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Abstract: Radiometric calibration of airborne laser scanning (ALS) intensity data aims at 
retrieving a value related to the target scattering properties, which is independent on the 
instrument or flight parameters. The aim of a calibration procedure is also to be able to 
compare results from different flights and instruments, but practical applications are 
sparsely available, and the performance of calibration methods for this purpose needs to be 
further assessed. We have studied the radiometric calibration with data from three separate 
flights and two different instruments using external calibration targets. We find that the 
intensity data from different flights and instruments can be compared to each other only 
after a radiometric calibration process using separate calibration targets carefully selected 
for each flight. The calibration is also necessary for target classification purposes, such as 
separating vegetation from sand using intensity data from different flights. The 
classification results are meaningful only for calibrated intensity data. 
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1. Introduction 

1.1. Background: ALS Intensity and Its Application in Remote Sensing 

Airborne laser scanning (ALS) is an active remote sensing system that mostly uses monochromatic, 
pulsed lasers to measure the surface topography and object characterization [1]. ALS is based on Light 
Detection and Ranging (LiDAR) range measurements between the laser sensor and the target, and 
results in a point cloud (x, y, z) representing the coordinates of the object. The intensity (I) value is 
most often recorded for each point as well. The intensity represents the measured power or amplitude 
of the received pulse or waveform. The basic idea in the radiometric calibration is to correct the 
returned pulse power or waveform amplitude into parameters equal or proportional to the target 
scattering properties.  

The use of (uncalibrated or calibrated) ALS intensity data has enhanced the development of 
automatic methods for point selection and object classification from point clouds. There are 
applications such as detection of tree species and estimating the leaf area index (LAI) or canopy 
structure (e.g., [2]), and studying the pulse intensity return ratio to analyze canopy structures and 
fractional cover [3]. While most of these studies operate in near-infrared (NIR) wavelengths, it has also 
been demonstrated that the green laser return intensity is correlated with the chlorophyll content in 
broadleaf canopies [4]. Combining the intensity with point cloud data has provided quick and easy 
method for classification of land cover types and estimating biomass [5]. One example is the analysis 
of mixed-species plantation, where the LIDAR intensity provided a useful predictor of the proportion 
of different mixtures of conifer species [6]. Intensity is also used as discriminator of ground/non-
ground points in generating digital terrain models (DTM) [7].  

ALS intensity data have also been increasingly applied in glaciology, e.g., for separating different 
target classes [8], and in ocean or coastal studies, where the intensity data improves the classification 
accuracy, e.g., of water points or habitat and stands for vegetation species [9,10]. It is also possible to 
use intensity data for separating vegetation from other targets in land cover classification [11], but 
extra information from other data sources is needed for more detailed classification. Dual wavelength 
lasers have been used in bathymetry and studies of coastal ecology, where the intensities at both 
wavelengths can be used to calculate spectral indices, such as the normalized difference vegetation index 
(NDVI) [12]. Intensity data are also useful in combining ALS point clouds with digital images or 
matching data from different standpoints [9,13]. A new field of interest in the remote sensing 
community is also the fusion of LIDAR and radar data (e.g., [14,15]). Intensity variations have a 
strong role in these studies and there is potential for further applications. 
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1.2. Radiometric Calibration of ALS Intensity 

As the interest in the radiometric calibration has increased during the recent years, a great number 
of new studies on the methodology have been published in the past 1–2 years only. The first 
radiometric calibration methods and their applications have been presented in [16-20]. Physical 
concepts of laser scanner intensity calibration are reviewed in, (e.g., [19,21]).  

The recently published radiometric calibration efforts have introduced different approaches to the 
intensity correction. External reference targets have been used as reflectance standards [17,20,22-24], 
for which the reflectance has been measured either in situ or in the laboratory. There have also  
been validation efforts based on simultaneously acquired data from other (passive) remote sensing 
instruments [25]. Calibration for full waveform ALS has been investigated in [18,21], and practical 
applications have recently become available [23,26]. One of the newest topics is the effect of 
automatic gain control (AGC) used in some instruments, which is intended to optimize the range 
measurement, but calls for normalization in order to make the intensity data useful [27,28]. Procedures 
for radiometric calibration have also been recently presented for terrestrial laser scanning (TLS), but 
only few studies are thus far available [29-31]. 

