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Abstract: This paper focuses on developing a novel technique based on machine vision
for detection of foreign substances in injections. Mechanical control yields spin/stop
movement of injections which helps to cause relative movement between foreign substances
in liquid and an ampoule bottle. Foreign substances are classified into two categories:
subsiding-slowly object and subsiding-fast object. A sequence of frames are captured by
a camera and used to recognize foreign substances. After image preprocessing like noise
reduction and motion detection, two different methods, Moving-object Clustering (MC) and
Frame Difference, are proposed to detect the two categories respectively. MC is operated to
cluster subsiding-slowly foreign substances, based on the invariant features of those objects.
Frame Difference is defined to calculate the difference between two frames due to the change
of subsiding-fast objects. 200 ampoule samples filled with injection are tested and the
experimental result indicates that the approach can detect the visible foreign substances
effectively.
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1. Introduction

Injection liquids and transfusion solutions have been widely used in clinical treatment in the world.
Foreign substances, such as metal shavings, glass shavings and fibres, may appear in injections during the
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process of production but they are prohibited to appear in qualified injections. These foreign substances
can cause serious diseases such as tumor, phlebitis, anaphylactic reaction or even death when they are
injected into blood. Despite of such large production and strict standard of injection liquid, most of the
pharmaceutical corporations in China still detect the foreign substances artificially [1]: an injection is
illumined by a light source, a worker turns it over to checks whether visible foreign substances appear
and decides the injection is qualified or not. Though this method is simple, it can result in low accuracy
and low efficiency. It is significant to invent an automatic detection method with high accuracy.

Previous works based on machine vision are developed to detect foreign substances. A foreign
substances inspection system can be traced back to 1970s [2]. A lot of work is done later. Researchers
have developed detection algorithm based on a sequence of frames about the liquid. Ishii et al. [3]
breaks up frames into odd ones and even ones, obtains the maximum and minimum values of pixel in
odd and even frames respectively, and computes the difference between these values to detect foreign
substances. Ishii’s method has a small amount of computation but may be confused by bubbles.
Lu et al. [4] proposes another method which use Mean Shift to track the moving object and judge
foreign substances by trajectory. Lu’s method can distinguish foreign substances and bubbles effectively
but is weak in tracking fast-moving objects. Zhou et al. [5] depicts a classifier (SVM) to judge foreign
substances and bubbles based on area size and ratio of length to width. This classifier has a better
precision than Lu’s method but it mainly depends on samples. Moghadas et al. [6] uses MLP neural
network and SVM to detect foreign substances. Moghadas divides the foreign substances into 4 groups
and recognizes surface objects, foreign substances and bubbles efficiently without rotating the bottles.
However, this method may miss objects which falls to the bottom before detection. Xiao et al. [7] detects
movement by calculating the difference among three contiguous frames, tracks the movement by Particle
Filter (PF) and recognizes foreign substances based on the direction of movement. This method does
well in slowly-moving objects while it is weak in computation and fast-moving objects.

In this paper, we developed different methods corresponding to different foreign substances.
Moving-object Clustering (MC) is proposed to detect subsiding-slowly objects. Clustering [8] is an
unsupervised learning method, breaking up a set of observations into clusters in which observations are
similar in some sense. In other words, clustering is to make observations in same cluster to be as similar
as possible and the ones in different clusters to be as different as possible. Therefore we employ several
features to calculate the similarity of moving object and cluster the similar ones of each frame into one
cluster. After clustering, we develop some criterions to distinguish foreign substances from clusters.

Features of subsiding-fast objects may change rapidly, which reduces the precision of clustering. In
this case, we calculate the frame difference between two frames to recognize foreign substances. We
analyze the frame difference values of different samples to support our method.

