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Abstract: In this paper, the application of the fuzzy interacting multiple model unscented 

Kalman filter (FUZZY-IMMUKF) approach to integrated navigation processing for the 

maneuvering vehicle is presented. The unscented Kalman filter (UKF) employs a set of 

sigma points through deterministic sampling, such that a linearization process is not 

necessary, and therefore the errors caused by linearization as in the traditional extended 

Kalman filter (EKF) can be avoided. The nonlinear filters naturally suffer, to some extent, 

the same problem as the EKF for which the uncertainty of the process noise and 

measurement noise will degrade the performance. As a structural adaptation (model 

switching) mechanism, the interacting multiple model (IMM), which describes a set of 

switching models, can be utilized for determining the adequate value of process noise 

covariance. The fuzzy logic adaptive system (FLAS) is employed to determine the lower 

and upper bounds of the system noise through the fuzzy inference system (FIS). The 

resulting sensor fusion strategy can efficiently deal with the nonlinear problem for the 

vehicle navigation. The proposed FUZZY-IMMUKF algorithm shows remarkable 

improvement in the navigation estimation accuracy as compared to the relatively 

conventional approaches such as the UKF and IMMUKF.  
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1. Introduction 

A navigation filter is commonly designed by use of an extended Kalman filter (EKF) [1-3] to 

estimate the vehicle state variables and suppress the navigation measurement noise. Although it has 

been shown to be a minimum mean square error estimator, the fact that EKF highly depends on a 

predefined dynamics model forms a major drawback. For achieving good filtering results, the 

designers are required to have the complete a priori knowledge on both the dynamic process and 

measurement models, in addition to the assumption that both the process and measurement are 

corrupted by zero-mean Gaussian white sequences.  

As a deterministic sampling approach, the unscented Kalman filter (UKF) [4-9] was first proposed 

by Julier, et al. [4] to address nonlinear state estimation in the context of control theory. The UKF is a 

nonlinear, distribution approximation method, which uses a finite number of carefully chosen sigma 

points to propagate the probability of state distribution through the nonlinear dynamics of system so as 

to completely capture the true mean and covariance of the Gaussian random variable (GRV) with a 

minimal set of samples. The UKF made a Gaussian approximation with a limited number sigma points 

by using the Unscented Transform (UT). The basic premise behind the UKF is it is easier to 

approximate a Gaussian distribution than it is to approximate an arbitrary nonlinear function. When the 

sample points are propagated through the true nonlinear system, the posterior mean and covariance can 

be captured accurately to the second order of Taylor series expansion for any nonlinear system. One of 

the remarkable merits is that the overall computational complexity of the UKF is the same as that of 

the EKF [8]. 

A high gain (high bandwidth) filter is needed to respond fast enough to the platform maneuvers 

while a low gain filter is necessary to reduce the estimation errors during the uniform motion periods. 

Under various circumstances where there are uncertainties in the system model and noise description, 

and the assumptions on the statistics of disturbances are violated due to the fact that in a number of 

practical situations, the availability of a precisely known model is unrealistic. One way to take them 

into account is to consider a nominal model affected by uncertainty. An a parametric adaptation 

approach, the adaptive Kalman filter (AKF) algorithm has been one of the strategies considered for 

estimating the state vector to prevent divergence problem due to modeling errors [9-11]. Many efforts 

have been made to improve the estimation of the covariance matrices based on the innovation-based 

estimation approach, resulting in the innovation adaptive estimation (IAE) [2,10,11]. Two popular 

types of the adaptive Kalman filter algorithms include the innovation-based adaptive estimation (IAE) 

approach [10,11] and the adaptive fading memory filter approach, which is a type of covariance 

scaling method. One of the adaptive fading memory filters is called the strong tracking Kalman  

filter [9], where the strong tracking algorithm (STA) involves a nonlinear smoother algorithm that 

employs suboptimal multiple fading factors. 
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The other major approach that has been proposed for AKF is the multiple model adaptive estimate 

