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Abstract: Modern information fusion systems essentially associate decision-making 

processes with multi-sensor systems. Precise decision-making processes depend upon 

aggregating useful information extracted from large numbers of messages or large datasets; 

meanwhile, the distributed multi-sensor systems which employ several geographically 

separated local sensors are required to provide sufficient messages or data with similar 

and/or dissimilar characteristics. These kinds of information fusion techniques have been 

widely investigated and used for implementing several information retrieval systems. 

However, the results obtained from the information fusion systems vary in different 

situations and performing intelligent aggregation and fusion of information from a 

distributed multi-source, multi-sensor network is essentially an optimization problem. A 

flexible and versatile framework which is able to solve complex global optimization 

problems is a valuable alternative to traditional information fusion. Furthermore, because 

of the highly dynamic and volatile nature of the information flow, a swift soft computing 

technique is imperative to satisfy the demands and challenges. In this paper, a nonlinear 

aggregation based on the Choquet integral (NACI) model is considered for information 

fusion systems that include outliers under inherent interaction among feature attributes. 
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The estimation of interaction coefficients for the proposed model is also performed via a 

modified algorithm based on particle swarm optimization with quantum-behavior (QPSO) 

and the high breakdown value estimator, least trimmed squares (LTS). From simulation 

results, the proposed MQPSO algorithm with LTS (named LTS-MQPSO) readily corrects 

the deviations caused by outliers and swiftly achieves convergence in estimating the 

parameters of the proposed NACI model for the information fusion systems with outliers.  

Keywords: information fusion; multi-sensor systems; Choquet integral; particle swarm 

optimization with quantum-behavior; least trimmed squares 

 

1. Introduction  

In the modern world, to make optimum decisions in economics, industry, science, aeronautics, 

manufacturing, traffic control, and many other military and civilian applications we are extremely 

dependent on useful and crucial information which is drawn from messages or data via transformation, 

classification and/or some other processing. Therefore, multi-sensor systems providing these messages 

or data are becoming increasingly important in meeting the goals of optimum decision-making. 

Besides, a feasible model to elaborate on information fusion and a soft computing technique to 

perform the heavy computations required are also critical.  

Within the consideration of a feasible model, traditionally, the most common forms are the 

weighted average model and the linear regression model. These models are all linear and assume that 

there is no interaction among feature attributes (i.e., input information). However, in many  

real-world systems, the inherent interaction among feature attributes must be considered circumspectly 

and these kinds of systems are essentially non-additive systems. Hence, a nonlinear aggregation based 

on a nonlinear integral (NANI) model with respect to a non-additive set function is a powerful way of 

coping with these kinds of systems. In general, the Choquet integral is the most frequent form of the 

nonlinear integral and some literature proposing its use exists [1-4]. Liu et al. [1] proposed a NACI 

model derived from one of the following three kinds of fuzzy supports: the bespoke fuzzy support, the 

sample relative fuzzy support and the response correlative fuzzy support. This model deals with the 

interaction among feature attributes based on the correlation in statistics. Wang et al. proposed the 

original [2] and weighted [3,4] NACI model to deal with the information with numerical and 

categorical feature attributes, respectively. In fact, the weighted NACI model is the generalized form 

of the original one. In these two models, the interaction among the feature attributes toward the 

objective attributes (i.e., outputs) is described as non-additive set functions and is essentially derived 

from the co-relationship in the statistics. Although the weighted NACI model is successful in 

describing the interaction among hybrid feature attributes, at the same time, more parameters have to 

be estimated than in the original NACI model, but for a system with n-dimensional feature attributes, 

there are 2n n  parameters that must be determined and it is obvious that the amount of parameters 

increases exponentially with the dimensions of the feature attributes. The problem of exactly finding 

out these parameters is an essential optimization problem and the basic idea consists of making the 

residuals as small as possible. Residuals here are defined as the difference between what is actually 
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observed and what is estimated. To minimize residuals, traditionally, the Least Square (LS) method is 

introduced and typically it achieves a remarkable estimation under circumstances where all attributes 

are uncontaminated. Unfortunately, in real world applications these features and objective attributes 

are always subject to outliers. That is, outliers may occur due to various reasons, such as erroneous 

measurements or data with a heavy-tailed distribution function. Whenever outliers exist, they always 

cause a serious deviation of what is estimated. Within the outlier detection literature [5-7], the least 

trimmed squares (LTS) estimator and the least median squares (LMS) estimator are the most popular 

ways of eliminating the effects caused by outliers. The LTS estimator not only possesses a high 

breakdown value but also several advantages over the LMS estimator, therefore, in this study we have 

focused our efforts on the LTS estimator to eliminate the inference from outliers. That is, we propose a 

feasible model able to effectively reject outliers that is also a contribution of this paper to the fuzzy 

integral problem.  