The paper is organized as follows. Section 2 introduces the framework and architecture of
the detection system. Section 3 presents the classification of foreign substances. Section 4
presents algorithm of subsiding-slowly foreign substances detection. Section 5 proposes algorithm of
subsiding-fast foreign substances detection. Section 6 is devoted to the experiments and analyses of the
results. Section 7 concludes this paper.
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2. Framework and Architecture

In order to gain relative movement and reduce the appearance of bubbles, we spin ampoule at high
speed and then stop it suddenly. In this case, we can distinguish moving foreign substances from static
ampoule bottles. An ampoule filled with injection is fixed on a turntable driven by a motor at speed
2,000 r/min. We use a white LED back-light illumination because white light is insensitive to the color
of injection and back-light illumination can cause obvious contrast between transparent and opaque
region. A sequence of frames are captured by an industrial camera with resolution of 2,048 × 1,536.
The framework of the detection system is shown in Figure 1.

Figure 1. Framework of the detection system.

The overall process of the detection system framework is as follow:
(1) High speed rotating. An injection ampoule is delivered to a turntable by conveyor belt and fixed on

it. The turntable is driven by a motor located underneath and revolves rapidly together with the ampoule.
A vortex is formed so that the foreign substances can move to the center of the ampoule. The ampoule
rotates steady to reduce the probability of the appearance of bubbles.

(2) Sudden stoping. After high-speed rotation for a few seconds, the movement is stopped suddenly.
Due to inertia, foreign substances continue moving for a while and have relative movement from the
ampoule bottle. Thus before the liquid slows down, the white LED is lit on and the camera begins to
capture a sequence of frames as inputs of our detection algorithm.

3. Classification of Foreign Substances

Foreign substances used to be classified into black and white ones [3,4,7,9] when both back-light and
bottom-light illumination are used together. In our framework, we only use back-light illumination and
propose a new classification of foreign substances: subsiding-slowly ones and subsiding-fast ones. This
classification is based on the subsiding speed of foreign substances. Subsiding-slowly foreign substances
generally include rubber, hair and fiber, and subsiding-fast foreign substances mainly are glasses and
metals. Illustrations of foreign substances, fiber and glass, are shown in Figure 2. Due to their different
subsiding speed, the features of the two kinds of objects are different.
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Figure 2. Foreign substances. (a) Fiber, (b) Glass.

(a) (b)

3.1. Subsiding-Slowly Foreign Substances

These foreign substances often have light weight and subside slowly after the ampoule stops moving.
Therefore, we can assume that the average brightness value, area size and shape of the foreign substance
are almost identical between contiguous frames. The distribution of brightness values and area sizes of
the moving objects and the noise in a sequence of frames are shown in Figure 3, which is a statistical
result after motion detection where moving objects and noise are obtained by considering the background
image. The brightness values of those objects are within [115, 140], and area sizes are lower than 600.
It is clear that brightness values and area sizes of the same foreign substance in a sequence of frames are
close. As we assume the subsiding speed to be low, we use the positions of foreign substances between
contiguous frames as another feature. Besides, Hu invariant moments [10] of foreign substance qualify
as features for they are invariant to scale, rotation and reflection.

Figure 3. Distribution of brightness value and area size in a sequence of frames.
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3.2. Subsiding-Fast Foreign Substances

In contrast to the subsiding-slowly objects, the features of subsiding-fast objects are that:

1. The density of subsiding-fast objects is relatively big, so the objects always move close to the
bottom area of ampoule where bubbles hardly appear.

2. The shape of such object varies in frames.

3. They stop moving rapidly, generally in 3 or 4 frames.

Two contiguous frames with subsiding-fast foreign substance (glass) is shown in Figure 4. It is clear
that the area size and shape of glass are different in two contiguous frames, hence clustering is not
effective in detecting subsiding-fast foreign substances.

Figure 4. Two contiguous frames with glass. (a) Glass in frame i, (b) Glass in frame (i+ 1).

(a)

(b)

4. Detection of Subsiding-Slowly Foreign Substances

The detection of subsiding-slowly foreign substances includes three phases: motion detection,
moving-object clustering and foreign substances recognition.

4.1. Motion Detection

Motion detection is to separate moving objects from frames. Images captured by camera include
ampoule area and environment area, so we need to separate ampoule area from the image so as to reduce
calculation. Since the height of ampoule and camera is fixed, we can set the vertical area into a fixed
range. Compared with the vertical area, the horizontal area of ampoule varies in every detection. We
employ Gaussian smooth and Canny operator to obtain the edges of ampoule, project the image to the
horizontal direction, and gain the horizontal area by calculating the maximum value in the left half and
right half part of the projection.