(MMAE). An a structural adaptation approach, the interacting multiple model (IMM) algorithm [3,12,13] 

has the configuration that runs in parallel several model-matched state estimation filters, which 

exchange information (interact) at each sampling time. The IMM approach is based on filter structural 

adaptation (model switching). Based on a soft-switching framework, the IMM algorithm allows the 

possibility of using highly dynamic models just when required, diminishing unrealistic noise 

considerations in non-maneuvering situations of the system. The use of an IMM allows exploiting the 

benefits of high dynamic models in the problem of vehicle navigation. The IMM estimator obtains its 

estimate as a weighted sum of the individual estimates from a number of parallel filters matched to 

different motion modes of the platform. The objective is to design the nonlinear filter in an IMM 

algorithm suitable for high dynamic or curvilinear motions to navigate a maneuvering vehicle. 

Selected results presented in this paper confirm the improvements. 

The IMM algorithm has been originally applied to target tracking [14-17], and recently extended to 

Global Positioning System (GPS) navigation [18,19], and integrated navigation designs [20-23]. A 

model probability evaluator calculates the current probability of the vehicle being in each of the 

possible modes. A global estimate of the vehicle‟s state is computed using the latest mode 

probabilities. This algorithm carries out a soft-switching between the various modes by adjusting the 

probabilities of each mode, which are used as weightings in the combined global state estimate. The 

covariance matrix associated with this combined estimate takes into account the covariances of the 

mode-conditioned estimates as well as the differences between these estimates.  

The UKF naturally suffers the same problem as the EKF. The uncertainty of the process noise and 

measurement noise will degrade the performance of the UKF. An adaptive mechanism which 

dynamically identifies uncertainties or modeling errors can be adopted. To deal with the noise 

uncertainty and system nonlinearity simultaneously, the IMMUKF can be introduced [24,25]. In the 

approach, these multiple models are developed to describe various dynamic behaviors. In each model 

an UKF is running, and the IMM algorithm makes uses of model probabilities to weight the inputs and 

output of a bank of parallel filters at each time instant. The fuzzy logic reasoning system is based on 

the Takagi-Sugeno (T-S) model. The fuzzy reasoning system is constructed for obtaining the suitable 

process noise according to the time-varying change in dynamics. By monitoring the innovation 

information, the Fuzzy logic adaptive system (FLAS) is employed for dynamically on-line determining 

better lower and upper bounds of the process noise covariance according to the innovation information, 

and therefore improves the estimation performance. 

The synergy of Global Positioning System (GPS) and inertial navigation system (INS) has been 

widely explored due to their complementary operational characteristics [1,26]. The GPS/INS 

integrated navigation system, typically carried out through the EKF and UKF, is the adequate solution 

to provide a navigation system that has the superior performance in comparison with either the GPS or 

INS stand-alone system. The example on the tightly-coupled GPS/INS integrated navigation 

processing based on the FUZZY-IMMUKF will be presented. The performance comparison will be 

demonstrated by using the proposed FUZZY-IMMUKF method as compared to the relatively 

conventional UKF and IMMUKF approaches. 

The remainder of this paper is organized as follows. In Section 2, the preliminary background on 

the interacting multiple model unscented Kalman filter for the navigation processing is discussed. The 
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proposed sensor fusion strategy is introduced in Section 3. In Section 4, the navigation integration 

processing and performance evaluation are carried out to evaluate the performance comparison will be 

demonstrated using the proposed FUZZY-IMMUKF method as compared to the relatively 

conventional UKF and IMMUKF approaches. Conclusions are given in Section 5. 

