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Abstract: This paper presents a grid-based distributed event detection scheme for wireless

sensor networks. The network is divided into square-shapedgrids of predefined grid size,

where sensor nodes in each grid form a cluster with a cluster head. Event detection at

each grid alone based on the readings of its member nodes is limited in event detection

performance, especially for a small event region compared to the grid size. To improve the

performance, each grid is further divided into 2× 2 sub-grids of equal size. The decision

on an event is made by finding a square region of 2× 2 sub-grids, not necessarily in the

same grid, that passed a predefined threshold. This process is conducted at each cluster head

in a distributed manner by inter-cluster communications. Event detection is initiated when

a cluster head receives an alarm from its member nodes. The cluster-head communicates

with its neighboring cluster heads to exchange the number ofnodes reporting an alarm. The

threshold for event detection can be dynamically adjusted to reflect the number of sensor

nodes in a grid and event size, if known. High event detectionaccuracy is achieved with

a relatively low threshold without sacrificing false alarm rate by filtering most errors due

to transient faults and isolating nodes with permanent faults. Experimental results show

that the proposed scheme can achieve high detection accuracy, while maintaining low false

alarm rate.
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1. Introduction

Wireless sensor networks, composed of a large number of small sensor nodes with sensing,

computing, and wireless communication capabilities, often operate in an unattended mode to monitor

various environments and detect events of interest [1]. Due to large-scale deployment of inexpensive

sensor nodes, it is common for sensor nodes to exhibit faultybehavior. Hence it is important for a

fault-prone sensor network to detect events in the face of fault-induced errors.

Several fault-tolerant event detection schemes have been proposed in [2–4]. Krishnamachari and

Iyengar presented Bayesian algorithms to detect events in the presence of faulty sensor nodes [2].

They exploited the notion that measurement errors due to faults are likely to be uncorrelated, while

measurements in a target region are spatially correlated. Afault-tolerant energy-efficient event detection

scheme was proposed in [3]. For a given detection error bound, the number of neighboring nodes is

determined to minimize the communication cost. Dinget al. [4] proposed a localized event boundary

detection algorithm. Random bisection and trisection methods are employed to detect event boundary

nodes. In [5] a secure event boundary detection scheme was presented to correctly identify event

boundaries in adversarial environments. More recently, event detection using decision tree classifiers

running on individual sensor nodes and applying a voting scheme to reach consensus among detections

made by various sensor nodes has been proposed for disaster management [6].

Meanwhile, energy efficient data aggregation and routing ingrid-based sensor networks have been

investigated in [7–9]. In [7], a grid-based directed diffusion is presented. The network is divided

into virtual grids and only one node in a grid-cluster participates in communication to reduce energy

consumption. A clustering method based on virtual grid was proposed in [8]. Coordination mechanisms

among heterogeneous nodes were also introduced. Yuet al. [9] proposed a grid-clustering routing

protocol that provides scalable and efficient packet routing. A cluster grid construction scheme was

presented to reduce energy consumption. In [10] an energy efficient framework for detecting events

in sensor networks was presented. Clusters are used as localdecision units. Cluster decisions are

exchanged with one hop clusters that are likely to have been influenced by the event. An energy-efficient

event notification scheme was also proposed. Event detection in grid-clustered sensor networks was

investigated in [11]. Inter-cluster communications with some error corrections were used to improve

event detection performance. A cellular approach to fault detection and recovery in sensor networks is

presented in [12]. A virtual grid structure is used to detect energy-depleted nodes.

In wireless sensor networks, in general, due to a strong tradeoff between event detection accuracy and

false alarm rate it is difficult to maintain high event detection accuracy for relatively small events or/and

high fault probabilities, unless the tradeoff is greatly lessened.

In this paper, we present a grid-based, distributed, event detection scheme for wireless sensor

networks, covering even relatively small event regions. Tolessen the tradeoff the proposed scheme

employs a smoothing filter to reduce the effect of transient faults. In addition, it maintains confidence

levels of sensor nodes to isolate faulty nodes exhibiting errors for some extended period of time. Event

detection locally at each grid based on the readings of its member nodes might achieve poor performance

when an event region lies across multiple grids. To cope withthis variations, a sensor network is

divided into M× N square grids, each of which is further divided into 2× 2 sub-grids. An event is
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detected by finding a square region of 2× 2 sub-grids, not necessarily in the same grid, that passed a

predefined threshold.