After separating the ampoule area from images, we obtain a static background by Algorithm 1. A pixel
contributes to the static background if the difference between the brightness values of two contiguous
frames is less than δ, then we add this pixel value to the sum total. Each pixel value of static background
BG(x, y) is the mean of values added to total.
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Algorithm 1. Static background gained from a sequence of frames.

Input:
L frames with M ×N pixels;
Brightness value of pixel (x, y) in frame i, Bi(x, y);

Output:
Static background with M ×N pixels, BG;

1: for coordinate x = 0 to M − 1 do
2: for coordinate y = 0 to N − 1 do
3: counter = 0;

4: total = 0;

5: for frame i = 1 to i = L− 1 do
6: if |Bi(x, y)−Bi+1(x, y)| < δ then
7: counter + +;

8: total = total +Bi(x, y);

9: end if
10: end for
11: BG(x, y) = total/counter;
12: end for
13: end for
14: return BG;

As static background is obtained above, moving objects can be found by computing the difference
between each frame and static background, as shown in Equation (1). Motion is described by a binary
image MTi and a pixel is considered to be part of a moving object if its value equals to 1.

MTi(x, y) =

{
1 if |Fi(x, y)−BG(x, y)| ≥ δ

0 others
(1)

At last, image morphological transformations is applied to reduce noise and fill up holds.

4.2. Moving-Object Clustering

Generally, based on whether a classification method classifies observations into a finite number of
unrelated supervised classes or unsupervised clusters, the classification method is either supervised or
unsupervised [11–14]. Clustering, also called exploratory data analysis, is unsupervised classification.
The task of clustering is to split up a set of observations into clusters so that the similarity
between observations within a cluster is larger than that between observations belonging to different
clusters [11]. There are two types of clustering techniques: partitional clustering and hierarchical
clustering [15,16].

Hierarchical clustering algorithms produce a nested series of partitions [8], find successive clusters
using previously established clusters. Basically, these algorithms are either agglomerative (bottom-up)
or divisive (top-down). Agglomerative algorithms separate each element as a cluster and then merge
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them into larger clusters. Divisive algorithms regard all the elements as a cluster and then divide it
into smaller clusters. Figure 5 illustrates the operation of a bottom-up hierarchical clustering using a
two-dimensional data set. Figure 5(a) describes 8 data (A–H) in four clusters. A dendrogram yielded
by a hierarchical clustering algorithm represents the nested grouping based on the pattern and similarity
of data, as shown in Figure 5(b). Different clusters can be obtained by breaking the dendrogram into
different leaves [8].

Figure 5. Illustration of hierarchical clustering algorithm. (a) Points fall into four clusters,
(b) Dendrogram yielded by the algorithm.

(a) (b)

Now come back to our detection, the proposed motion detection in Section 4.1 has marked all the
suspected moving objects. After that, a hierarchical clustering algorithm is used to cluster the similarity
of moving objects. Foreign substances recognition is then operated on the clusters.

As mention in Section 3.1, several features of subsiding-slowly foreign substances is almost invariant
between contiguous frames. Moreover, our clustering algorithm is based on assumptions as follow:
(1) The average brightness values, area sizes, Hu moments of one actual moving object in contiguous
frames are analogous, and the positions of the object in contiguous frames are close. (2) The similarity
of the features of the same actual object in the frames have negative correlation with the distance of the
frames containing the object. (3) Suspected objects of one frame do not belong to the same actual object.