Confirming the feasible model and from previous analysis, to efficiently and swiftly estimate the 

model‟s parameters satisfying specific criteria is the next challenge. That is, a timesaving soft 

computing technique is necessary for the information fusion system with contaminated attributes. In 

the literature, there are many outstanding soft computing techniques that qualify for this task; they are 

neural network (NN) [8], GA [9], ant colony optimization (ACO) [10], etc. Particle swarm 

optimization with quantum-behavior (QPSO) which is an improved version of the traditional particle 

swarm optimization (PSO) [11] would be one of the powerful choices [12-13]. In the QPSO algorithm, 

particles are bounded in the searching range just like electrons move in a quantum well; meanwhile, 

according to the uncertainty principle, a particle‟s position and velocity cannot be determined 

simultaneously. Hence, the information of a particle in quantum space is depicted by probabilities (i.e., 

wave function) and the dynamic behavior of a particle is widely divergent and dominated by the 

Schrödinger equation. The QPSO algorithm ensures the congregation of the particle swarm without 

losing the randomness. Within the QPSO algorithm, particles can appear at any position of the whole 

space which is searched with a certain probability. This algorithm offers high performance in single 

mode systems, because of the property of swift convergence. However, particles usually fall into local 

extreme states in multimode optimization systems and then take on the premature phenomenon. In 

order to make use of the merits of quick convergence and conquer premature in the traditional PSO, 

we proposed a QPSO algorithm with elitist crossover mechanism of the GA (named MQPSO) in our 

previous work [14] and demonstrated a superior performance than the GA in estimations of model 

parameters. In this paper, we improve the MQPSO algorithm proposed in our previous work to 

manipulate systems with outliers. That is, the mechanism of the LTS estimator is introduced to 

eliminate deviations caused by outliers and enhance the robustness of the MQPSO algorithm. To 

distinguish it, the revised MQPSO algorithm is named LTS-MQPSO. The most significant 

improvement is that the LTS-MQPSO algorithm combines the concepts of the simulated annealing 

(SA) and the GA within the QPSO algorithm to achieve global search and overcome prematurity in 

optimal processes, respectively; meanwhile, the LTS estimator is also performed to eliminate the 

inference from outliers. In order to verify the proposed LTS-MQPSO algorithm, a numerical example 

is also performed in this study. From the results of the experiment, the proposed LTS-MQPSO algorithm 

is able to acquire reasonable parameters for the NACI model and make quite precise decisions. 
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The rest of paper is organized as follows: in Section 2, we introduce the NACI model and 

characterize the information fusion system. Section 3, the least trimmed square estimator and the QPSO 

algorithm are briefly described. Next, we propose the LTS-MQPSO algorithm in detail. Section 5, is 

shown the results of numerical simulation and then the paper is concluded in Section 6. 

2. The NACI Model and Information Fusion System Characterization 

In traditional linear aggregations, the most frequent model used to describe the relation between 

feature attributes X  and objective attribute Y  is the Lebesgue-like integral [15]: 

0 sY fd er       (1)  

where 0  is a constant, s  is a scaling factor, the integrand f  represents observations of the scope of 

feature attributes X ,   is an additive measure which indicates the relative contribution of each 

element of feature attributes and er is the error term which has the form of normally distributed 

random perturbation with zero mean and variance 
2 . This linear model always performs a good 

approximation based on a fundamental assumption that there is no interaction among feature attributes. 

However, in many real-world systems, the inherent interaction among feature attributes must be 

considered circumspectly. To reasonably describe the inherent interaction among feature attributes, 

Wang and Klir [16,17] proposed a regular non-additive set function   named normalized general 

measure (NGM). The NGM is defined on the power set of feature attributes and the formal definition 

of the NGM can be express as: 

( ) 0   , ( ) 1X  , when ( )P X  (2)  

( ),  ( )A P X B P X  , and ( ) ( )A B A B     (3)  

Besides, a nonlinear integral is also introduced to aggregate the feature attributes. That is, 

whenever we deal with information fusion systems where information possesses some inherent 

interactions, the nonlinear integral with respect to the NGM is the most reasonable tool. In practical 

applications, there are many kinds of nonlinear integrals such as the Choquet integral [18], the Sugeno 

integral [19], the Wang integral [20], and so on. The Sugeno integral, by definition, is similar to logical 

operations and thus it is not an extension of the Lebesgue-like integral. Although the Sugeno integral is 

very timesaving to perform, it cannot be precisely inverted and this is a fatal defect. On the other hand, 

the Wang integral has been shown to possess remarkable properties. However, it is rather complex and 

quite time-consuming to perform. Those are the main reasons why the Choquet integral is adopted in 

this paper. The Choquet integral with respect to the NGM is defined as follows: 

0
( )fd F d  



    (4)  

where f ,  1 2( ), ( ), ( )nf x f x f x  is a non-negative measureable function with n -dimensions on X , 

and  | ( ) ,F x f x x X    , [0, )  , is called the  -cut set of function f . Since X  is a finite 

set and the value of measureable function f  can be sorted as: 

* * *

1 2
1 1
min ( ) ( ) ( ) ( ) max ( )i n i

i n i n
f x f x f x f x f x

   
      (5)  
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where  * * *

1 2, , , nx x x  is a permutation of  1 2, , , nx x x . Then, the discrete type of Choquet integral 

with respect to the NGM defined above can be expressed as: 

