 

is 

2) 

by 
nt 

3) 

th 
at 

to 
ut, 

4) 

al 
er 
nt 
ill 



S
 

a
w

o

s

d
b
p

Sensors 201

Figur

 
The gain 

and four po
whether the 

With a te
output volta

As a con
sensitivity te

Equation 
drift to obta
both terms o
possible to o

1, 11  

re 2. Drivin

factor is giv

ossibilities 
series assoc

emperature 
ge can be re

nsequence o
emperature 

 (11) states
ain an effect
of equation 
obtain: 

vo

 

ng the MR c

ven by:  

could be c
ciation is pl

dependenc
ewritten as:

of this, in or
coefficient,

 how the te
tive compen
(11), differ

o,c (t) = S (t) ⋅

         

current senso

considered t
laced [equat

e in the gai
 

rder to com
,  is nee

emperature 
nsation in t
rentiating an

1 (RRR s+=

R3 = R + Rs(

R2 = R + Rs(

R4 = R + Rs(

n(t) ⋅ iref ⋅ RB

S(t)

vo,c

or by a cons

to enter a 
tions (6) to 

in factor n(

mpensate the
eded: 

drift in sen
the sensor o
nd taking d

42

31

RR
RR

no ⋅
⋅

≡

[)() tnt =→

(t) → n(t) =
R

(t) → n(t) =
R[

t) → n(t) =
R

B (t) ⋅ i =
no ⋅ i

(t) = S(t) ⋅
n
n

 

stant curren

 

temperature
(9)]: 

(t), from eq

e bridge ou

 

sitivity cou
output volta
derivatives w

4

3

[ ]
42

)(
RR

RtRR s

⋅
⋅+

R1 ⋅ R + Rs(t)[ ]
R2 ⋅ R4

R1 ⋅ R3

R + Rs(t)]⋅ R4

R1 ⋅ R3

R2 ⋅ R + Rs(t)[

S(t)
iref ⋅ RB (t)

⋅ n(

(t)
no

⋅ i

nt source usi

 

e dependen

 

 

quation (3) t

utput voltag

uld be modu
age. Applyin
with respect

3R

]

4

)]

(t) ⋅ iref ⋅ RB (t

  

ing a GIC c

nce on it d

the compen

 

ge vo,c(t) onl

ulated by th
ng natural l
t to the tem

t) ⋅ i

      245

circuit. 

(5

depending o

(6

(7

(8

(9

nsated bridg

(10

ly the senso

(11

he gain facto
logarithms i

mperature it 

  50

5) 

on 

6) 

7) 

8) 

9) 

ge 

0) 

or 

1) 

or 
in 
is 



Sensors 2011, 11                            
 

2451

 (12) 

and in a more compact form: 

 (13) 

where TC denotes temperature coefficient of the quantity to be considered. In order to have  
TC(vo,c) = 0, the value of the resistance R will be obtained from the equation: 

 (14) 

Depending on the position of the temperature sensor Rs(t) inside the GIC circuit two different 
expressions for resistance R could be obtained. If series association Rs(t)+R plays the role of the 
resistances R1 or R3 [equations (6) or (7)] the equation (14) could be rewritten as: 

 
(15) 

On the other hand, if the association Rs(t)+R is placed in resistances R2 or R4 [equations (8) or (9)] 
equation (14) will give to: 

 
(16) 

From equations (15) and (16) two expressions of resistance R could be obtained: 

(17) 

 (18) 

where Rso is the value of the resistance sensor Rs(t) at the temperature to where the compensation is 
specified. Defining the compensation factor m in the form of m≡TC(Rs)/TC(S) different conclusions 
could be considered: 

- if m < −1: equation (17) supplies a positive value of resistance R and equation (18) a negative one. 
- if m > 1: equation (17) supplies a negative value of resistance R and equation (18) a positive one. 
- if −1 < m < 1: both equations (17) and (18) will give a negative R value. 

As a consequence of this and considering only passive resistances, the compensation method will be 
possible and effective if: 

 (19) 
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Table I summarizes the resistance selection criteria to obtain the proper temperature drift 
compensation of the sensor bridge. 

Table 1. Resistance selection criteria to obtain the proper temperature drift compensation 
of the sensor bridge. 

 Compensation Factor, m 

m≤1 m>1 

Compensation sensor Rs(t) R1 or R3 R2 or R4 

Compensation resistance R  

3. Experimental Results 

In this section a MR electrical current sensor is compensated with a ruthenium based temperature 
sensor. Both sensors were fully microfabricated in the same substrate at the INESC-MN facilities 
(Lisbon). The temperature compensation sensor was integrated in the same microfabrication process as 
the spin-valve MR current sensor. This fact allows a close temperature matching between both sensors. 
Ruthenium is more useful than platinum as the material to implement the temperature sensor because 
its fabrication process is more compatible with spin-valve processes, as the material is often used in 
the spin-valve stack by several groups in synthetic antiferromagnetic layers, see for example [19]. The 
ruthenium target is included in the same deposition tool used for spin valve deposition and does not 
require the change of the deposition infrastructure configuration needed by the platinum. In spite of its 
lower sensitivity (0.16 %/°C) compared to platinum (0.36 %/°C) both materials belong to the same 
group of metals sharing good temperature linearity. Additionally ruthenium has lower fabrication costs 
than platinum. 