Based on the assumptions above and experiments, similarity between suspected objects m and n is
defined in Equations (2)–(6):

SB =
1

1 + |Bm−Bn|
Bm

(2)

SA =
1

1 + log |Am

An
|

(3)

SH = exp(−α
7∑

i=1

|Hm(i)−Hn(i)|) (4)

SP = exp(−β
√

(xm − xn)2 + (ym − yn)2) (5)
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S =


(SB × SA × SH × SP )

∆F
∆F > 0

0 ∆F = 0
(6)

where B denotes the average brightness value, A is the area size, H(i) indicates the i moment of the 7

Hu ones, α and β are constant, x is the X coordinate of the position while y is the Y coordinate, and
∆F is the distance between two frames. SB denotes the similarity between average brightness values
of object m and n. SA is the similarity of two area sizes. The similarity of Hu moments is denoted by
SH . SP represents the similarity of two positions. These four similarities form the overall similarity
S of two objects. The result S of Equation (6) is located in [0, 1], where the more similar two objects
are, the bigger S is. Besides, we define DS as the distance function between two objects, as shown in
Equation (7).

DS = 1− S (7)

The clustering algorithm is depicted as follow:
(1) Suppose we have L contiguous frames, each frame i, i ∈ [1, L], hasNi suspected objects, and each

object ni in each frame has K features. Therefore, K-dimension eigenvector of object is represented by
Oin = {fi,n,1, fi,n,2, · · · , fi,n,K}, where fi,n,k is the feature k of object n in frame i. All the suspected
objects form a matrix in Equation (8):

OS = [O11, O12, · · · , O1N1 , O21, O22, · · · , Oini
, · · · , OLNL

] (8)

where Oini
is the eigenvector of object n in frame i, ni ∈ [1, Ni]. Table 1 shows the eigenvector O11.

Table 1. Eigenvector O11.

object
eigenvector

B A x y H[1] H[2] H[3] H[4] H[5] H[6] H[7]

O11 f1,1,1 f1,1,2 f1,1,3 f1,1,4 f1,1,5 f1,1,6 f1,1,7 f1,1,8 f1,1,9 f1,1,10 f1,1,11

(2) Using OS as input, we operate bottom-up hierarchical clustering algorithm.
Figure 6 shows the dendrogram of one clustering on a sequence frames, the nested relationship

between objects and the average DS in one cluster. There are 292 suspected objects. Although there
are still 50 clusters where average DS is 0.85, only a few clusters have objects which appear in each
frame. We can rule out most clusters based on this.

4.3. Foreign Substances Recognition

Now we have clusters about noise, bubbles, and foreign substances. Because foreign substances
subside slowly, we can assume that these foreign substances and bubbles receive constant force and have
uniformly accelerated motion, while the motion of noise is irregular. Furthermore, bubbles always float
up to injection surface while foreign substances go down to bottom or travel smaller vertical distance
than bubbles. Therefore, we can recognize foreign substances based on motion calculated as follow:
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Figure 6. Dendrogram of one clustering on a sequence frames.

First of all, centroid of objects is gained by Equation (9):

xc =

∑
(x,y)∈R xB(x, y)∑
(x,y)∈RB(x, y)

, yc =

∑
(x,y)∈R yB(x, y)∑
(x,y)∈RB(x, y)

(9)

where B(x, y) denotes the brightness value of pixel (x, y) in object area R. Assume the motion of an
object has initial velocity (vx, vy), acceleration (ax, ay) and initial position (x0, y0), then the position of
the object at time t is calculated by Equation (10):

x(t) = x0 + vx × t+
1

2
ax × t2, y(t) = y0 + vy × t+

1

2
ay × t2 (10)

It is obvious that the third-order derivatives of x(t) and y(t) are zero ideally. Though the actual
third-order derivative is not zero due to inaccurate positions of objects, there is large difference between
third-order derivative of actual objects and that of noise. Third-order derivative of discrete positions are
shown in Equations (11) and (12).

d3x(t)

dt3
= x(t+ 3)− 3x(t+ 2) + 3x(t+ 1)− x(t) (11)

d3y(t)

dt3
= y(t+ 3)− 3y(t+ 2) + 3y(t+ 1)− y(t) (12)

In L frames, we can get (L − 3) third-order derivatives of object positions. Add the square of these
derivatives up to be TD in Equation (13).