   * * * * *

1 1

1

( ) ( ) ( , , , )
n

i i i i n

i

fd f x f x x x x  



    with *

0( ) 0f x   (6)  

Compared to the linear aggregation model shown in Equation (1),   ix  represents the relative 

strength of contribution to objective attributes Y  by a single feature attribute ix , and  A , 

( )A P X  represents the joint relative strength of contribution to objective attributes Y  by the feature 

attribute set A . In addition, to simultaneously deal with observations with categorical attributes and 

numerical attributes, the NACI model which indicates the relation between hybrid attributes X  and 

objective attributes Y  can be expressed by the following formula [4]: 

( )y c q f d er       (7)  

where c  and q  are constants, fd  is the Choquet integral of function f  with respect to the NGM 

 , vector 1 2( , , , )n     is an n-dimensional weighting vector which is used for coping with 

categorical attributes, i.e., vector 1 2( , , , )n     is used for balancing the units among various 

attributes and satisfies the following constraint: 

0 1i   and 
1
max 1i

i n


 
 , 1,2, ,i n  (8)  

In the NACI model, constants c  , q , vectors   and the NGM   are all parameters of the model. 

In total there are 2n n  unknown parameters and this number increases exponentially with the 

dimensions of the feature attributes. In order to complete the NACI model, these model‟s parameters 

have to be determined in advance. That is so called the training state of the NACI model. In the 

training, associating Equation (7) with available observations constitutes an over-determined system 

with the Choquet integral. Thus, the analytic solution of the model parameters cannot be figured out 

exactly. Furthermore, constants c  and q  are essentially different from the other parameters which are 

governed by the Choquet integral. Therefore, a dual optimization procedure must be simultaneously 

performed; meanwhile, the performance index of optimization J  (called fitness function) is also 

introduced and expressed as: 

    
2

2

1
Minimize Minimize ( )

k

j jj
J e y c q f d 


        (9)  

where k  is the length of available observations for the training state.  

Because the kernel of the performance index of optimization is the LS estimator, it always suffers 

from atypical observations which arise from outliers in real world systems. That is, the LS method 

deviates seriously in estimations of a model‟s parameters where outliers are present. Hence, it is also a 

major objective of this study to propose a feasible method for resolving this issue. The proposed 

method has to achieve not only precise model‟s parameters but also remarkable capability of rejecting 

outliers. In general, these kinds of problems are also called robust regressions and many high 

breakdown value regression estimators have been proposed for this [6,7]. For the reasons of simplicity 

and efficiency, the LMS and the LTS are the more popular regression estimators in scientific 

applications. Furthermore, the LTS estimator possesses not only the same breakdown value as the 
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LMS, but also several additional merits: for instance, its objective function is smoother; its statistical 

efficiency is better, and so on. Therefore, we focus the treatment of outliers in the LTS method and 

thus, Equation (9) is revised as: 

  
2

* *

1
Minimize ( )

h

j jj
J y c q f d 


       (10)  

where *

jy  and *

jf  are a permutation of observations under the best model parameters and h is a 

trimmed parameter of the LTS estimator. The block diagram of the proposed structure for the training 

state and information fusion systems is shown in Figures 1 and 2, respectively.  

Figure 1. Block diagram of the proposed structure for the parameters estimation of the 

NACI model via MQPSO and LTS in the training state. 

 

Figure 2. Block diagram of the proposed structure for information fusion systems. 

  

In Figure 1, the block named MQPSO receives the differences of objective attributes between 

observations and estimations when the terminative criterion is not satisfied yet; meanwhile, the 

parameters of the NACI model are updated based on these differences. Another block which is named 

LTS is used for filtering out these atypical observations and the trimmed parameter of the LTS 

estimator h is also revised by the global optimal parameters so far. Besides, the block named  

“Non-additive systems with outliers” is the system that we are considering. That is, it is the source of 

the training data (Observations) which are used for modeling the NACI. The block named “Subset of 

observations” is represented as the observations after the LTS. That is, the “Subset of observations” is 

also „Non-additive systems‟ but different from the Observations (Non-additive systems with outliers). In 

Figure 2, the block named feature attributes of information depicts continued observations in a period in 

which the decision profile (DP) is produced. Associating the DP with the model‟s parameters which 
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are acquired in the training state, the decision is usually able to be made precisely. Besides, the block 

named decision by majority guarantees that we are always able to make a correct decision in a low 

contaminated environment. 