Since intensity is affected by the flight and laser parameters together with the object properties, the 
effect of flight parameters has to be calibrated. This is often called relative calibration. The idea is to 
normalize the measurements from different altitudes, incidence angles, and dates, so that they are 
comparable for the same system, i.e., in a single sensor case. The relative calibration methods are 
mostly based on modelling the intensity or backscatter cross section in terms of the radar equation [19], 
or normalizing the instrumental intensity into a standard range to remove the path length variations and 
range dependence of the intensity signal [5,6,32]. Normalization with respect to range and incidence 
angle enables the fusion of data from different flight paths [33]. 

Absolute radiometric calibration aims at producing intensity values that are independent on, e.g., 
the atmospheric and other non-instrumental effects, and depend only on the target scattering properties. 
This is necessary for combining multi-temporal data from different sensors and flight altitudes and for 
the comparison of data from different sources. Most of the radiometric calibration studies thus far 
focus on a single sensor only (and mostly a single flight—although there are studies that combine data 
from multiple flight lines or days [5,23,34]). Furthermore, more studies are needed to evaluate the 
general outcome of the radiometric calibration, i.e., whether it is actually capable of producing results 
that are comparable between different experiments. The calibration has been found to be a challenging 
task, and still requires further study, especially for accuracy evaluation for multi-temporal and  
multi-sensor cases, and to correct for other errors [23,35]. 

1.3. The Scope of This Article 

Thus far, calibration efforts have mostly only focused on a single sensor, and therefore it is not 
quite well established whether the intensity data from different sensors or campaigns can actually be 
combined or used for classification. Our study involves data from three separate flights with two 
different instruments. The aim of this study is to evaluate the reliability of radiometric calibration and 
its capability of producing accurate (backscatter) reflectance values. With a bulk of field targets 
investigated during the study, we also study the effect of calibration on target classification, even 
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though the intensity scale has been significantly limited in this study. This is, however, the case in 
many discrete return ALS campaigns, as the intensity is optimized for the range measurement. 
Knowing the capabilities and limits of the use of intensity data is important in these applications. There 
is also a great need for further investigations for well-established procedures. 

The paper is organized as follows: Section 2 describes the physical background of ALS intensity 
calibration. The data correction procedures, data acquisition (i.e., the flight campaigns), and the 
application of the radiometric calibration procedure to these data have been outlined in Section 3. The 
results and discussion are presented in Section 4. Section 5 provides the conclusions. 

2. Physical Background for ALS Intensity 

This section presents concisely the physical basis of radiometric calibration of ALS intensity. More 
detailed reviews of the physical concepts are found in [18,19,21]. 

The radar equation defines the received power as a function of sensor parameters, and it has also 
been applied in laser scanning. The equation defines the power entering the LIDAR receiver as [18]: 

௥ܲ ൌ ௉೟஽ೝమସగோరఉ೟మ  (1)      ߪ

where Pt is the transmitted power, Dr is the receiver aperture, R is the range, and βt is the transmitter 
beam width. The backscatter cross-section σ describes the scattering of a wave from an object, and 
depends on the scattering solid angle Ω, the target area illuminated by the laser beam Ai, and the 
reflectivity ρ [21,23]: ߪ ൌ ସగΩ  ௜       (2)ܣߩ

The cross-section per unit illuminated area is expressed as: ߪ଴ ൌ ఙ஺೔       (3) 

As the illuminated target area Ai changes with the angle of incidence, the surface scattering is 
related to the cross section of the incoming beam Ai cosΘi (Θi being the angle between incident laser 
beam and the surface normal): ߛ ൌ ఙ஺೔ ୡ୭ୱ ఏ೔       (4) 

where γ is the bistatic scattering coefficient (see [21] for more details). Some of the most recent 
calibration schemes are based on the retrieval of either σ or γ as a calibration parameter of full 
waveform ALS [21,23,24]. 

