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Abstract: Advances in fuel cell applications reflect the ability of reformers to produce 

hydrogen. This work presents a flexible micro temperature sensor that is fabricated based 

on micro-electro-mechanical systems (MEMS) technology and integrated into a flat micro 

methanol reformer to observe the conditions inside that reformer. The micro temperature 

sensor has higher accuracy and sensitivity than a conventionally adopted thermocouple. 

Despite various micro temperature sensor applications, integrated micro reformers are still 

relatively new. This work proposes a novel method for integrating micro methanol 

reformers and micro temperature sensors, subsequently increasing the methanol conversion 

rate and the hydrogen production rate by varying the fuel supply rate and the water/methanol 

ratio. Importantly, the proposed micro temperature sensor adequately controls the interior 

temperature during oxidative steam reforming of methanol (OSRM), with the relevant 

parameters optimized as well. 
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1. Introduction  

Methanol is a more feasible liquid fuel for use in a reformer owing to its high safety of storage  

and transport, high carbon/hydrogen ratio, high power density and low reforming temperature 

(250–300 C) [1]. However, the technology application-related problems related to its use include 

starting time and power density. Also, how to produce hydrogen efficiently and steadily is another 

important concern. 

The ability of the proposed micro sensor to monitor the inner environment of a micro methanol 

reformer requires the following features: a high sensitivity, short response and recovery time, 

reproducibility and long stability, low interference (high selectivity), simplified process and mass 

production capability, wide monitor range, low cost, and low energy waste. 

Liu and Yang have used polyimide as the substrate material for a flow sensor [2,3], while Chuang 

fabricated a micro temperature sensor and micro heater on poly-dimethylsiloxane (PDMS) film [4]. 

Bielska [5] used polyamide foil as the basic material and fabricated gold and copper electrode on it by 

using micro-electro-mechanical systems (MEMS) technology. The temperature is evaluated at a range 

of 30 C to 42 C, and the resistance change is used based on the temperature to study its linear outcome.  

Zhang [6] fabricated platinum/titanium on Pyrex 7740 glass based on the use of MEMS technology, 

while simultaneously using the heater as temperature sensor. Platinum and titanium are then deposited 

using an E-beam evaporator, followed by completion of the sensor shape by using the lift-off method. 

Based on use of MEMS technology, Shih [7] fabricated platinum/titanium on a silicon wafer to be 

used in temperature gradient interaction chromatography, in which a layer of parylene is deposited 

around the sensor to become an air gap to increase thermal isolation and decrease heat loss.  

Yan [8] used nickel-chromium alloy as the material of a micro heater and nickel as the material for 

a temperature sensor. An electron probe micro analyzer was also used to evaluate the adhesion 

between nickel and the substrate material when depositing nickel on different substrate materials. 

According to their results, depositing nickel on silicon nitride and silicon oxide is better than 

depositing nickel on silicon wafers. 

Xiao [9] developed an inexpensive and flexible micro temperature sensor by using low pressure 

chemical vapor deposition to deposit phosphosilicate glass to be the sacrificial layer. A layer of 

polyimide was also coated, followed by use of MEMS technology to fabricate platinum on polyimide. 

The subsequently flexible sensor can remove the sacrificial layer and does not limit the position of  

a sensor.  

Despite macromolecular advantages such as thermal stability, high dimensional stability, and low 

permittivity, the temperature change is slightly too large. This work attempts either to prevent the film 

and basic material from flaking off or to decrease the yield rate from the heat stress by using stainless 

steel foil for a flexible base material of 40 μm thickness. Stainless steel foil must have high corrosion 

resistance, high compression resistance, high temperature resistance and high flexibility. This work 

attempts to decrease the interference of a methanol reformer and diagnose the inner environment 

immediately by using thin metal foil as the substrate material of the proposed micro sensor. 
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2. Methodology 

This section comprises descriptions of a micro flow plate and a micro temperature sensor. 