3. The LTS Estimator and the QPSO Algorithm 

The LTS estimator is formulated as: 

 2

1
Minimize ( )

h

ii
r d

  and 2 2 2 2

1 2( ) ( ) ( ) ( )h kr d r d r d r d      (11)  

where id  is the thi  observation, 2 ( )ir d  is the thi  squared residual, k  is the length of observations and h 

is the number of data points which are not trimmed from the data set. In robust regression analysis [6], 

the maximum tolerance of the LTS estimators to outliers (named Maximum Breakdown Point) for any 

equivariant regression estimator satisfies: 

   
1

Breakdown Point 2 1k
k

    (12)  

where   is the dimension of variables. Intuitively, the breakdown point is bounded above at 50%. The 

maximum breakdown point is actually attained for Equation (12) with  1 2h k     in a multiple 

regression system and the solution of Equation (11) always exists. Of course, one can achieve the 

optimal solution by considering k

hC  ordinary least squares problems for all subsets of  1,2, ,k  with 

h elements and selecting the best one among all candidates. Obviously, it is laborious and impractical 

for real world systems with large numbers of observations. In order to cope with a great deal of 

observations, the FAST-LTS method was been proposed [7]. The major distinguishing features are the 

initial h -subset, the C-step and the nested extensions. By and large, the initial h -subset is a 

preselecting mechanism to confirm that a clean h -subset  1 2, , , hd d d  drawn from all observations 

can be attained. The C-step is a recursive procedure and used for increasing the accuracy of the 

estimated model parameters. This recursive procedure estimates a model parameters ini  with the LS 

estimator based on a clean h -subset  * * *

1 2, , , hd d d  which is created by the initial h-subset procedure. 

Then, the newly square residuals and h -subset  1 2, , ,new new new

hd d d  are acquired in turn. By the new 

h -subset, the estimated new  is more accurate than ini . Repeating these procedures, a set of precise 

model parameters   can be achieved. For a small to moderate data size k, these two procedures work 

well and do not take much time. When the number of observations is large enough, for instance 

600k  , the performance of these two procedures is poor and it takes much more time. To deal with 

this situation, the procedure named nested extension is introduced. In nested extensions, the data is 

partitioned into many subsets and then, the initial h -subset and the C-step are applied to each subset. 

Next, each subset with   feasible solutions is extended to the full observations and the C-step 

procedure performed repeatedly. Finally, an optimal solution that satisfies the specific desired 

accurateness would be achieved. 

After drawing observations without contaminations, a proper soft computing technique is essential 

and can help us to efficiently estimate the parameters of the NACI model. In the literature there are 

many outstanding soft computing techniques that qualify for this work. The QPSO algorithm is one of 

these soft computing techniques, and possesses significant global and local search abilities. In the 
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QPSO algorithm, particles move in a quantum multi-dimensional space, the state of particles is usually 

depicted by normalized wave function ( , )t , i.e., the probability amplitude of the position where 

particles are present; and further, 
2

( , )t  is then interpreted as the corresponding probability density 

function which satisfies the follow equation: 

2

whole
space

( , ) 1t d    (13)  

where   are the n-dimensional coordinates. That is, a single particle with mass m  is subjected to the 

influence of a potential field ( , )V t  in the quantum space and the wave function is governed by the 

Schrödinger equation: 

2
2( , ) ( , ) ( , ) ( , )

2
i t t V t t

t m
   


      


 (14)  

where  is the Planck constant and 
2  is the Laplacian operator. In an environment with a potential 

field, the particles are then attracted to the center of field through the optimization process, and this 

attraction leads to the global optimum. Based on the assumption that the attractive potential field is 

time-independent (the co-called stationary state), the solution of the time-independent Schrödinger 

equation has the form [21]: 

( , ) ( ) exp( )t i t        (15)  

where   has the dimensions of an angular frequency. In theory, any type of potential well can 

describe this system which is bounded and attracted by a potential field. However, the simplest one is 

the Delta Potential Well and the potential field is given by: 

( ) ( )V      (16)  

where   is a positive number proportional to the “depth” of the potential well. The meaning of 

Equation (16) is that the depth is infinite at the origin and zero elsewhere. For the sake of simplicity, 

the solution of time-independent Schrödinger equation for this system in one dimensional space is 

considered and expressed as: 

2
2 1

( ) ( )

z

LQ z z e
L




 
,
 

2

L
m

  (17)  

where ( )Q z  is the probability density function for measuring a particle‟s state and L is the 

characteristic length of Delta Potential Well. The L specifies the search scope of a particle and is called 

“Creativity” or “Imagination”. In order to obtain the precise position of particles, the Monte Carlo 

Method is used for simulating the procedure whereby the quantum state collapses to the classic state. 

After this effort, the particle‟s position can be expressed as: 

1
( ) ln

2

cnt

i

L
pf i

u


 
    

 
, 1,2, ,i NP  (18)  

where NP  is the number of particles in a population, u  is random number uniformly distributed on 

[0,1]  and 
cntpf is the center of potential field which is proposed by Clerc and Kennedy [22] and 

defined as: 
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1 2

1 2

( )

loc gol

icnt
c p c p

pf i
c c

  



, 1,2, ,i NP  (19)  

where 1c , 2c  are constriction coefficients and loc

ip , golp  are the best position of the thi  particle and the 

global best position found so far. In order to improve performance of the QPSO algorithm,  

Sun et al. [13] employ a Mainstream Thought Point (or named Mean Best Position, mbest ) to evaluate 

the parameter L . However, to extend the global search of the QPSO algorithm, the mbest  is modified 

and then, these two parameters can be expressed as the following form: 

,1 ,2 ,

1 1 1
, , ,

NP NP NPi i i n

i i i
mbest

NP NP NP

  
  

 
  
 
    (20)  

2 iL mbest     (21)  

where   is a creative coefficient which is used to adjust the convergent speed of individual particle 

and the performance of the QPSO algorithm. Hence, the particle‟s position can be updated in the each 

iteration by the form: 

1

1
( ) lncnt

i ipf i mbest
u

  

 
     

 
 (22)  

4. The LTS-MQPSO Algorithm 

Within empirical applications, however, the QPSO algorithm usually represents a stagnating 

phenomenon for searching the global optimal solution in multi-mode problems and systems. 