TD =
L−3∑
t=1

((
d3x(t)

dt3
)2 + (

d3y(t)

dt3
)2) (13)



Sensors 2011, 11 9130

A threshold η is set to recognize actual objects and noise. It is considered as an actual object if
TD < η and as noise if otherwise. Besides, we use the distance on vertical direction to separate foreign
substances and bubbles. A threshold µ is set to complete this job.

5. Detection of Subsiding-Fast Foreign Substances

As analyzed in Section 3.2, detection algorithm of subsiding-fast foreign substances is different
from that of subsiding-slowly foreign substances. Due to the features of subsiding-fast objects, Frame
Difference is proposed. Assume the bottom area of an ampoule in frame i is Gi shown in Equation (14):

Gi =


g00 g01 . . . g0(Q−1)

g10 g11 . . . g1(Q−1)
...

... . . . ...
g(P−1)0 g(P−1)1 . . . g(P−1)(Q−1)

 (14)

in which P × Q denotes the bottom area size of an ampoule and gjk is the brightness value of pixel
(j, k). We compute the sum of row vectors and that of column vectors respectively in Gi, as shown in
Equations (15) and (16):

Vi =
(
Vi0 Vi1 Vi2 . . . Vi(Q−1)

)
=

P−1∑
j=0

(
gj0 gj1 gj2 . . . gj(Q−1)

)
(15)

Wi =
(
Wi0 Wi1 Wi2 . . . Wi(P−1)

)
=

Q−1∑
k=0

(
g0k g1k g2k . . . g(P−1)k

)
(16)

where Vi is the sum of row vectors and Wi is the sum of column vectors. Frame Difference D is defined
in Equations (17)–(19). Unlike calculating the difference between pixels, we first derive the sum of
row vectors Vi and sum of column vectors Wi, then compute the differences of the sums between two
contiguous frames, D is the sum of two differences.

Di =‖ Vi+1 − Vi ‖ + ‖ Wi+1 −Wi ‖ (17)

‖ Vi+1 − Vi ‖=
Q−1∑
j=0

(V(i+1)j − Vij)2 (18)

‖ Wi+1 −Wi ‖=
P−1∑
k=0

(W(i+1)k −Wik)2 (19)

After image preprocessing like Gaussian smoothing, we calculate Frame Difference D1 between
frame 1 and frame 2, because the different between those frames may be the biggest among all contiguous
two frames. At last, a threshold θ is set to recognize subsiding-fast foreign substances. In order to
analyze the effect of D, we employ 112 ampoule samples among which 28 samples have glass. Figure 7
shows the statistical result of D. It is obvious that the D value of ampoules with subsiding-fast foreign
substances is much bigger than that of ampoules without foreign substances. θ is set to be 150 to detect
subsiding-fast foreign substances.
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Figure 7. The statistical result of Frame Difference D.

6. Experimental Result

Before testing our system, we have to solve a problem: decide the values of parameters mentioned
above. δ in Equation (1) is used to separate foreground from background and decided by experiment.
Figure 8 illustrates one of the experimental result. When δ = 1, there will be too much noise in
foreground which only increases the computation of detection. When δ = 7, boundary area of foreign
substance is lost which affects the features of foreign substances. We choose δ = 3 rather than δ = 5 to
increase the precision of motion detection.

Figure 8. Experiment of foreground on different δ, foreign substance with the biggest white
area. (a) δ = 1, (b) δ = 3, (c) δ = 5, (d) δ = 7.

(a) (b) (c) (d)

α and β are scale parameters used to reduce the contribution of Hu moments on similarity and adjust
the pixel distance to the ampoule size in image. They are set to be 1

30
and 1

200
.

Our method uses µ in Section 4.3 to recognize foreign substances and bubbles. According to Pan’s
simulation [17], the speed of bubbles with over 40 µm radius rises to over 3 mm/s after 0.01 second.
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The camera captures 9 frames every second and 1 mm distance has 60 pixels. Assume that the speed of
bubbles is 3 mm/s, so bubbles can move up at least 20 pixel between two frames. Since some foreign
substances hardly move in frames, we set µ to be −10. If one object moves up less than 10 pixel, it is
considered to be foreign substance.
η in Section 4.3 is proposed to recognize foreign substances and noise. In order to decide the value

of η, we compute TD values in Equation (13) using 603 trace samples as shown in Figure 9. 206 trace
samples of foreign substances are used, whose TD values are all lower than 100. Over 99.7% percent
of TD values of noise samples are higher than 100. It is obvious that TD can recognize traces of foreign
substances and that of noise effectively, therefore we choose η to be 100.