The rest of the paper is organized as follows. In Section 2, network structure, fault and event models

are described. The proposed grid-based event detection scheme is presented in Section 3. Simulation

results are shown in Section 4. Section 5 concludes the paper.

2. Network Structure and Fault/Event Model

In sensor network research, faults and events are often handled separately. Hence techniques for

detecting faults in a wireless sensor network might not perform well as intended when both faults

and events coexist in the network. Similarly, event detection techniques might not show the expected

performance if fault behavior deviates from the predefined simplified model. In order to present our

event detection scheme in the presence of various types of faults, we briefly describe our grid-based

sensor network structure and fault/event model to be used throughout the paper. Grid-based sensor

networks have been proposed for energy efficient data aggregation and routing. Our fault-tolerant event

detection scheme is thus developed to conform to the basic protocol of the hierarchical networks.

2.1. Sensor Network Structure

The sensor field is assumed to be divided intoM ×N square-shaped grids as illustrated in Figure1,

where there are nine grids, A through I, andl is the side of a square grid. Immediately after deployment,

the sensor network is assumed to carry out grid constructionprocess, and each sensor node figures

out the grid it belongs to. Sensor nodes in each grid form a cluster, where a cluster head is selected

dynamically. All other nodes in the cluster communicate directly with the cluster head, although

multi-hop communication can be used without modification ofthe proposed event detection scheme.

Two types of communication are defined here for event detection: one for communication between the

cluster head and cluster members and the other for communication between neighboring cluster heads.

Figure 1. Sensor network structure for fault-tolerant event detection.
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Although each grid can make a decision on an event based on thesensor readings of its member nodes,

the accuracy might not be high especially for a relatively small event region. When such an event region

lies across four neighboring grids, for example, each grid might have insufficient number of event-nodes

to apply the well-known majority voting. In that case, high detection accuracy can only be obtained by

lowering the threshold, resulting in a considerably high false alarm rate, except for low fault probability.

In order to cope with poor performance in the case of a small event region, we further divide each

grid (in solid lines) into four sub-grids (in dotted lines) as shown in Figure1, where each grid, except

for the corners and sides, overlaps with eight square regions (SRs from here on) of 2× 2 sub-grids, in

eight different directions. In Figure1, the grid E in the center, for example, has 8 overlapping SRs.In

the NW direction, for example, there is an SR, in thick dottedlines. We name it SRABDE , to indicate the

four grids involved. In the N direction, the SR can be denotedby SRBE (i.e., two sub-grids from grid B

and two sub-grids from grid E).

An improved detection accuracy can be obtained if event detection is performed at each SR, along

with the original grid. This extension requires inter-gridcommunications between neighboring cluster

heads to send the information regarding the sensor readingsat each sub-grid. As an illustration, the event

region, in dotted circle in Figure1, lies across the four grids D, E, G, and H. The event is most likely to

be detected by a threshold test at SRDEGH .

The reason for using only 2× 2 sub-grids is two-fold. First, any further divisions require additional

memory and computation, and inter-grid communication overhead. Second, the resulting performance

gains would be marginal unless a threshold test needs to be applied at a smaller sub-grid level.

2.2. Fault Model

Various types of faults may occur in sensor networks. Among others we focus on faults in sensor

readings, due to malfunctioning sensors and noise. Some communication faults may also be covered as

long as they can be modeled as faults in sensor readings.

Faults are assumed to occur in any nodes in the sensor networkwith the same probability. Each

sensor node is assumed to know the range of normal readings. For clarity, we define “normal readings”

to be the acceptable sensor data in the case of no-event. Any readings outside the normal range are

named “unusual readings” for convenience. In other words, correct sensor readings in an event region

are also called “unusual readings”. Hence each sensor node can make a binary decision on its own sensor

reading, where a “1” indicates an unusual reading. Nodes in an event region will report a 1, although

the range of sensor readings cannot be well defined, unless the nodes are faulty or some errors affect the

correct readings.