Meanwhile, it is also strongly influenced by the creative coefficient  . In order to improve these 

defects, the updating mechanism of the creative coefficient   on the MQPSO algorithm which is 

proposed in our previous works is revised. That is, the modified MQPSO algorithm combines the 

QPSO algorithm with mechanisms of the SA and the GA to achieve global search and overcome 

premature for traditional PSO in optimization process. Two significant improvements are introduced to 

the modified MQPSO algorithm. They are the nonlinear updating of the creative coefficient   with 

the form of the SA and the instantaneous monitoring the convergence of the optimization procedure, 

respectively. In the QPSO algorithm, the creative coefficient   is set to a large number at the 

beginning and adjusted decreasingly following the optimization procedure. Such mechanisms 

effectively realize that a global search is performed at the beginning and the convergence is achieved 

finally. In general, the decreasing rate of   is linear, but a nonlinear revision according to the 

convergence of the optimization process would be more reasonable and feasible. In the modified 

MQPSO algorithm, a nonlinearly revising mechanism which is similar to the SA algorithm is 

introduced and expressed as the form: 

1(1 exp( ( )))ini fit          (23)  

where   is step length of  , fit  is the changing rate of optimal estimation so far and ini  is the 

initial value of  . A typical curve of   which is adjusted by fit  is shown in Figure 3. 
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Figure 3. A typical curve of the creative coefficient   as affected by the changing rate of 

the optimal estimation fit , where the traverse axis is a logarithmic scale. 
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The other improvement of the modified MQPSO algorithm is the mechanism to overcome 

prematurity. Inspired by the mechanisms of mutation and elite crossover in the GA, an index of 

conquering stagnation (named ECM which is an abbreviation of Elite Crossover and Mutation) is used 

for monitoring the status of the optimization procedure in the modified MQPSO algorithm. That is, 

during the optimization procedure, the modified MQPSO algorithm preserves each different 
golp  ; 

meanwhile, the index of conquering stagnation, ECM  is set to zero whenever 
golp is updated. Of 

course, the ECM increases by one whenever 
golp is unchanged. Before finishing the current iteration, 

the modified MQPSO algorithm judges whether ECM exceeds the specific criteria. If it is true, the 

modified MQPSO algorithm lets the new population be these collected 
golp instead of the original 

population (all/or these worse particles) and sets the ECM to zero, instantaneously. 

For observations without outliers, the MQPSO algorithm offers superior performance for estimating 

parameters than the GA [14]. Because the kernel of estimating fitness is the LS estimator, the MQPSO 

algorithm always makes a serious deviation in the contaminated circumstance. Therefore, the LTS 

estimator is introduced to sieve out the observations without contamination. The proposed LTS-

MQPSO algorithm and flow chart is shown below and Figure 4. 

Step 1: Randomly initialize the population of particles with dimension 2 2n n   and then, evaluate 

their fitness values by Equation (10). 

Step 2: Sort particles according to their fitness values and then initialize loc

ip , 
golp . 

Step 3: Perform the LTS estimator to sieve out these h  observations without contamination. 

Step 4: Calculate 
cntpf , mbest  and L  by (19), (20) and (21), respectively. 

Step 5: Select (24) or (25) with randomly probability to update i : 
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 2

1
( 1) ( ) ( ) ln( )cnt

i it pf i norm mbest t
u

         (24)  

 2

1
( 1) ( ) ( ) ln( )cnt

i it pf i norm mbest t
u

        ,  (25)  

where 2 1 2( )norm ps ps  denotes the distance between 1ps  and 2ps . 

Step 6: Evaluate the fitness values of all particles base on (10). 

Step 7: According to fitness values evaluated in Step 6, update loc

ip . 

Step 8: Check over whether the maximum iteration is reached or the terminative criterion is satisfied? 

If yes, go to Step 11, else perform next Step. 

Step 9: Check over whether 
golp is updated? If 

golp is updated, sets ECM to 0 and perform the LTS 

procedure, then go to Step 3. If 
golp is unchanged, increase ECM by 1 and perform next Step. 

Step 10: Check over whether the maximum ECM is reached? If yes, let these collected 
golp  instead of 

( 1)t   and go to Step 4, else keep ( 1)t   and go to Step 4. 

Step 11: Check over whether 
golp  should be updated and then output the results. 