In practice, the laser scanner detectors measure the flux of photons entering the receiver from  
a given direction and solid angle, i.e., the scattered radiance, which is related to the power of  
the received signal. The discrete return laser scanners record the power of the received pulse as a 
single digital number representing the intensity. The recorded intensity is proportional to the 
bidirectional reflectance distribution function (BRDF) of the target, which can be written in terms of 
laser power as [35]: 
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BRDF ൌ డమ௉ೞడ௉೔డΩೄ  ଵୡ୭ୱ ஀ೞ      (5) 

where Ps and Pi are the scattered and incident power, respectively, Ω is the scattering solid angle, and 
Θs is the angle between the scattering direction and the surface normal. In fact, most commercial 
reflectance spectrometers measure the (directional) hemispherical reflectance (i.e., albedo), which is 
the total fraction of the incident collimated power on unit surface area scattered into upper hemisphere 
by unit area of surface [36]. Laser scanners measure only the fraction of the hemispherical reflectance 
that occurs in the direction of illumination (0° angle between light source and detector), which can be 
approximated by the BRDF at Θs = Θi, which we here call the backscattered reflectance. This quantity 
describes the backscatter properties rather than the reflectance into the entire hemisphere, and even 
though these two are related, there are other factors that affect the backscatter of an object, which are 
related to the physics of the surface and the scattering geometry (see [37] and refs. therein). As a 
practical approach, the backscattered reflectance has been used as a calibration parameter for  
discrete return LiDAR intensity (cf. [20,38]). The results are comparable to laboratory and reference 
measurements (see the next section), although the applicability for, e.g., targets with multiple echoes 
has to be further assessed. The method also requires the calculation of the incidence angle (cf. [21]). 

The “backscattered reflectance” is used in this paper as a calibration parameter. It has been 
measured as the laser power of the target calibrated with the similarly measured laser power of the 
reflectance standard (cf. [36]). Although it is practically impossible to find a perfect Lambert reference 
(which are used in, e.g., reflectance spectroscopy) for ALS applications (mostly because of the  
size requirements for field use of these targets [20]), it is possible to determine the reflectance of the 
field standards in situ or in laboratory using a practically Lambertian standard, and then use these  
pre-calibrated field standards to calibrate the ALS intensity. The practical procedure is explained in more 
detail in Section 3. 

3. Methods 

3.1. The Calibration Procedure 

The calibration method used in this study has been developed for discrete return ALS and  
TLS intensity calibration, based on pre-calibrated in situ reference targets placed within the laser 
scanner field of view. For commercial and naturally available targets, the backscattered reflectance is 
determined by reference measurements either in situ using a near-infrared (NIR) digital camera,  
or in laboratory [17,20,34,38]. The intensity values (raw data) from the ALS point cloud are  
extracted using the TerraScan (TerraSolid Ltd.) software, and relatively corrected using the following 
equation [17,19]: ܫ௖௢௥௥௘௖௧௘ௗ ൌ ௢௥௜௚௜௡௔௟ܫ · ோ೔మோೝ೐೑మ · ଵୡ୭ୱ ఈ · ଵ்మ · ா೅ೝ೐೑ா೅ೕ     (6) 

where Ioriginal is the raw intensity value, Ri is the slant distance from the sensor to the ground, Rref is the 
chosen reference height, α is the incidence angle (same as the scan angle for horizontal surfaces, see 
Figure 1), T is the total atmospheric transmittance, ETref is the reference pulse energy value, and ETj is 
the pulse energy value in the flight line. The reference range is needed for comparing flights at 
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different altitudes; usually one of the flight ranges is chosen. The atmospheric effect (1/T2) is modeled 
using the MODTRAN (ver. 3) software (see [34] for more details on the procedure). 

Figure 1. The incidence angle and scan angle. Some of the atmospheric correction 
parameters are also shown (cf. Equation (6) and [34]).  

 

The pulse energy ETj is related to the pulse repetition frequency (PRF). The initial pulse energy 
must be high enough that the receiver detects the returning pulse. An increase in flying altitude also 
increases the path length, resulting in a longer travelling time for the pulse. This usually causes a 
decrease in the PRF, and the pulse energy must be increased because of the additional attenuation 
introduced by the increased path length. The pulse energy and its changes are not recorded or reported 
by most laser scanner manufacturers. Therefore it is usually omitted in the calculations, or cancelled 
out when external reference targets are used and located in the same flight line. The calibration for 
different pulse energies is discussed in [17,19]. Pulse energy values for Optech scanners at some PRF 
settings are reported in [39]. 