2. The Interacting Multiple Model Unscented Kalman Filter 

The unscented Kalman filtering deals with the case governed by the nonlinear stochastic  

difference equations: 

kkk kf wxx  ),(1       (1a) 

kkk kh vxz  ),(       (1b) 

where the state vector n
k x , process noise vector n

k w , measurement vector m
k z , and 

measurement noise vector m
k v . The vectors kw  and kv  are zero mean Gaussian white sequences 

having zero cross-correlation with each other: 

ikkikE Qww ][ T ; ikkikE Rvv ][ T ; kandiallforE ik 0vw ][ T  

where ][E  represents expectation, and superscript “T” denotes matrix transpose, kQ  is the process 

noise covariance matrix and kR  is the measurement noise covariance matrix. The symbol ik  stands 

for the Kronecker delta function: 
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The IMM approach takes into account a set of models to represent the system behaviour patterns or 

system model. The estimator carries out a „soft switching‟ among various models by the model 

probability. The overall estimates is obtained by a combination of the estimates from the filters 

running in parallel based on the individual models that match the system modes. The measurements 

could be obtained from one or more sensors, and the model-matched filters could be linear or 

nonlinear. The algorithm of IMM-nonlinear filters is introduced to deal with the noise uncertainty and 

system nonlinearity simultaneously.  

Let a general system for multiple models in discrete time be described by: 

),(),,(1 kkkkk MMkf xwxx       (2a) 

),(),,( kkkkkk MMkh xvxz        (2b) 

where )(f  and )(g  are the parameterized state transition and measurement functions, kx  and kz  are 

the dynamical state and measurement of the system in model kM , and the system itself is a Markov 

chain, w , v  are the process noise and measurement noise with covariances kQ  and kR , respectively. 

Instead of linearizing using the Jacobian matrices as in the EKF and achieving first-order accuracy, 

the UKF uses a deterministic sampling approach to capture the mean and covariance estimates with a 

minimal set of sample points. The UKF was proposed to address nonlinear state estimation in the 

context of control theory. When the sample points are propagated through the true nonlinear system, 

the posterior mean and covariance can be captured accurately to the 3rd order of Taylor series 
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expansion for any nonlinear system. One of the remarkable merits is that the overall computational 

complexity of the UKF is the same as that of the EKF [8]. 

The first step in the UKF is to sample the prior state distribution, i.e., generate the sigma points 

through the UT, which is a method for calculating the statistics of a random variable which undergoes 

a nonlinear transformation. The basic premise is that to approximate a probability distribution is easier 

than to approximate an arbitrary nonlinear transformation. The samples are propagated through true 

nonlinear equations, and the linearization of the model is not required. 

Suppose the mean x  and covariance P  of vector x  are known, a set of deterministic vector called 

sigma points can then be found. The ensemble mean and covariance of the sigma points are equal to x  

and P . The nonlinear function )(xy f  is applied to each deterministic vector to obtain transformed 

vectors. The ensemble mean and covariance of the transformed vectors will give a good estimate of the 

true mean and covariance of y , which is the key to the unscented transformation. The UKF approach 

estimates are expected to be closer to the true values than the EKF approach. 

The sigma vectors are propagated through the nonlinear function to yield a set of transformed  

sigma points: 

nif ii 2,...,0)(       Xy       (3) 

The mean and covariance of iy  are approximated by a weighted average mean and covariance of 

the transformed sigma points as follows: 


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As compared to the EKF‟s linear approximation, the unscented transformation is accurate to the 

second order for any nonlinear function. The UKF algorithm is summarized in Appendix. 

Incorporation of the STA (also provided in Appendix) into the UKF results in the strong tracking 

unscented Kalman filter (STUKF). 

The IMMUKF algorithm uses model (Markov chain state) probabilities to weight the input and 

output of a bank of parallel UKFs at each time instant. The approach takes into account a set of models 

to represent the system behavior patterns or system model. The overall estimates is obtained by a 

combination of the estimates from the filters running in parallel based on the individual models that 

match the system modes. An IMM cycle consists of four major stages: interaction (mixing), filtering, 

model probability calculation, and estimate combination, as described in the following subsections. 