Figure 4. The flow chart of the proposed LTS-MQPSO algorithm. 
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5. Numerical Simulation and Results 

The multi-sensor-based intelligent security robot (ISR) [23] consists of six subsystems; namely, 

sensor system, remote supervision system, software development system, image system, avoid obstacle 

and motion planning system. These subsystems can acquire and preliminarily processes sensory 

signals and then, the sensory data is transmitted by interface devices to the main controller (IPC) for 

further treatment. The hierarchy structure of sensory systems used for the ISR is shown in Figure 5. In 

the fire detection subsystem and intruder detection subsystem, the sensory data is transmitted by a 

digital input/output interface. That is, these two subsystems only send a decision which is made by an 

information fusion system to the IPC of the ISR. However, a wrong decision is usually made whenever 

the sensory signal is contaminated with outliers. In this simulation, we focus our attention on the fire 

detection subsystem. This subsystem is constituted by environmental sensors, which include flame 

sensors, smoke sensors and temperature sensors. It is suitable for demonstrating and verifying the 

effectiveness and feasibility of the proposed information fusion system shown in Figures 1 and 2. Prior 

to performing the numerical simulation, the principles of these three sensors are briefly described.  

Figure 5. The hierarchy structure of the sensory systems used for the ISR. 

 

 

In the smoke sensor module, the kernel is a TG135 ionization smoke sensor. When smoke occurs, 

an ionizing radioactive source is brought close to the plates and the air itself is ionized. In other words, it 

will generate a tiny current. For the flame sensory module, the R2868 ultraviolet sensor is used for 

detecting the flame. Its peak wavelength is 200 μm and its sensing wavelength is 185–260 μm. For the 

temperature sensory module, the AD590 semiconductor sensor is adopted to detect the temperature of 

fire. This sensor has a positive temperature coefficient of about 0.7, and its linearity is within 0.5% for 

a temperature range between −65 °C and 150 °C. The standard output of the AD590 is 1 mA/°K. In 

general, these sensory signals are all tiny values and have to be converted to a standardized voltage 

output by an amplifier circuit. Besides, the relations of input sensory signals and output voltage signals 

must be made linear by tuning the calibration circuits. Finally, these sensory signals that are converted 

to binary digital signals are transmitted to the IPC. In this experiment, these three modules are 

integrated together and the resulting 3-in-1 fire detection sensor is shown in Figure 6. Because the 

sensory signal is tiny, it always suffers from outliers and this causes a wrong output. Fortunately, these 
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outliers only last an instant in general and we are able to eliminate them by considering the interactions 

among continuous samples. For the sake of simplicity, an artificial observation profile which simulates 

four continuous sampling data points with normalization is made to estimate the model‟s parameters 

by associating the proposed LTS-MQPSO algorithm in the training state. All simulations are 

implemented in the Matlab environment and conducted on an Intel Core 2 Duo CPU P8400, 4GB Ram 

capacity PC. 

Figure 6. The 3-in-1 fire detection sensor used for the fire detection subsystem of the ISR. 

 

 

Example: The original model parameters are set as: c = 5, q = 1.2,  0.67 0.3 1 0.43  , 

 0.2 0.12 0.35 0.4 0.56 0.5 0.6 0.3 0.45 0.38 0.6 0.73 0.9 0.83 1   and h = 75%. Then, we randomly 

create 400 4-dimensional feature attributes with 10% random contamination to produce training data 

as shown in Table 1, where truey  are the original objective attributes, conty  are the contaminated 

objective attributes and the bold-faced numbers represent that objective attributes are contaminated.  

Table 1. Tanning data with and without contaminations used for verifying the proposed 

NACI model and LTS-MQPSO algorithm. 

 1x  2x  3x  4x  truey  conty  

01 0.760 0.900 0.790 0.930 5.67253 5.67253 

02 0.930 0.210 0.440 0.260 5.39280 5.39280 

03 0.680 0.850 0.070 0.750 5.28559 5.28559 

04 0.260 0.940 0.900 0.030 5.49294 5.49294 

05 0.860 0.790 0.630 0.690 5.56252 5.56252 

06 0.670 0.120 0.420 0.710 5.41806 5.41806 

07 0.190 0.760 0.460 0.210 5.30678 5.30678 

08 0.920 0.180 0.400 0.040 5.33158 5.33158 

09 0.650 0.680 0.450 0.920 5.48550 3.80599 

10 0.050 0.710 0.210 0.010 5.13252 5.13252 
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Table 1. Cont. 