The electrical current sensor is configured as a full Wheatstone bridge. Four active 3 µm × 100 µm 
spin-valve sensors were deposited by ion beam deposition [20] with the structure (thickness in Å): 
Si/Al2O3 (500)//Ta (20)/NiFe (30)/MnIr (60)/CoFe (30)/Cu (19)/CoFe (25)/NiFe (25)/Cu (10)/Ta (20)/ 
TiWN (50), [21], where CoFe, NiFe, MnIr and TiWN stand for Co80Fe20, Ni80Fe20, Mn77Ir23 and 
Ti10W90N in atomic %. Free and pinned layers easy-axis are 90° oriented to get a linear characteristic. 
Each single spin-valve sensor element was magnetically characterized providing a minimum resistance 
Rmin equal to 740.2 Ω ± 1.7 Ω and a maximum resistance Rmax equal to 801.1 Ω ± 2.1 Ω, this mean a 
MR effect of 8% according to Rmax-Rmin/Rmin. 

The electrical current that generates the magnetic field to be measured circulated through an 
external copper conductor as it can be seen in Figure 3(a) (dimensions in mm). The chip layout could 
be shown in Figure 3(b) where the external conductor has been put on top. 

Following the method described in Section 2, the MR Wheatstone sensor was biased by a constant 
current of 1 mA using the GIC circuit shown in Figure 2. A constant gain factor of n = 100 was 
designed for a reference input current of 100 µA given by the integrated circuit REF200. So the 
resistance values were: R1 = 2 kΩ, R2 = 1 kΩ, R3 = 5 kΩ, R4 = 1 kΩ. 
  

−Rso ⋅ m +1[ ] Rso ⋅ m −1[ ]
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Figure 3. (a) MR electrical current sensor arrangement. (b) Chip layout. 

 
(a) 

 
(b) 

The MR current sensor was placed inside a climate chamber (model CH-600 from Angelantoni) 
that generated a controllable and stable temperature (with an accuracy of ±0.3 °C). The experimental 
sensitivity of the sensor was determined collecting the voltage output of the MR current sensor 
responding to steps of 1 A of the electrical input current that was selected within the range of ±10 A. 
An electrical current sweep was done at a temperature included in the interval from 0 °C to 70 °C and 
with increments of 10 °C. The results of these measurements corresponding to the extreme temperature 
values of the interval are shown in Figure 4, it could be noticed the decrease in the sensor sensitivity as 
the temperature increases. Taking the value 0 °C as temperature reference to the thermal coefficient 
sensitivity was TC(S) = −0.152 %/°C. The equivalent resistance of the bridge was also measured, note 
that it is linear temperature dependent with opposite sign with respect to TC(S) (Figure 5). 

The sensitivity of the ruthenium thermoresistive sensor was obtained based on measurements taken 
with a Keithley K2700 digital multimeter. The results are depicted in Figure 6 showing the ruthenium 
resistance value as a function of the temperature. A linear least-squares fit was applied to the collected 
data in order to estimate the characteristic parameters of the Ru sensor. The main parameters obtained 
were a 0 °C reference resistor value of 904 Ω, a temperature sensitivity of 1.46 Ω/°C and a positive 
temperature coefficient TC(Rs) of 0.161 %/°C. The experimental correlation coefficient was 0.998 
showing the good linearity offered by the ruthenium resistance temperature detector (Figure 6). 
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for. This condition is easy to find when comparing the temperature coefficient of a resistance 
temperature sensor with the target sensor temperature drift. 

The temperature compensation sensor was integrated in the same microfabrication process as the 
spin-valve MR current sensor. This fact allows a close temperature matching between both sensors. 
Ruthenium is more useful than platinum as the material used to implement the temperature sensor 
because its fabrication process is more compatible with existing spin-valves processes. Ruthenium is a 
material used in some spin-valves fabrication processes and does not require any changes to the 
deposition infrastructure configuration as needed by platinum. 

The proposed technique has been applied to a magnetoresistive current sensor that finds application 
in industrial switched-mode power supplies, power converters or electrical drives. The current source 
designed by the GIC circuit improves the other classical constant current sources like the Howland 
circuit because it does not need good matching between resistances involved in the circuit and without 
requiring positive feedback in the GIC circuit as it occurs in the Howland current source. 
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