2.1. Model Interaction/Mixing 

For given states     
 

         
 

with corresponding covariances     
 

         
 

 and mixing 

probabilities         
   

 for every model, the initial condition for the model j is: 
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The covariance corresponding to the above is: 
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The model transition probabilities, which are related to Markov chain, are defined as: 
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where rji  ,...,2,1,  , and r  is the number of sub-models. Calculating the mixing probabilities with 

mode switching probability matrix ij  and the Gaussian mixing probabilities are computed via  

the equations: 

i
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μ        (9) 

where jc  is a normalization factor:  
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2.2. Model Individual Filtering 

- Step 1 in UKF loop. The unscented transform creates 12 n  sigma vectors X  (a capital letter) and 

weighted points W . For state estimation at instant 1k , sigma points are generated according to: 
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where i
j

kn ))((
0

1 P  is the i th row (or column) of the matrix square root. 
j

kn
0

1)(  P  can be 

obtained from the lower-triangular matrix of the Cholesky factorization; λ = α2
(n + k) − n is a scaling 

parameter used to control the covariance matrix; α determines the spread of the sigma points and is 

usually set to a small positive (e.g., 1e − 4 ≤ α ≤ 1); k is a secondly scaling parameter (usually set  

as 0); β is used to incorporate prior knowledge of the distribution of    (when x is normally distributed,  

β = 2 is an optimal value);   
   

 is the weight for the mean associated with the i th point; and   
   

 is 

the weight for the covariance associated with the i th point: 
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- Step 2 in UKF loop. Time update (prediction steps): 
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- Step 3 in UKF loop. Measurement update (correction steps): 
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The samples are propagated through true nonlinear equations; the linearization is unnecessary 

(Calculation of the Jacobian matrix is not required).  

2.3. Model Probabilities Update 

The model probability j
kμ  is updated according to the model likelihood and model transition 

probability governed by the finite-state Markov chain: 
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and j
kΛ  is a likelihood function given by: 
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2.4. Combination of State Estimation and Covariance Combination 

The model-individual estimates and covariances are combined to an overall state and covariance: 
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3. The Proposed Fuzzy Adaptive Filter Strategy 

Figure 1 shows the block diagram for implementation of the proposed FUZZY-IMMUKF 

algorithm. The block on the right hand side, indicated by the dashed-line, is the fuzzy logic adaptive 

system (FLAS) for determining the value of process noise covariance. The rest represents the 

IMMUKF loop. 

Figure 1. The block diagram of the FUZZY-IMMUKF algorithm. (one cycle with two models). 

 

3.1. The Fuzzy Logic Adaptive System (FLAS) 

Fuzzy logic was first developed by Zadeh in the mid-1960s for representing uncertain and imprecise 

knowledge. It provides an approximate but effective means of describing the behavior of systems that 

are too complex, ill-defined, or not easily analyzed mathematically. A typical fuzzy system consists of 

three components, that is, fuzzification, fuzzy reasoning (fuzzy inference), and fuzzy defuzzification, 

as shown in Figure 2. The fuzzification process converts a crisp input value to a fuzzy value, the fuzzy 
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defuzzification process converts the fuzzy actions into a crisp action. 
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Figure 2. A fuzzy system. 

 

 

The fuzzification modules: (1) transforms the error signal into a normalized fuzzy subset consisting 

of a subset for the range of the input values and a normalized membership function describing the 

degree of confidence of the input belonging to this range; (2) selects reasonable and good, ideally 

optimal, membership functions under certain convenient criteria meaningful to the application. The 

characteristics of the fuzzy adaptive system depend on the fuzzy rules and the effectiveness of the rules 

directly influences its performance. To obtain the best deterministic output from a fuzzy output subset, 

a procedure for its interpretation, known as defuzzification should be considered. The defuzzification 

is used to provide the deterministic values of a membership function for the output. Using fuzzy logic 

to infer the consequent of a set of fuzzy production rules invariably leads to fuzzy output subsets. 

The fuzzy modeling is the method of describing the characteristics of a system using fuzzy 

inference rules. In this paper, a Takagi-Sugeno (T-S) fuzzy system is used to detect the divergence of 

EKF and adapt the filter. Takagi and Sugeno proposed a fuzzy modeling approach to model  

nonlinear systems. 
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with 

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1

1 , and the  ‟s represent the membership function. 