Sensor readings of a faulty sensor node may lie in any range, including the normal and event ranges.

Both permanent, transient, and intermittent faults are included in our fault model. Faults exhibiting

errors for some extended periods of time may also be covered without modifying the proposed scheme.

Transient faults are assumed to occur randomly and independently with the same probability. In the case

of a permanent fault, both stuck-at-0 (normal) and stuck-at-1 (unusual) are assumed to occur with the

same probability. In other words, sensor nodes with a stuck-at-0 fault always measure normal data, and

they thus report a 0 even if they are in an event region.
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2.3. Event Model

Fault-free sensor nodes in an event region are expected to measure some unusual values, reporting

a 1 to the cluster head. In a fault-prone sensor network, however, incorrect reports due to faults are likely

to occur, causing a false alarm. To cope with the false alarmswhile correctly detecting events, reducing

the effect of faults along with a proper threshold is required. More specifically, the threshold needs to

be sufficiently high to greatly reduce false alarm rate and low enough to achieve high event detection

accuracy. In setting the threshold, the area of an event region plays an important role. For convenience

we assume that an event region is a circle with radiusr. Then the ratio of an event region areaAER to a

grid areaAG can be given by
AER

AG

=
πr2

l2
(1)

For l = mr, the ratioAER

AG

for four different values ofm, 1, 2, 3, and 4, are 3.14, 0.79, 0.35, and 0.2,

respectively. In the case ofm = 4, for example, at most 20% of the sensor nodes (in a grid) on average are

in an event region, making it difficult to select a threshold value satisfying performance requirements. In

a grid withn sensor nodes, the number of sensor nodes expected to be in an event region isn · AER

AG
= nπ

m2

on average. The numbers for various values ofn andm are given in Table1. If n = 15 andm = 4, for

example, 3 nodes on average are expected to be in an event region, difficult to distinguish between events

and faults as the fault probability increases.

Table 1. n · AER

AG
for various values ofm andn.

n m = 1 2 3 4

10 31.4 7.9 3.5 2.0

15 47.1 11.85 5.25 3.0

20 62.8 15.8 7.0 4.0

For n ranging between 10 and 20,m needs to be less than 4 to have a few sensor nodes on average

in an event region. In developing an event detection scheme,we will also take relatively small event

regions into account to effectively adapt to varying network conditions.

3. Grid-Based Event Detection

Detecting events at each grid cluster alone in a grid-based wireless sensor network might be easy for

a relatively large event region (e.g.,m = 1). In that case, the majority of the sensor nodes in at leastone

grid are likely to report a 1, and thus voting schemes, such asthe majority voting, can easily satisfy the

requirements on detection accuracy and false alarm rate. For a relatively small event region (e.g.,m ≥ 2),

however, the number of sensor nodes reporting a 1 might be considerably small compared to the number

of sensor nodes in a grid. Hence poor event detection performance might be unavoidable unless some

measures are taken to significantly lower the threshold without increasing the false alarm rate.

As fault probability increases, the number of nodes reporting a 1 in the case of no-event also increases.

Hence a voting scheme may have difficulty in distinguishing between faults and events using a threshold.
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The negative impact of faults can be greatly lessened by effectively reducing the fault probability. To

realize it most of the erroneous readings due to transient faults are first corrected by employing a filter.

In addition, nodes with permanent faults or reporting incorrectly for some extended periods of time are

identified and isolated. Each cluster head maintains confidence levels of its member nodes indicating

their records in reporting correctly. Sensor nodes with a permanent fault lose their confidence levels

gradually, and they eventually reach the lower bound to be isolated from the rest. This fault management

reduces the number of incorrect reports, allowing us to lower the threshold for event detection without

sacrificing performance even for a relatively small event region. Two performance metrics, detection

accuracy (DA) and false alarm rate (FAR), will be used in evaluating the effectiveness of the proposed

scheme. DA is defined to be the ratio of the number of times thatevents are detected to the total number

of event occurrences. FAR is defined as the ratio between the number of grids reporting an event, in the

case of no event, and the total number of grids.