Using reference targets of known or pre-calibrated reflectance, the backscattered reflectance 
RBackscatter of the target (the absolute calibration) can be expressed as (cf. [36] formula for target 
hemispherical reflectance): ܴ஻௔௖௞௦௖௔௧௧௘௥ሺݐ݁݃ݎܽݐሻ ൌ ூ೎೚ೝೝ೐೎೟೐೏,೟ೌೝ೒೐೟ூ೎೚ೝೝ೐೎೟೐೏,ೝ೐೑೐ೝ೐೙೎೐ ܴ஻௔௖௞௦௖௔௧௧௘௥ሺ݁ܿ݊݁ݎ݂݁݁ݎሻ  (7) 

where Icorrected,target and Icorrected,reference are extracted from the point cloud data and corrected similarly 
for both the target and reference, according to Equation (6). RBackscatter(reference), i.e., the 
(backscattered) reflectance of the reference target, is obtained from reference measurements. (The 
reflectance values have no units, see, e.g., [36]). 
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3.2. The Flight Campaign 

The ALS data analyzed in this study were collected at three separate flights in 9 April and 12–13 
May 2008 in the Helsinki capital area (Figure 2).  

Figure 2. (a) Left: the Helsinki metropolitan area and the reference target locations. For 
easier comparison, similar land cover types were chosen around the entire scanning area, 
such as football fields, sand fields, beaches and golf courses. The width of the area is about 
45 km. (Map © 2010 Google, Map Data © 2010 Geocentre consulting); (b) Right: the ALS 
flight lines shown over the same area. The blue, red (middle), and bluish green lines denote 
the 9 April, 13 May, and 12 May flights, respectively. The scanned area is about 2,500 km2 
and a typical length of a flight line is 45 km (shorter in the east because no measurements 
have been made over the sea). (Map © Maanmittauslaitos 53/MML/10.) 

 

The campaign was organized by the National Land Survey of Finland as a part of the production of 
a new national elevation model. The flights were operated by Blom Kartta Oy. Two different Optech 
ALTM Gemini laser scanners (1,064 nm) were used, one in Apr 9 and the other in 12–13 May. The 
scanned area consisted of 52 flight lines in 2,500 km2 area, and the flying altitude was 1,900 meters 
with a 0.5 points/m2 point density. As the main purpose was to produce an elevation model rather than 
to investigate the intensity, there were practically no overlapping regions in these flights. The data 
were recorded in LAS 1.0 format (see http://www.asprs.org/Standards/ for more information) and the 
intensity capture occurred in 12-bit dynamic measurement range, but only a small part of the range was 
actually used: the intensity raw values varied between 0–150 counts (sensor units) instead of 0–4,095 
counts allowed by the 12-bit format. This means that the measurement range for the intensity was 
greatly reduced from what was originally possible for the instrument, and it was therefore not possible 
to bring out any small differences (such as those between different types of vegetation) in the intensity 



Sensors 2011, 11 10593 
 

 

data. The intensity data extraction and correction were carried out according to the procedure described 
in Section 3.1, including corrections for range and atmospheric transmission. Since the intensity 
samples were extracted from mostly flat and horizontal surfaces, the angle correction was based on the 
scan angle. The sample size was approximately 100 m2. The intensity values were averaged over all 
points inside the sample. The typical error of the average intensity value, in terms of standard deviation, 
was about 13%–15%. This seems to be a typical error range for ALS intensity data (cf. [20,34]). 

3.3. Ground Reference 

A near-infrared (NIR) digital camera system consisting of a Fuji IS PRO digital camera and Nikon 
SB800 electronic flash were used for the in situ reflectance measurements of the calibration targets. 
The output power variation of the flash was ±2%, providing a constant illumination [30]. The 
backward measurement direction was achieved by mounting the camera on a tripod with the lens 
facing downwards to the target. A calibration frame with 80%, 19%, and 5% reflectance coatings was 
placed in the image field so that the target was photographed inside the frame (Figure 3). In this 
experiment the 19% reflectance (middle gray) panel was used in the calibration. Middle gray targets 
are commonly used in photography to calibrate light meters, so it was an optimal target for camera 
calibration, as it was also best related to the reflectance level of many field targets. The sensitivity of 
the camera was 350 to 1,200 nanometers, but a 1,000 nm IR-filter was used to restrict the wavelength 
range close to the ALS wavelength. 

Figure 3. In situ reference measurements: a calibration image of the Fuji IS PRO  
near-infrared digital camera showing the target and the reference frame. The size of the 
frame is 21 × 29.5 cm (i.e., about the size of an A4 paper). 