3.2. The Fuzzy Adaptive System Based on Unscented Kalman Filter 

The degree of divergence (DOD) parameters for identifying the degree of change in vehicle 

dynamics needs to be defined. Examples for possible approaches are given as follows. The innovation 

information at the present epoch is employed for timely reflect the change in vehicle dynamics. The 

DOD parameter ξ can be defined as the trace of innovation covariance matrix at present epoch (i.e., the 

window size is one) divided by the number of satellites employed for navigation processing: 
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where T
mk υυυ ]...[ 21 υ , m  is the number of measurements (number of satellites). Furthermore, the 

averaged magnitude of innovation at the present epoch can also be used: 





m

i
iυ

m 1

1
        (31) 

In the FLAS, the DOD parameters are employed as the inputs for the fuzzy inference engines. By 

monitoring the DOD parameters, the FLAS is able to on-line determine better lower and upper bounds 

of the process noise covariance according to the innovation information, and therefore improves the 

estimation performance. The flow chart of the FLAS-UKF algorithm is shown in Figure 3. 

Figure 3. The flow chart of the FLAS-UKF. 

 

0x̂  and 0P  

11,0 ˆ   kk xX  

T
ikkki λn ))((ˆ 111,   PxX , ,...,ni 1  

T
ikkkni λn ))((ˆ 111,   PxX , ,...,ni 1  

)( 1,1|,   kikki f Xζ , n,...,i 20  




 
n

i
kki

(m)
ikk W

2

0
1|,1|ˆ ζx ; 


 

n

i
kki

m
ikk W

2

0
1|,

)(
1|ˆ Zz  

)( 1|,1|,   kkikki ζhZ , n,...,i 20  




 
n

i
k

T
kkkkikkkki

(c)
izz W

2

0
1|1|,1|1|, ]ˆ][ˆ[ RzZzZP









 




n

i

T
kkkkikkkki

(c)
iW

2

0
1|1|,1|1|, ]ˆ][ˆ[ zZxζP zx

 

1
PPK
 zzk xz  

 )ˆ(ˆˆ 1|1|   kkkkkkk zzKxx  

 T
kzzkkk KPKPP    

T

kkkk KPKPP yy 

 

1 kk

 

1|ˆ  kkkk zzυ  





m

i

T
ii

m 1

1
υυ  





m

i
iυ

m 1

||
1

  

Determination of 

kQ  through FLAS 

FLAS 

 

1

2

0
1|1|,1|1|,

)(
1| ]ˆ][ˆ[ 


   k

n

i

T
kkkkikkkki

c
ikk W QxζxζP

 



Sensors 2011, 11                            

 

 

2100 

4. Navigation Integration Processing and Performance Evaluation 

Simulation experiments have been carried out to evaluate the performance of the proposed approach 

in comparison with the conventional methods for GPS/INS integrated navigation system processing. 

The tightly-coupled configuration is employed for demonstration. The commercial software Satellite 

Navigation (SATNAV) Toolbox by GPSoft LLC was employed for generating the satellite positions 

and pseudoranges. The satellite constellation was simulated and the error sources corrupting GPS 

measurements include ionospheric delay, tropospheric delay, receiver noise and multipath. Assume 

that the differential GPS (DGPS) mode is used and most of the errors can be corrected, but the 

multipath and receiver thermal noise cannot be eliminated. Figure 4 shows the configuration of the 

tightly-coupled feedback GPS/INS integrated navigation processing based on the FLAS-coupled 

IMMUKF filtering mechanism. The measurement is the residual between GPS pseudorange and INS 

predicted range, which is used as the measurement of the UKF. 

Figure 4. Configuration of the tightly-coupled feedback integrated navigation using the 

proposed approach. 