2.1. Design of a Micro Flow Plate 

The micro flow plate is used in various technologies, in which the appearance of a flow changes 

with the miniaturization of a flow plate. Thorough elucidation of the characteristics of a flow would 

increase the scope of potential applications. Design of a flow channel inside the micro reformer must 

consider the following factors: heat conduction rate and methanol/air mixing rate, pressure  

decrease and pressure distribution, catalyst reaction area and chemistry reaction flow direction, flow 

rate distribution, mass transfer rate and concentration distribution, as well as viscous energy  

energy-dissipating and divergence heat transfer [10]. Based on the above factors, the design of a 

planner flow channel is adopted, as described in the following section 

2.2. Design of a Micro Temperature Sensor 

Conventionally adopted sensors can be classified as contactless or contactable, depending on their 

sensing mode. Contactable sensors can be classified as resistance temperature detectors, thermistors, 

thermocouples and mercury thermometers. Additionally, contactless sensors can be categorized into 

pyroelectric and quantum temperature sensors. Regardless of whether a contactable or contacless 

sensor is considered, too large of a volume interferes with the flow and increases the complexity of 

packaging, making it impossible for them to integrate with a micro channel. Given that a small 

volume, high precision, production batch and low cost characterize micro sensors based on MEMS 

technology, this work presents a flexible micro temperature sensors based on this technology. 

This work develops a flexible micro temperature sensors based on MEMS technology to measure 

inner temperature distributions. The measurement area is increased by placing micro sensors in a 

reaction area intensively. Additionally, the size of a micro temperature sensor is decreased to measure 

the temperature variation of a small area and decrease the thickness of sensing membranes in order to 

increase the reaction rate. Electrode length of the proposed micro temperature sensor is 260 μm and 

the width is 300 μm; both the line width and interval are 20 μm as shown in Figure 1. Three micro 

temperature sensors are placed in one group, in which nine groups are set at the upstream, midstream 

and downstream of the micro flow plate, as well as one group at the inlet and one at the outlet.  

Figure 2 shows the micro temperature sensors distribution. 

2.3. Fabrication of a Micro Flow Plate 

A micro flow plate is manufactured based on MEMS technology, in which SUS 304 is used as the 

substrate and the thickness of SUS 304 is 600 μm. Figure 3 illustrates the process. An E-beam 

evaporator is used to deposit 500 Å of titanium on stainless steel to function as a sticking layer, 

followed by use of spin coater coating Hexamethyldisilazane (HMDS) as the sticking layer for the 

photoresist. Photoresist AZ-4620 is then coated on stainless steel to function as the etching mask. 

Next, an aligner and mask are used to make a transition graph for the photoresist, followed by use of 

MP2500 + H2O to define the pattern. Following development, titanium and aqua regia are etched using 
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hydrofluoric acid to etch stainless steel, followed by removal of the titanium mask and photoresist. 

Next, pattern is cut to the desired shape by wire cutting. Figure 4 illustrates the finished product. 

Figure1. Electrode dimensions of a micro temperature sensor (units: μm). 

 

Figure 2. Micro temperature sensor distribution. 
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Figure 3. Process sketch of a micro flow plate. 

 

Figure 4. Planer micro flow plate: (a) surface; (b) sectional. 

  

(a)      (b) 

2.4. Fabrication of a Flexible Micro Temperature Sensor 

The material of the micro temperature sensor is gold, and 40 μm thick stainless steel foil was used 

as the substrate. Regardless of whether wet etching or metal lift-off is used, a layer of insulating 

material is coated, explaining our use of RF sputter to grow 1,000 Å of aluminum nitride (AlN). 

Next an E-beam evaporator is used to deposit 200 Å of chromium to be sticking layer. 2,000 Å of 

gold is then deposited. Next, photolithography is performed to define the pattern of a micro 

temperature sensor, followed by use of etching liquid to etch gold. Finally, fabrication of the micro 

temperature sensor is completed after removing the photoresist layer. Figure 5 shows the micro 

temperature sensor, while Figure 6 shows the optical microscope diagram of the micro temperature 

sensor. Figure 7 schematically depicts the structure of the micro reformer combined with flexible 

micro temperature sensors. 
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Figure 5. Process sketch of a micro temperature sensor. 