11 0.290 0.640 0.600 0.290 5.39438 5.39438 

12 0.270 0.040 0.940 0.650 5.60023 5.60023 

13 0.970 0.400 0.080 0.290 5.25339 5.25339 

14 0.450 0.460 0.890 0.810 5.64319 5.64319 

15 0.730 0.020 0.910 0.330 5.58932 5.58932 

16 0.650 0.120 0.160 0.210 5.21480 5.21480 

17 0.490 0.790 0.150 0.910 5.31462 5.31462 

18 0.530 0.900 0.820 0.720 5.62050 5.62050 

19 0.170 0.580 0.070 0.620 5.17635 6.84732 

20 0.870 0.820 0.790 0.030 5.50912 5.50912 

       

385 0.820  0.120  0.250  0.680  5.35888  5.35890  

386 0.480  0.240  0.160  0.200  5.19002  5.19003  

387 0.960  0.110  0.830  0.140  5.55050  5.55042  

388 0.880  0.370  0.210  0.660  5.35336  5.35336  

389 0.710  0.650  0.350  0.330  5.34275  5.34284  

390 0.420  0.840  0.130  0.430  5.23067  5.23077  

391 0.680  0.650  0.390  0.400  5.36962  5.36974  

392 0.330  0.320  0.810  0.640  5.55438  5.55440  

393 0.650  0.790  0.340  0.710  5.40430  5.40440  

394 0.840  0.030  0.250  0.580  5.34598  6.35911  

395 0.300  0.940  0.480  0.520  5.39375  5.39379  

396 0.770  0.770  0.200  0.810  5.36578  5.36589  

397 0.520  0.980  0.760  0.010  5.44782  5.44787  

398 0.580  0.920  0.870  0.900  5.68322  5.68323  

399 0.790  0.910  0.720  0.370  5.53678  5.53670  

400 0.370  0.560  0.890  0.210  5.52618  5.52621  

 

In this example, the termination criteria of the program are that the iterations reach a maximum  

of 1,500 times or the mean square error is less than 10
−5

. After performing the proposed LTS-MQPSO 

algorithm for many times, the average results of estimating the model parameters and comparisons are 

shown in Tables 2–4. In addition, we also show in Figures 7–10 plots of the training data and 

estimated results. In Figure 7, a comparison between the contaminated (red line) and the estimated 

(blue dash line) objective attributes are shown. These two curves nearly overlap besides these points 

where outliers are present. To clearly show the performance of rejecting outliers, the zoomed in 
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portion which is circled with a dotted line is also shown in Figure 8. As shown in Figure 8, the  

LTS-MQPSO algorithm is able to identify outliers and reject them. In the Figure 9, a comparison 

between the original (red line) and the estimated (blue dash line) objective attributes are shown. These 

two curves almost overlap everywhere. To distinguish each other, the zoomed in portion which is 

circled with dotted line is also shown in the Figure 10. As shown in this figure, the difference between 

the original and the estimated objective attributes is less than 10
−4

. Besides, it is intuitive that the  

LTS-MQPSO algorithm is able to make quite precise estimations of model‟s parameters. 

 

Table 2. The average results of model parameters estimated by the proposed  

LTS-MQPSO algorithm.  

Parameters Estimated Original Data Estimated Contaminated Original  

μ1 0.202630  0.20  d(1) 5.67262  5.67253  5.67253  

μ2 0.119595  0.12  d(2) 5.39267  5.39280  5.39280  

μ1,2 0.352183  0.35  d(3) 5.28556  5.28559  5.28559  

μ3 0.399180  0.40  d(4) 5.49297  5.49294  5.49294  

μ1,3 0.561244  0.56  d(2) 5.56263  5.56252  5.56252  

μ2,3 0.498894  0.50  d(6) 5.41794  5.41806  5.41806  

μ1,2,3 0.601077  0.60  d(7) 5.30686  5.30678  5.30678  

μ4 0.298500  0.30  d(8) 5.33147  5.33158  5.33158  

μ1,4 0.451280  0.45  d(9) 5.48563  3.80599  5.48550  

μ2,4 0.379223  0.38  d(10) 5.13246  5.13252  5.13252  

μ3,4 0.601223  0.60      

μ1,2,4 0.728169  0.73  d(391) 5.36962  5.36974  5.36974  

μ1,3,4 0.900233  0.90  d(392) 5.55438  5.55440  5.55440  

μ2,3,4 0.828266  0.83  d(393) 5.40430  5.40440  5.40440  

μ1,2,3,4 1.000000  1.00  d(394) 5.34598  6.35911  5.34591  

ω1 0.661194  0.67  d(395) 5.39375  5.39379  5.39379  

ω2 0.299558  0.30  d(396) 5.36578  5.36589  5.36589  

ω3 1.000000  1.00  d(397) 5.44782  5.44787  5.44787  

ω4 0.430799  0.43  d(398) 5.68322  5.68323  5.68323  

c 4.999999  5.00  d(399) 5.53678  5.53670  5.53670  

q 1.202177  1.20  d(400) 5.52618  5.52621  5.52621  
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Table 3. The average results of objective attributes estimated by the LTS-MQPSO, the  

LTS-MQPSO-LB and the MQPSO algorithm. 