 

The differential equations describing the two-dimensional inertial navigation state are: 
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     (32) 

where [au, av] are the measured acceleration in the body frame, ωr is the measured yaw rate in the body 

frame, as shown in Figure 5. The error model for INS is augmented by some sensor error states such as 

accelerometer biases and gyroscope drifts. Actually, there are several random errors associated with 

each inertial sensor. It is usually difficult to set a certain stochastic model for each inertial sensor that 

works efficiently at all environments and reflects the long-term behavior of sensor errors. The 

difficulty of modeling the errors of INS raised the need for a model-less GPS/INS integration 

technique. Linearization of Equation (32) results in the following set of linearized equations: 
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which will be utilized in the integration Kalman filter as the inertial error model. In Equation (33), δn 

and δe represent the east, and north position errors; δvn and δve represent the east, and north velocity 

errors; and δψ represent yaw angle. 

Figure 5. Illustration of the two-dimensional inertial navigation. 

 

 

The measurement model is written as: 
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The experiment was conducted on a simulated vehicle trajectory originating from the (0,0,0) m 

location in the ENU coordinate frame. The simulated sensor outputs for the accelerometers and 

gyroscope are shown as in Figure 6. The schematic illustration of trajectories for the simulated vehicle 

and the unaided INS derived position is shown in Figure 7. The trajectory can be divided mainly into 

seven time intervals (or segments), as indicated on the figure, according the dynamic characteristics. 

Further detailed description of the vehicle motion is given in Table 1. The vehicle was simulated to 

conduct constant-velocity straight-line during the four time intervals, 0–300, 701–800, 901–1,200  

and 1,401–1,800 s, all at a speed of 10π m/s. Furthermore, it conducted circular motion with  

radius 2,000 meters during 301–700 s (counterclockwise) and 801–900 s (counterclockwise). The 

vehicle conducted the third circular motion with radius 1,000 meters (clockwise) during 1,201–1,400 s, 

where medium and high dynamic maneuverings are involved. The following parameters were used: the 

values of noise standard deviation are 3e-3 m/s
2
 for accelerometers and gyroscopes. Figure 8 shows the 

trajectories for the simulated vehicle and the INS derived position, where the error grows unbounded. 

Assume that the differential GPS (DGPS) mode is used and most of the errors can be corrected, but the 

multipath and receiver thermal noise cannot be eliminated. The measurement noise variances rρi are 
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assumed a priori known, which is set as 4 m
2
. The measurement noise covariance matrix is given by 

Rk = 100 × Im × m.  

The following model transition probability matrices of the Markov chain πij were assumed: 

otherwise
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9901
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In this paper, two models are employed, therefore 2N  and: 
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The initial model probability for each sub-model is chosen as: 
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Figure 6. Simulated sensor outputs for the accelerometers and gyroscope. 

 

Figure 7. Trajectories for the simulated vehicle (solid) and the INS derived position (dashed). 
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Table 1. Description of the vehicle motion. 

Segment number Time interval (sec) Motion 

1 [0–300]  Constant velocity straight line 

2 [301–700]  Circular motion (counter-clockwise) 

3 [701–800]  Constant velocity straight line 

4 [801–900]  Counter-clockwise turn 

5 [901–1,200]  Constant velocity straight line 

6 [1,201–1,400]  Clockwise turn 

7 [1,401–1,800]  Constant velocity straight line 

Figure 8. East and north components of INS navigation errors. 

 

 

The process noise covariance matrix is given by: 
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and the parameters utilized in the UKF are given as follows: α = 1e − 4, β = 2 and k = 0. In addition, 

the parameters utilized in the STA of the STUKF are: η = 0.6, ρ = 0.1, and the softening factor ε = 4.5. 

The sigma points capture the same mean and covariance irrespective of the choice of matrix square 

root which is used. The numerical efficient and stable method such as the Cholesky factorization has 

been used in obtaining the sigma points. 