 

Figure 6. Optical microscope picture of a micro temperature sensor. 
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Figure 7. Structure of the micro reformer combined with flexible micro temperature sensors. 
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3. Results and Discussion 

3.1. Inner Temperature Distribution of a Micro Temperature Sensor during OSRM Reaction at 270 °C 

In this study, CuPd/CeZn was selected as a reforming catalyst. The composition of catalyst is  

CuO-35wt%, PdO-2wt%, CeO2-20wt%, and ZnO2-43wt%. The catalyst (30 mg) was washcoated on a 

micro channel [11]. Figures 8 to 10 illustrate the upstream, midstream and the downstream 

temperatures of inserted flexible micro temperature sensors during an oxidative steam reforming of 

methanol (OSRM) reaction. Under the same operating environment, methanol conversion can achieve 

100% at 270 °C, as long as the temperature is maintained during inner measurements. The upstream 

reveals that the temperature responsively rolls acutely, normally ending in 1–3 cycles. We posit that 

the inner reaction transforms into an exothermic reaction in a relatively short time. 

Although the maximum temperature of temperature responsively is approximately 550 °C, it does 

not appear often; in addition, the second high temperature ranges from 270 °C to 450 °C. The 

midstream temperature responsively is about 0, indicating that it is during the reciprocation between 

endothermic reaction and exothermic reaction. The temperature distribution is at 260 °C–300 °C.  

The downstream shows endothermic reaction directly, in which the temperature variation is around 

250 °C–260 °C. 

From Figures 8 to 10, we can infer that fuel entering the micro channel burns with the oxygen at 

upstream, in which a large number of exothermic reactions lead to partial oxidation reaction of 

methanol. When it reaches midstream, the consumption of oxygen makes it come before the oxidative 

http://tw.wrs.yahoo.com/_ylt=A3eg.871wIlM8RoAFjLhbB4J/SIG=12vfnul4d/EXP=1284182645/**http%3a/tw.dictionary.yahoo.com/dictionary%3fp=reciprocation%26docid=1084195
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steam reforming reaction of methanol, revealing a balance between endothermic reaction and 

exothermic reaction. Then, at downstream, a catalyst reaction changes to the steam reforming reaction 

of methanol completely. The exothermic reaction of upstream and midstream offer some heat to the 

downstream, and the fuel consumption does not reveal an obvious endothermic reaction. 

Figure 8. Inner temperature distribution of micro reformer at area 1-1, 1-2, 1-3 (OSRM; 270 C). 

 
(sec)  

Figure 9. Inner temperature distribution of micro reformer at area 2-1, 2-2, 2-3 (OSRM; 270 C). 

 
(sec)  
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Figure 10. Inner temperature distribution of micro reformer at area 3-1, 3-2, 3-3 (OSRM; 270 C). 

 
(sec)  

3.2. Inner Temperature Distribution of a Micro Temperature Sensor during OSRM Reaction at 300 °C 

As time advances, our results indicate that the methanol conversion rate has decreased gradually, 

implying decreasing catalyst activity. Therefore, raising the reaction temperature to 300 °C facilitates 

the catalyst reactivation. Figures 11 to 13 reveal that the upstream, midstream and the downstream 

processing undergo partial oxidation of methanol (POM) and oxidative steam reforming of methanol 

(OSRM) and steam reforming of methanol (SRM) obviously. The maximum temperature upstream is 

approximately 800 °C, in which the average temperature is around 450 °C. However, the reaction time 

is extremely short. 

Figure 11. Inner temperature distribution of micro reformer at area 1-1, 1-2, 1-3 (OSRM; 300 C). 

 
(sec)  
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Figure 12. Inner temperature distribution of micro reformer at area 2-1, 2-2, 2-3 (OSRM; 300 C). 

 
(sec)

 

Figure 13. Inner temperature distribution of micro reformer at area 3-1, 3-2, 3-3 (OSRM; 300 C). 

 
(sec)

 

4. Conclusions 

This work successfully integrates a micro reformer and flexible micro temperature sensors to 

alleviate the pressurization problem. Heat tolerance of the printed circuit board is also increased, 

which involves the bonding breakout of printed circuit boards in order to devise a standardized 

procedure. Micro temperature sensors contribute significantly to the partial measurement in a micro 

methanol reformer by measuring more deeply than an external measurement does. This work 

successfully integrates micro temperature sensors inside the micro methanol reformer to measure the 
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inner condition the reformer immediately, ultimately providing further insight into the inner temperature 

distribution during the oxidative steam reforming reaction of methanol. 
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