 

As the scanned area was large, reference images were collected from a large area as well (see Figure 2 
showing the reference target locations). We selected naturally available field targets that were easily 
accessible (except for some targets such as golf greens and bunkers, for which permission was needed) 
and had shown stability and good results in our previous studies [20,34]. The images were mostly 
taken during the summer 2009 and spring 2010, preferably in similar conditions (weather/humidity 
etc.) as the flight. Five camera exposures were taken and averaged from each target. The 14-bit raw 
format images (ISO100, 1/250 s exposure time) were exported into linear 16-bit tagged image file 
format (TIFF), which means that the intensity was measurable in a scale from 0 to 216 = 65,536 counts. 
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The images were corrected using a flat field image, and the intensity values were recorded from the 
green channel. The average error for the camera measurements in terms of the standard deviations of 5 
exposures has been measured to be about 2.5% (see [30] for more details). 

3.4. Applying the Calibration Procedure 

The flight lines of different flights are shown in Figure 2. The orange flight lines on the left were 
also flown on 12 May, but no targets are included because the intensity levels did not match with the 
other 12 May flight lines. As there was a clear difference between intensity levels at different blocks of 
flight lines (Figure 2), it was not possible to calibrate the intensity with one reference target from the 
entire area, but a separate calibration target had to be used for each day. The list of targets for each 
flight is shown in Table 1, where the calibration targets for each day are marked as boldface. All 
targets in 9 April were calibrated with Laurinlahti sand field, 12 May with Tapanila football field, and 
13 May with Kallahti beach target. The reflectance measured with the Fuji camera was taken as a 
reference value for the calibration targets. The ALS intensity of the other targets from the same day 
were calibrated according to Equation (7), where Icorrected,target and Icorrected,reference were taken from ALS 
uncalibrated data, and RBackscatter(reference), was the backscattered reflectance of the calibration target, 
measured with the Fuji camera system. 

Table 1. The targets and their backscattered reflectance from ALS and FUJI digital 
camera. The selected ALS calibration targets for each flight are marked with boldface. 

 Calibrated ALS FUJI 
April 9, 2008   
Bodom beach sand 0.20 0.22 
Espoonlahti N/artificial grass & sand 0.32 0.34 
Espoonlahti/artificial grass 0.43 0.13 
Espoonlahti/grass field 0.58 0.59 
Espoonlahti swimming pool roof 0.09 0.11 
Esport tennis/green sand 0.13 0.28 
Kalajärvi school/sand field 0.36 0.39 
Kivenlahti marina/sand field 0.41 0.30 
Kivenlahti marina/dark gravel 0.23 0.11 
Kivenlahti marina/pedestrian 0.24 0.29 
Kuninkaanranta beach/wet sand 0.21 0.23 
Laurinlahti school/sand field  0.34 
Luukki golf/bunker sand 0.24 0.27 
Luukki golf, green 0.62 0.64 
Löfkulla golf, green 0.67 0.65 
Löfkulla golf, fairway 0.67 0.56 
Maininki school/sand field 0.25 0.28 
Olarinniitty/sand field 0.23 0.33 
Otaniemi beach path/pedestrian 0.27 0.30 
Suomenoja marina/dark gravel 0.09 0.14 
Taivallahti tennis/crushed brick 0.31 0.49 
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Table 1. Cont. 

 Calibrated ALS FUJI 
May 12, 2008   
Eläintarha football field/grass 1.04 0.63 
Käpylä football field/grass 0.74 0.60 
Pukinmäki football field/grass 0.66 0.64 
Tapanila football field/grass  0.61 
May 13, 2008   
Hiekkaharju, sand field 0.50 0.37 
Hiekkaharju tenns/ red sand 0.55 0.35 
Hiekkaharju football field/grass 0.79 0.59 
Kallahti school/sand field 0.28 0.40 
Kallahti summer beach/sand  0.34 
Laajasalo football field/grass 0.81 0.57 
Mellunmäki football field/grass 0.75 0.61 
Myllypuro football field/grass 0.64 0.54 
Tuusula Krapi/sand road 0.44 0.40 
Tuusula sports, sand field 0.20 0.33 
Tuusula, old sand field 0.14 0.25 
Tuusula football field/grass 0.54 0.63 
Tuusula sports, ash field 0.03 0.09 
Vuosaari golf, bunker sand 0.19 0.40 
Vuosaari school/sand field 0.23 0.26 
Vuosaari sports field shot put 0.35 0.25 
Vuosaari sports field/grass 0.88 0.55 
Vuosaari sports field/red track 0.45 0.37 