The membership functions (MFs) of input fuzzy variable DOD parameters as shown in Figure 9 are 

triangle MFs. The presented FLAS is the If-Then form and consists of nine rules: 
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1. IF   is zero and   is zero THEN kQ  is 1 

2. IF   is zero and   is small THEN kQ  is 1 

3. IF   is zero and   is large THEN kQ  is 1 

4. IF   is small and   is zero THEN kQ  is 1 

5. IF   is small and   is small THEN kQ  is 4  

6. IF   is small and   is large THEN kQ  is 4   

7. IF   is large and   is zero THEN kQ  is 1266    

8. IF   is large and   is small THEN kQ  is 1266    

9. IF   is large and   is large THEN kQ  is 1266    

Figure 9. Membership functions of input fuzzy variables   (top) and   (bottom). 

 

 

Figures 10–13 provide the navigation results for the UKF, IMMUKF, STUKF and FUZZY-IMMUKF 

approaches. Before the FLAS was incorporated, preliminary evaluation on the adaptation algorithms 

were carried out. Comparisons of navigation accuracies for the standard UKF and IMMUKF, and for 

the IMMUKF and STUKF, are shown in Figures 10 and 11, respectively. Both the IMM and STA 

demonstrate the adaptation capability. Comparison of IMMUKF and STUKF in Figures 11 is included 

for better understanding the performance of the two algorithms, i.e., parametric adaptation and 

structural adaptation. The proposed FUZZY-IMMUKF has two main features. First, it employs the 

IMM mechanism for adjusting the adequate model based on the dynamic characteristics. Furthermore, 

the FLAS is adopted for automatically determining the lower and upper bounds of Qk. In is seen that 

substantial estimation accuracy improvement can be obtained by using the proposed method. In 

addition, to inspect the correctness of the filter switching capability, the mode probability of the 

FUZZY-IMMUKF needs to be checked, which is depicted in Figure 14. The soft-switching capability 

enables the filter to capture the adequate vehicle dynamic. Figure 15 provides comparison of east and 

north position root mean squared errors via the three approaches: UKF, IMMUKF and  

FUZZY-IMMUKF. Table 2 shows the comparison of navigation RMS (root mean square) errors for 

the three approaches. 
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Some remarks can be made as follows: 

(1) In the four time intervals, 0–300, 701–800, 901–1,200 and 1,401–1,800 s, the vehicle is not 

maneuvering and is conducting constant-velocity straight-line motion. For this case, all the UKF, 

IMMUKF and FUZZY-IMMUKF provide equivalently good results. The navigation accuracies based 

on the three approaches have relatively small difference. By use of the T-S fuzzy logic, the FLAS 

senses smaller values of DOD parameters, and then reduces the process noise covariance. As a result, 

the navigation accuracies based on the UKF, IMMUKF and FUZZY-IMMUKF are equivalent. 

(2) In the three time intervals, 301–700, 801–900 and 1,201–1,400 s, the vehicle is maneuvering. 

The mismatch of the model leads to larger navigation error while the FLAS timely detects the increase 

of DOD parameter, and determines a large process noise covariance to maintain good estimation 

accuracy. It has been verified that, by monitoring the innovation information, the FUZZY-IMMUKF 

has good capability to detect the change in vehicle dynamics and adjust the process noise covariance 

for preventing the divergence and achieving better navigation accuracy. 

Figure 10. Comparison of the navigation accuracy for UKF and IMMUKF. 

 

Figure 11. Comparison of the navigation accuracy for IMMUKF and STUKF. 
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Figure 12. Comparison of the navigation accuracy for IMMUKF and FUZZY-IMMUKF. 

 

Figure 13. Comparison of the navigation accuracy for three approaches: FUZZY-IMMUKF, 

IMMUKF and UKF. 

 

Figure 14. Model probability of FUZZY-IMMUKF. 
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Figure 15. Comparisons of east and north position RMS errors via three approaches: UKF, 

IMMUKF and FUZZY-IMMUKF. 

 

Table 2. Position accuracies for the three approaches (RMS errors, in meters). 