3.1. Reducing Erroneous Readings Due to Transient Faults

Transient faults may occur at any sensor nodes even though they are functional. Treating sensor nodes

with transient faults as faulty nodes will reduce the numberof usable sensor nodes, and it thus needs to

be avoided. To effectively deal with transient faults, we employ a simple filter to correct most errors due

to the faults. The reason for employing a filter is that an event will cause the sensor readings to be 1

for an extended period of time, while measurement errors dueto transient faults might occur randomly

and independently.

Let xk
i represent the binary sensor reading at timet = k at nodevi. Then the filtered outputbki is

determined based on thew most recent readings with a thresholdq as follows.

bki = 1 if
k∑

j=k−w+1

xj
i ≥ q (2)

If w = 4 andq = 3, for example,bki can be 1 only if there are at least three 1’s out of four consecutive

readings. This will correct most measurement errors due to transient faults unless they appear repeatedly

for some extended period of time or at consecutive sampling times. Consequently, the number of false

reports to the cluster head will be considerably reduced. The decision on an event at the cluster head

will be made using a threshold test based onbkj s from the member nodes. Due to the smoothing an event

would be reported to the cluster head with some manageably small delay, depending on the window size

w andq. The window sizew depends on the sampling interval and the behavior of transient faults. In

this paper, sampling period is assumed to be short, but long enough to treat transient faults independent.

If some transient faults affect for an extended period of time such that the sensor readings are incorrect

over several sampling times, they will be treated as they are. The window size needs to be small enough

to minimize the delay involved. If necessary, however, an early warning can optionally be given to

the cluster-head for its attention. Under the independenceassumption the window sizew and q are

determined as follows.

Filtering out most errors induced by transient faults will effectively reduce the transient fault

probabilitypt. For transient faults occurring randomly and independently in sensor nodes with the same

probabilitypt, the effective transient fault probabilitỹpt for various values ofw andq can be estimated
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using
∑w

j=q p
j
t (1− pt)

w−j , and the resulting reductions are shown in Table2, wherept = 0.2 is assumed.

If w = 4 andq = 3, for example,pt can be effectively reduced from 0.2 to 0.027.

Table 2. The effective transient fault probabilitỹpt for pt = 0.2.

w q = 1 q = 2 q = 3 q = 4 q = 5 q = 6

2 0.360 0.040 - - - -

3 0.488 0.104 0.008 - - -

4 0.590 0.181 0.027 0.002 - -

5 0.672 0.263 0.058 0.007 0.000 -

6 0.738 0.345 0.099 0.017 0.002 0.000

The reduction inpt depends on the filter employed. The selection of a filter, however, might not be

of importance as long aspt can be reduced in such a way that the tradeoff between detection accuracy

and false alarm rate can be greatly lessened. As can be seen insimulation, the simple filter withw = 4

and q = 3 is good enough to achieve almost perfect performance evenfor pt = 0.2. The smoothing

filter functions effectively for a wide range ofpt, and can still function positively even whenpt = 0.5.

However, it might be reasonable to assume thatpt is much smaller than 0.5 for wireless sensor networks

to be used in environmental monitoring applications.

3.2. Isolating Faulty Nodes Using Confidence Level Evaluation

Permanent faults, unless the number of faulty nodes is negligibly small, also degrade the event

detection performance at the cluster head. Since the numberof faulty nodes is expected to increase

with time, it is desirable to isolate them as soon as they are detected and identified. In our grid-based

event detection, each cluster head receives reports from its member nodes, and makes a decisionD based

on a thresholdθ, whereD = 1 indicates an event. Each cluster head maintains confidence levels of its

member nodes to isolate nodes with permanent faults when their confidence levels reach the assigned

lower bound, resulting in better event detection performance at the cluster head. Depending on the

decision made and the reports from its member nodes, the cluster head updates the confidence levels

of the member nodes, reflecting the correctness of the reports. These updates need to be careful since

fault-free nodes might generate some incorrect reports.