Figure 9. TD values of 603 track samples.

After choosing the value of the parameters, some experiment are made and the results are shown
in Tables 2 and 3. There are 200 ampoule samples, among which 129 samples are without foreign
substance, 41 samples contain subsiding-slowly foreign substances and the others contain subsiding-fast
foreign substances. The accuracy of recognizing subsiding-fast foreign substances is 96.67%. It is
because some glass are big and heavy, and they stop moving before frames are captured. In this case,
Frame Difference D is lower than θ. Some improvement about control system, motor and camera can
solve this problem. Accuracy of subsiding-slowly foreign substances detection is 97.56%. The reasons
for failed detection are that:

1. foreign substances move to the side wall of an ampoule and then miss in a frame;
2. noise due to camera and environment cause the failure;
3. foreign substances move too slowly, so they are considered to be background.

The detection precision of ampoules without foreign substance is 98.45%. Since the variation of
brightness in some frames is apparent due to the camera and environment, ampoules without foreign
substance is recognized into those with subsiding-fast foreign substances.
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Table 2. Detection result of 200 samples.

Category Number of samples True detection Accuracy
Subsiding-fast 30 29 96.67%
Subsiding-slowly 41 40 97.56%
No foreign substance 129 127 98.45%

Table 3. Overview result of detection.

Total number of samples 200
Number of true detection 196
Detection accuracy 98.00%

The comparison among our system and other systems is shown in Table 4. The qualified liquids’
detection accuracy of our system is the highest among the systems brought forward. The accuracy of our
system in detecting unqualified liquids is the second best. It is shown that our system can detect qualified
and unqualified injections effectively.

Table 4. Comparison among our system and other systems.

System
Our system Lu’ system [4] Zhou’s system [5] Xiao’s system [7]

(200 samples) (180 samples) (480 samples) (3,500 samples)
Detection accuracy of

98.45% 96.10% 97.00% 98.32%
qualified liquids

Detection accuracy of
97.18% 91.80% 98.89% 96.00%

unqualified liquids

Table 5. Knapp–Kushner testing result.

FQA1 FQB1 FQB/FQA Criterion Result

407 613 1.506 FQB/FQA > 1 Detection machine is more effective than workers

1 FQi: quality factor of bottle i.
FQi = (n/N)× 10, where n is unqualified times of bottle i, N is total testing times of bottle i.
FQA: FQ of workers.
FQA = FQA[7,10] =

∑
FQAi, only FQAi located in [7, 10] are added.

FQB: FQ of detection machine.
FQB = FQB[7,10] =

∑
FQBi, only FQBi located in [7, 10] are added.

We apply Knapp–Kushner testing programs [18], which are accepted by U.S. Food & Drug
Administration (FDA) and European pharmacopoeia, to test our automatic detection system. The testing
samples are the same as those in Table 2. Because the judging criterion is FQB/FQA > 1, the result
shown in Table 5 points out that our detection machine is more effective than workers.
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7. Conclusions

This paper mainly studies the detection of foreign substances in injection ampoule. A mechanical
system is designed and achieved. We build the system with an industry camera, a motor and some
supporting tables like turntable. Foreign substances are classified into two categories: subsiding-slowly
ones and subsiding-fast ones. Since we detect foreign substances based on movement, classifying
those objects based on their movement features is reasonable. Different characteristics between those
categories lead to different detection methods. Moving-object clustering is proved to be effective in
detecting subsiding-slowly objects. Four features are employed to calculate the similarity between
objects in clusters. Bubbles hardly affect the detection of subsiding-fast objects, so a light computation
method Frame Difference is proposed.

Future work may focus on the improvement of mechanical system, algorithms and application of the
system in production.
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