 East North 

UKF 7.9530 6.3195 

IMMUKF 2.9967 2.3021 

FUZZY-IMMUKF 1.0184 0.7286 

5. Conclusions 

The classical unscented Kalman filter does not possess the capability to monitor parameter changes 

due to changes in vehicle dynamics. An interacting multiple-model based method is suggested to 

improve the unscented Kalman filter for better navigation data fusion. The resulting IMMUKF ensures 

better description on the vehicle dynamics and exhibits superior navigation accuracy when compared 

with the classical UKF algorithm. This paper has presented a fuzzy interacting multiple model 

unscented Kalman filter for GPS/INS navigation processing to prevent the divergence problem in high 

dynamic environments. 

The fuzzy system is employed for dynamically adjusting the lower and upper bounds of the process 

noise covariance, which will be used in each of the parallel filters in the IMM architecture by 

monitoring the innovation information so as to provide further improvement in estimation accuracy. 

Through the proposed approach, lower order of filter model can be utilized and, therefore, less 

computational effort will be sufficient without compromising estimation accuracy significantly. When 

a designer does not have sufficient information to develop the complete filter models or when the filter 

parameters are slowly changing with time, the fuzzy system can be employed to enhance the 

IMMUKF performance. These performance comparisons of UKF, IMMUKF and FUZZY-IMMUKF 

have been conducted and the proposed FUZZY-IMMUKF algorithm has demonstrated very promising 

results in navigational accuracy. Future research can be conducted to undertake the implementation of 

the following issues.  

The current work essentially shows the feasibility of the approach. Evaluation of the proposed 

approach on a real system with better design of the fuzzy logic might be considered in the near future. 
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Other artificial intelligence such as neural work may also be incorporated for better tuning. 

Furthermore, the GPS RAIM (Receiver Autonomous Integrity Monitoring) in civil aviation might also 

be considered as one of the potential applications.  
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Appendix 

A. The Unscented Kalman Filter 

Consider an n  dimensional random variable x, having the mean    and covariance P, and suppose 

that it propagates through an arbitrary nonlinear function f. The unscented transform creates 2n + 1 

sigma vectors X (a capital letter) and weighted points W, given by: 

xX ˆ)0(   

T
ii λn ))((ˆ)( PxX  , ,...,ni 1      (39) 
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)(m
iW  and )(c

iW  are the weighs for the mean and covariance, respectively, associated with the i th point: 
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The sigma vectors are propagated through the nonlinear function to yield a set of transformed sigma 

points, yi = f(Xi), i = 0,…, 2n. 

The implementation algorithm of UKF is summarized as follows: 

1. The transformed set is given by instantiating each point through the process model: 
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4. Instantiate each of the prediction points through observation model: 

)( 1|,1|,   kkikki ζhZ  

5. Predicted observation: 
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6. Innovation covariance: 




 
n

i
k

T
kkkkikkkki

c
izz W

2

0
1|1|,1|1|,

)(
]ˆ][ˆ[ RzZzZP    (43) 

7. Cross covariance: 
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8. Performing update: 

1 zzk PPK xz  

)ˆ(ˆˆ 1|1|   kkkkkkk zzKxx      (45) 

T
kzzkkk KPKPP    
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B. The Strong Tracking Algorithm 

Based on the idea as in the AKF, the synthesis of UKF and strong tracking filter leads to the strong 

tracking unscented Kalman filter (STUKF). The suboptimal fading factors are introduced into the 

nonlinear smoother algorithm: 


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The covariance matrix needs to be updated the following way. The new 
kP  needs to be modified 

and can be obtained by multiplying Equation (42) by the factor kS : 
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Similarly, the covariance matrix zzP  and xzP , as represented by Equations (43) and (44), also 

respectively, can be modified and rewritten as: 
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where ),,( 21 mk sssdiag S . One approach is to assign the scale factors as constants. When 1is   

( mi ,,2,1  ), the filtering is in a steady state processing while 1is , the filtering may tend to be 

unstable. For the case 1is , it deteriorates to the standard Kalman filter. Further detailed information 

for the strong tracking unscented Kalman filter can be referred to Reference [9]. 
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