Let ck, ranging from 0 to 1 and initialized to 1, represent the confidence level of nodevk. At the end

of the event or fault detection cycle, the confidence levels of the member nodes are updated to reflect the

correctness of their reports as follows.

For D = 0 (i.e., the decision is no-event) in Table3, the confidence levelck of nodevk is increased

by α to min (ck + α, 1) if the node reported a 0. If it reported a 1 instead,ck is lowered byβ to

max (ck − β, 0). The values ofα andβ need to be assigned depending on the fault behavior, if the best

performance is necessary. In our evaluation,α = β = 0.1 is chosen without loss of generality.
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Table 3. Updatingck at cluster heads.

D bk ck

0 0 min (ck + α, 1)

0 1 max (ck − β, 0)

1 0 no change

1 1 no change

For D = 1, on the other hand, it is not easy to figure out ifvk reported correctly since the event

boundary is unknown. Especially for a sensor node with limited resources and small event regions, it

becomes difficult to locally figure out the exact boundary. Asfar as fault detection/isolation is concerned,

however, it would be acceptable not to update the confidence levels whenD = 1 for the following two

reasons: (i) A stuck-at-1 node (outside the event region) can be identified and isolated whenD = 0.

Hence the last row in the table does not cause a problem; (ii) Astuck-at-0 node in an event region can

hardly be identified in the case of no-event. It, however, canbe detected if sensor readings of stuck-at-0

nodes do not change or are confined to a extremely small range while those of fault-free nodes vary

notably over time. This type of stuck-at-0 can be identified and reflected in the confidence level even

whenD = 0, although we do not include this in the subsequent simulation in order to estimate the worst

case performance of the proposed scheme.

If some existing sophisticated techniques are employed to figure out the exact boundaries, Table3 can

readily be modified. The simulation results in the next section, however, show that high performance

can still be obtained even without isolating stuck-at-0 nodes when the permanent fault probabilitypp
is 0.2. In addition, the performance gain achieved by removing stuck-at-0 nodes in that case will be

shown to be marginal.

Sensor nodes are logically removed from the network and cannot participate in the event detection

process when their confidence levels reach the lower bound (0in this paper). Hence a sensor nodevk

with a permanent fault will gradually lose its confidence level ck, and then be isolated from the rest.

On the other hand, if the isolation is due to transient or intermittent faults, the node can be reinstated

when the behavior of the node changes later such that its confidence level reaches the upper bound (1 in

the simulation).

3.3. Grid-Based Fault-Tolerant Event Detection

The proposed grid-based fault-tolerant event detection scheme consists of five steps. Initially each

cluster headHi is assumed to know the numbers of sensor nodes in its four subgrids,n0
i , n

1
i , n

2
i , n

3
i . In

addition, the four numbers of each of its neighboring grids are also assumed to be given. In fact, the

numbers can be obtained right after deployment by intra- andinter-cluster communications. In Step 1,

each sensor nodevj computesbkj based onw most recent readings. In Step 2, each sensor node with

bkj = 1 reports a 1 to the cluster headHi, and the cluster head counts the number of nodes reporting a 1

in each subgrid. Hence each cluster head will have the following eight numbers:n0
i , n

1
i , n

2
i , n

3
i , e

0
i , e

1
i ,

e2i , e
3
i , where the first four represent the numbers of sensor nodes inthe corresponding subgrids and the



Sensors2011, 11 10056

remaining four denote the numbers of nodes reporting a 1 in the four subgrids. The cluster head then

computes the number of 1’s,E, in the grid. In the grid A, for example,EA = e0i + e1i + e2i + e3i . The

cluster head then applies a threshold test to determine on anevent (i.e.,DA = 1 (i.e., an event) ifEA ≥ θ).

In Step 3, each cluster head receives the four numberse0j , e
1
j , e

2
j , e

3
j from each of its neighboring

cluster-headHj ’s. It then computes the number of nodes reporting a 1 in each of the SRs (2× 2 subgrids),

and applies the same test with a thresholdθ in Step 4. Finally in Step 5, depending onD andbkj the

confidence level ofvj (i.e., cj) is updated according to Table3.