4. Results and Discussion 

Table 1 lists all the samples from each flight and shows their backscattered reflectance values 
measured from ALS data and Fuji images. Altogether 43 samples were included in the analysis. The 
intensity values from ALS and Fuji have also been plotted in Figures 4–6 where the results are shown 
and discussed. For some vegetation targets, the images were taken at entirely different stage of the 
growing season than ALS, which might have caused uncertainty, so many of the grass/vegetation 
targets have not been included. In any case, deviation and random errors are always present in ALS 
intensity data. This has been the case in our previous ALS studies as well [34,38]. The uncalibrated 
ALS intensity (raw) data are compared with the reference data measured with Fuji in Figure 4, where 
data from all three flights have been combined. 

The correlation coefficient R2 of the uncalibrated ALS (intensity values corrected relatively 
according to Equation (6)) and Fuji digital camera results was 0.52, as seen in Figure 4. The 
corresponding correlation values of the intensities plotted separately from the two flights were 0.86 and 
0.76 for 9 April and 13 May, respectively (see Figure 5). This indicates that the ALS intensity is better 
consistent with reference values within the same flight. To investigate whether the radiometric 
calibration would improve the correlation, a similar plot is presented for calibrated ALS data (i.e., the 
backscattered reflectance) in Figure 6. The correlation coefficient R2 between calibrated ALS and Fuji 
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reference data increased from 0.52 to 0.73, which means that intensities from different flights have 
become better comparable. Particularly, the slope and intercept of the trend line in Figure 6 are close to 
1.2 and 0.0, which indicates a reasonable accuracy of the reflectance calibration, while the poor 
precision, i.e., deviation (scatter) and random errors in the measured intensity may decrease the 
correlation coefficient. 

Figure 4. Uncalibrated ALS intensity data from all three flights, plotted against the 
reference data (backscattered reflectance) measured with the Fuji camera. 9 April, 12 May, 
and 13 May data are marked as blue, green, and red, respectively. The values of calibration 
points for each flight are denoted with yellow. 

 

Figure 5. Uncalibrated ALS intensity data from 9 April (left) and 13 May (right) flights, 
plotted separately against the reference data. 
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Figure 6. Calibrated ALS intensities for all the targets (all flights) plotted against the Fuji 
reference data. 

 

The radiometric calibration improved the correlation between ALS and reference intensities, but the 
following practical aspects were also observed from the results: 

- There is large variation (i.e., errors and deviation) in the intensity data produced by most 
(discrete return) ALS instruments. This was also true for the intensities analyzed in this study. 
Some of these errors may be caused by the limited measurement accuracy or power level 
variations of the instrument, because the intensity is related to the received power defined at the 
triggering moment. There are also some external effects, such as a specular reflection from a 
target (such as a lake surface). Nevertheless, the lack of stability in ALS intensity data (i.e., 
there is variation in the laser echo amplitudes, see, e.g., [20] and [23]) will always introduce 
error to the results, such as a large standard deviation of the average intensity. 

- There were clear differences in (uncalibrated) intensity levels between each flight dates, which 
could also be seen in the entire data block. Even the intensity levels between 12 and 13 May, 
obtained with the same instrument, did not coincide. Therefore, combining intensity data from 
different flights (or flight dates) is not possible without radiometric calibration. 

- Even the intensity levels during the same day did not match: the orange lines in 12 May were 
entirely different from those in the bluish green flight lines. This means that the calibration 
target has to be located along the same flight line as the actual targets. 

- Choosing a target for calibration is not easy because of the deviation and errors in the intensity 
data. The raw intensity (counts) should be in the level that best corresponds with the target 
reflectance, i.e., the ALS measurement must been successful enough to represent the target 
reflection properties. This is not the case for any target. Intensity measurements from several 
ground reference (Fuji data) points are necessary to be able to study the stability of data. In this 
paper, the stability is assessed from the correlation between reference (Fuji) and (uncalibrated) 
ALS intensity. This will improve the statistics and the selection of a more reliable reference. 
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- For the 9 April and 13 May flights, targets with intensity values near the regression trend line 
(Figure 4) were chosen. Only four targets were available for 12 May, so it was more difficult to 
judge the stability. As the ALS intensity levels appeared lower in 12 May than the other two 
flights (this was also seen in the entire block of ALS data), one of the targets with lower counts 
was chosen (see Figure 4). Much worse results in terms of correlation coefficient, slope, and 
intercept were obtained by choosing an unstable calibration target (i.e., a target with large 
discrepancy between ALS and Fuji data). 