Data Original  Contaminated 
Estimated  by 

LTS-MQPSO 

Estimated by 

LTS-MQPSO-LB 

Estimated by 

MQPSO 

d(1) 5.67253 5.67250 5.67253 5.67356 5.68501 

d(2) 5.39280 5.39280 5.39280 5.39319 5.33520 

d(3) 5.28559 5.28560 5.28559 5.28591 5.31600 

d(4) 5.49294 5.49290 5.49294 5.49304 5.46360 

d(2) 5.56252 5.56250 5.56252 5.56237 5.61565 

d(6) 5.41806 5.41810 5.41806 5.42090 5.38345 

d(7) 5.30678 5.30680 5.30678 5.30770 5.32974 

d(8) 5.33158 3.68524 5.33158 5.33157 5.24508 

d(9) 5.48550 5.48550 5.48550 5.48373 5.52952 

d(10) 5.13252 5.13250 5.13252 5.13101 5.17121 

d(11) 5.39440 5.39440 5.39438 5.39677 5.42818 

d(12) 5.60020 5.60020 5.60020 5.60104 5.58952 

d(13) 5.25340 5.25340 5.25353 5.25332 5.41922 

d(14) 5.64320 5.64320 5.64318 5.64338 5.66970 

d(15) 5.58930 5.58930 5.58939 5.58941 5.52346 

      

d(386) 5.30790 5.30790 5.30781 5.309731 5.31757 

d(387) 5.47460 5.47460 5.47471 5.476158 5.47223 

d(388) 5.30380 5.30380 5.30377 5.303276 5.25468 

d(389) 5.59290 5.59290 5.59300 5.594471 5.61154 

d(390) 5.57300 5.57300 5.57296 5.573292 5.55016 

d(391) 5.36974 5.46760 5.36974 5.464645 5.37275 

d(392) 5.55440 5.52800 5.55440 5.529859 5.52020 

d(393) 5.40440 5.38750 5.40440 5.387559 5.44484 

d(394) 5.34591 5.29230 5.34591 5.29274 5.33559 

d(395) 5.39379 7.25114 5.39379 5.337529 5.30333 

d(396) 5.36589 5.19230 5.36589 5.192462 5.20087 

d(397) 5.44787 5.30860 5.44787 5.307585 5.28206 

d(398) 5.68323 5.61440 5.68323 5.614041 5.61254 

d(399) 5.53670 5.65030 5.53670 5.651546 5.65586 

d(400) 5.52621 5.53400 5.52621 5.533216 5.44066 
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Table 4. The average results of model parameters estimated by the LTS-MQPSO, the  

LTS-MQPSO-LB and the MQPSO algorithm.  

Parameters Original 
Estimated by 

LTS-MQPSO 

Estimated by 

LTS-MQPSO-LB 

Estimated by 

MQPSO 

μ1 0.20  0.202630  0.220264 0.999814 

μ2 0.12  0.119595  0.101039 0.205399 

μ1,2 0.35  0.352183  0.355931 0.000001 

μ3 0.40  0.399180  0.446918 0.209780 

μ1,3 0.56  0.561244  0.617110 0.000134 

μ2,3 0.50  0.498894  0.542382 0.044604 

μ1,2,3 0.60  0.601077  0.660831 0.002942 

μ4 0.30  0.298500  0.249854 0.251532 

μ1,4 0.45  0.451280  0.430170 0.000009 

μ2,4 0.38  0.379223  0.337117 0.000087 

μ3,4 0.60  0.601223  0.578540 0.289889 

μ1,2,4 0.73  0.728169  0.718593 0.389799 

μ1,3,4 0.90  0.900233  0.905735 0.347362 

μ2,3,4 0.83  0.828266  0.827270 0.000376 

μ1,2,3,4 1.00  1.000000  1.000000 1.000000 

ω1 0.67  0.661194  0.689136 0.163266 

ω2 0.30  0.299558  0.330364 0.163267 

ω3 1.00  1.000000  1.000000 1.000000 

ω4 0.43  0.430799  0.584927 0.269410 

c 5.00  4.999999  4.999316 5.1152898 

q 1.20  1.202177  1.075533 2.0519762 

MSE  8.0154e-005 0.0018 0.455776 

Elapse  1059 seconds 1496 seconds 1580 seconds 
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Figure 7. Shown the results for the contaminated objective attributes and the estimated 

objective attributes. 
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Figure 8. Zoom in the curve marked by a dotted circle in Figure 7. 
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Figure 9. Shown the results for the original objective attributes and the estimated objective attributes. 
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Figure 10. Zoom in the curve marked by a dotted circle in Figure 9. 
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6. Conclusions  

In this paper, the NACI model association with the LTS-MQPSO algorithm is considered and 

developed to deal with a non-additive system with outliers. Whenever atypical observations are 

present, the parameter estimation method based on the LS estimator is no longer feasible. Therefore, 

replacement of the LS estimator with the LTS estimator is an excellent alternative. That is, we 

successfully integrate the mechanisms of the SA, and the GA into the QPSO algorithm to estimate 

parameters of the NACI model; meanwhile, the LTS estimator is also introduced to filter out outliers 
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before performing the modified MQPSO algorithm. From the simulation results, the proposed LTS-

MQPSO algorithm can precisely estimate parameters of the NACI model for observations 

contaminated with outliers; meanwhile, it still maintains high coincidence between the estimated and 

original objective attributes. 
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