Due to the inherent tradeoff between DA and FAR, the value ofθ is important to satisfy both

requirements on DA and FAR. In determiningθ, the number of nodes in a grid (or SR) and the event size

are taken into account. We set the thresholdθ at a grid to be

θ = min (
d

qd
, qc) (3)

whereqd andqc are predefined constants andd denotes the number of sensor nodes in the grid (or SR).

For m = 3, in Table1, about 1/3 of the nodes in a grid are in an event region on average. Hence to

achieve high event detection accuracy for such a small eventregion,qd must be greater than 3. Under

the assumption thatm ≤ 3, we setqd to 4 to tolerate some variations due to nonuniform distribution of

sensor nodes. Adjustingqd alone (i.e., θ = d
qd

), depending on the event region size, might be good enough

to achieve high performance. We, however, employqc to achieve even higher DA with a negligibly small

increase in FAR for relatively highd. The reason is that in a randomly deployed sensor network, very

few sensor nodes might be placed in some sub-grids, even for high d. In that case,qc will allow the grid

or SR to pass the threshold, while maintaining small FAR. Ifθ = min (d
4
, 3), for example, the threshold

d/4 is effective until it reaches 3. After that, it remains there.

Correcting most transient faults and isolating permanent faulty nodes allow us to lowerθ to handle

small event regions effectively. Since FAR is independent of the event region size, loweringθ will

guarantee higher DA as event region size increases. If the event region size is approximately given based

on experiments, adjusting the values ofqd andqc accordingly will lead to a better performance.

Our proposed event detection scheme can be depicted as follows:

Grid-based distributed event detection

Step 1. Given sensor readingxk
i , each sensor node computesbki .

Step 2. Each sensor node withbki = 1 reports a 1 and each cluster head counts

e0i , e
1
i , e

2
i , e

3
i , and apply a threshold test.

Step 3. Obtaine0j , e
1
j , e

2
j , e

3
j of each of its neighboring cluster-headHj .

Step 4. Count the number of 1’s for each of the SRs and apply a threshold test

with θ.

Step 5. Update the confidence levels.

An illustration of the proposed event detection scheme is given in Figure2, where there are

only 4 grids, A through D. A small dotted circle in the center represents an event region placed

across the four grids. The number within each subgrid, represents the number of sensor nodes (in the
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subgrid) reporting a 1. The total number of nodes in the subgrid is in the corresponding parenthesis.

Among the four grids, grid A has only two 1’s out of 13 nodes. Byperforming inter-cluster (or grid)

communications, the dotted SR (i.e., SRABCD) in the center can be found to have five 1’s out of 13 nodes,

more likely to pass the threshold test.

Figure 2. An illustration of the proposed grid-based event detection.

Although we described that each cluster head applies the threshold test for eight SRs for convenience,

in reality, it needs to apply the test to three SRs at most, in E, S, and SE directions. At the cluster head

in grid A, for example, it needs to apply the test to SRAB, SRABCD, and SRAC . The cluster head at

grid B needs to apply the test only to the SRBD, and so on. Hence redundant threshold tests can easily

be removed.

4. Simulation Results

Computer simulation is performed in a sensor network where 1,024 sensor nodes are randomly

deployed in a 256× 256 square area. The network is divided into 8× 8 grids. Each grid is further

divided into 2× 2 sub-grids. Hence each grid has 16 nodes on average. Detection accuracy (DA) and

false alarm rate (FAR) are employed as the performance metrics.

Experiments are conducted in the following order. First, weestimated the performance improvement

due to the smoothing filter. We then evaluated the proposed grid-based event detection to show its

effectiveness in achieving high performance even for smallevents. Finally, the effect of flatteningθ for

randomly deployed sensor networks is estimated.

In the first experiment, only transient faults are assumed toevaluate the effectiveness of filtering. Four

different values ofpt (0.0≤ pt ≤ 0.2) are chosen form = 2 (i.e., l = 2r), w = 4,q = 3, andθ = min(d
4
, 3).