- A greater number of reference targets would still be needed to decrease the level of uncertainty, 
but that is mostly not possible in practice. Collecting field data is labour intensive and time 
consuming, so the results have to be obtained with a reasonable number of points. 

To test the feasibility of separating different types of targets within the compressed dynamic range 
(only up to 150 counts in this study), we plotted the intensity data for sand and grass targets (in Table 1) 
before and after calibration in Figure 7. After calibration, the results are more clearly divided into two 
groups by their backscattered reflectance value. The grasses appear more reflective than the sands, and 
the overlap between sand and grass reflectance values has decreased. Using Student’s t-test (which is 
the most suitable one for this kind of comparison essentially based on the means of datasets), we find 
that the calibrated datasets of sand (measured in 9 April and 13 May) are drawn from distributions with 
the same mean with 90% probability, whereas uncalibrated sand data have the same mean with only 
40% probability. For the grasses (9 April and 12–13 May), the calibrated data correspond to the same 
mean with 70% probability, and the uncalibrated data do so only with 20% probability. We thus 
conclude that not only are the probability levels of the same mean considerably better for calibrated 
data: calibration is the only way to bring the probabilities to a sufficiently high level, which is essential 
for classification purposes. 

Figure 7. Separating different target types from uncalibrated (top) and calibrated (lower) 
intensity: ALS intensity/backscattered reflectance for sand (blue points) and grass targets 
(red points). A difference in the reflectance levels becomes more evident for the calibrated 
intensity data, and there is a clear improvement in the comparison results using the 
Student’s t-test. 
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Figure 7. Cont. 

 

The result is in agreement with that in [20], where a clear difference was obtained between the sand 
and grass samples. Other recent studies also point out that the vegetation can be separated from, e.g., 
built environment using ALS intensity [11], but it seems that the best results will be obtained by 
combining the intensity with other data (such as range or auxiliary data such as imaging), As to using 
ALS intensity data alone, at least a better dynamic range would be needed to bring out differences at 
finer scale, such as those between different stages of vegetation growth. Many more studies are needed 
to successfully classify, e.g., different vegetation classes. 

4. Conclusions 

We have investigated the effect of radiometric calibration on the accuracy of ALS intensity data 
combined from separate flights and instruments. In general, the main objective of the absolute 
radiometric calibration is to produce the intensity values that represent the target reflectance 
properties and are independent on the measurement system. In this way it would be possible to 
compare results from different ALS instruments and flights. Our aim was to investigate whether 
this goal can be achieved, especially with a typical ALS dataset not primarily obtained for intensity 
calibration purposes. 

We find that the calibration with external (naturally available) reference targets improves the 
accuracy and compatibility of separate intensity data sets and enables land cover classification, but a 
careful selection of reference targets is necessary. This can be carried out by means of a study of target 
reflectance and ALS uncalibrated intensity, for which a number of reference targets are needed for 
each flight, to eliminate the effect of random errors and poor stability typical for ALS intensity data. 
Therefore, using just one or two a priori selected targets may not produce satisfactory results, 
especially in case of combining data from separate flights and instruments. We also find that only 
calibrated data produced probability levels of the same mean that were high enough for classification. 

This approach has to be further tested with new ALS campaigns. More accurate results would be 
possible, if another set of ALS intensity data were available for verification. On the other hand, we 
used all the available points in the study itself (instead of leaving another group for verification) to 
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improve the statistics. It is not uncommon that a limited number of reference data are available, and 
there is little time for simultaneous field reference measurements. This is also related to the fact that 
ALS intensity data are always a side product of the topographic measurement. Therefore this study and 
its results can be seen as one practical solution to a typical calibration problem. A number of studies 
are still needed to understand better the radiometric calibration process, its possibilities, and its 
limitations. This study is one step towards that aim. 
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