The resulting DA and FAR are shown in Figure3, where our CDF (cooperative decision with filtering)

and CD (cooperative decision without filtering), and the well-known MV(majority voting) are compared.
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Figure 3. Improving DA and FAR using a smoothing filter.

For both CDF and CD almost perfect detection performance hasbeen achieved, as expected. A

significant difference, however, is noticed when FAR is compared. Whenpt = 0.2, FAR for CD

reaches 0.4, while that for CDF remains very close to 0. MV, although inadequate for a small event

region, shows relatively poor DA performance due to the insufficient number of sensor nodes to pass

the threshold.

We then conducted simulation to evaluate the proposed grid-based event detection scheme. The

performance is evaluated for four different values ofpp when pt = 0.2. For comparison purposes,

event detection without inter-cluster communications, named LDF (local decision with filtering), is also

included. The performance of CDF is compared with LDF and MV in Figure4, where effectiveness of

the proposed scheme is demonstrated. Both DA and FAR for CDF are very close to 1 and 0, respectively,

whereas LDF slowly loses its DA performance. Forpp = 0.2, the difference is approximately 0.05. MV

does not perform well as expected.

Figure 4. Comparison of CDF and LDF.
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Event detection accuracy may change with the event size. In arelatively large event region, the

simple majority voting will achieve high performance. As the event size becomes smaller, increasingqd

is necessary to maintain high overall performance. DA for three different event region sizes are shown

in Figure5, whereθ = min (d
4
, 3) is shown to be adequate forl = 2r. For l = 2.5r andl = 3r, however,

some improvements are desirable. Loweringqc will help improve DA with a negligibly small increase

in FAR as shown in Figure6, whereθ = min (d
4
, 2) is chosen.

Figure 5. DA for θ = min (d
4
, 3).

Figure 6. DA for θ = min (d
4
, 2).

As addressed in the previous section, stuck-at-0 nodes can be detected when they are in an event region

and the event boundary is identified. They can also be detected if sensor readings of a stuck-at-0 node

are confined to a relatively small range over a long period of time compared to the readings of a normal

node. If stuck-at-0 nodes are isolated, some additional gain can be expected. The improvements are

shown as shown in Figure7, where CDFS (cooperative decision with filtering and stuck-at-0-removal)

and CDF (cooperative decision with filtering) are compared.As noted in the figure, the difference in DA

is negligibly small for a relatively smallpp.
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Figure 7. DA and FAR after isolating stuck-at-0’s forpt = 0.2,w = 4, q = 3, andl = 2.5r.

Finally, we conducted simulation to see the performance changes due to flatteningθ. DA and

FAR for two different values ofθ, θ1 = d
4

andθ2 = min (d
4
, 3), are shown in Table4 Some notable

improvements in DA are observed with a negligibly small increase in FAR. Forpp = 0.2, DA improves by

approximately 0.015 to reach 0.9922, whereas FAR increasesonly 0.00068.

Table 4. DA and FAR for two different threshold valuesθ1 andθ2 for pt = 0.2,w = 4, q = 3,

andl = 2r.

pp

DA FAR

θ1 θ2 θ1 θ2

0.1 0.9900 0.9968 0.00021 0.00124

0.2 0.9770 0.9922 0.00024 0.00092

5. Conclusions

In this paper, we presented a grid-based distributed event detection scheme for fault-prone wireless

sensor networks. Sensor networks are divided into square grids to detect events locally with low

communication overhead. To maintain high performance evenwith wide variations in node distribution

and event size, each grid is further divided into 2× 2 sub-grids. Events are then detected by finding a

square region of 2× 2 sub-grids that passed a predefined threshold. To reduce theimpact of faults in

decision making process, most false readings due to transient faults are smoothed out and sensor nodes

with a permanent fault are isolated. Moreover, sensor nodesexhibiting incorrect readings for some

extended period of time are temporarily isolated until theybecome stabilized. Computer simulation

results have shown that a high DA can be achieved while maintaining an extremely low FAR for a wide

range of fault probabilities, even for a relatively small event region.
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