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Abstract: Recognition of body posture and motion is an important physiological function 

that can keep the body in balance. Man-made motion sensors have also been widely 

applied for a broad array of biomedical applications including diagnosis of balance 

disorders and evaluation of energy expenditure. This paper reviews the state-of-the-art 

sensing components utilized for body motion measurement. The anatomy and working 

principles of a natural body motion sensor, the human vestibular system, are first 

described. Various man-made inertial sensors are then elaborated based on their distinctive 

sensing mechanisms. In particular, both the conventional solid-state motion sensors and the 

emerging non solid-state motion sensors are depicted. With their lower cost and increased 

intelligence, man-made motion sensors are expected to play an increasingly important role 

in biomedical systems for basic research as well as clinical diagnostics. 

Keywords: motion sensors; human vestibular system; accelerometer; gyroscope; liquid-state 

motion sensor; artificial hair cell motion sensor; thermal convection accelerometer 

 

1. Introduction 

Motion sensing is a critical sensing modality that plays an important role in medical practice. For 

instance, head rotation and body orientation are the input signals for human balance prosthesis [1,2]; 

the movement of chest wall needs to be precisely monitored when a ventilation machine is used to 

support human breath [3,4]; the body motion characteristics also need to be evaluated during the 

rehabilitation process of disabled people [5-7]. The current clinical solution for motion sensing is to 
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use a camera based motion capture system [8,9], where the body motion is derived from the movement 

of multiple feature points attached on the body. Although effective, this technique is obtrusive and 

expensive. It is also difficult to be integrated into a modern medical system, such as portable medical 

device and point-of-care (POC) medication. Recently, microscale motion sensing technologies have 

gained dramatic advances, which have significantly propelled the development of human balance  

prosthesis [10-13], sports medicine [14-16], radiotherapy [17-19], and biomechanical research [20-22]. 

In particular, rapid development of micro-electro-mechanical-systems (MEMS) with high accuracy, 

high reliability and multiple functionalities has provided a powerful tool set for body motion  

sensing [23,24]. Over the past two decades, research on microscale motion sensors has received 

extensive attention, and continues to be an active domain. 

Generally speaking, the motion characteristics of an object, such as a human subject, an organ, or a 

tissue (e.g., solid tumor), can be described by six independent variables. As schematized in Figure 1, 

sway, heave and surge are linear motions along the three perpendicular coordinate axes in the space; 

roll, pitch and yaw are rotational movements with respect to the three perpendicular directions [25]. In 

order to accurately measure the motion characteristics of an object, a sensing system with six  

degree-of-freedom (DOF) sensing capability is required. 

 

Figure 1. The six independent variables fully describing the motion characteristics of an object. 

 

The human vestibular system possesses a simple but delicate structure that can simultaneously and 

accurately detect the six independent variables, which are subsequently interpreted by the central and 

peripheral neural systems to keep body balance and maintain gaze stability. Among the engineering 

modalities, linear motion and rotational motion are detected by accelerometers and gyroscopes, 

respectively [26-30]. Cantilever based accelerometers have attracted tremendous interest during  

the past decades, and are widely available for motion sensing. Each accelerometer includes a  

mass-spring-damper system where the linear acceleration can be derived from the displacement of the 

proof mass. The rotational motion is measured by micromachined gyroscopes, which can be 

categorized mainly in two groups, linear vibratory gyroscope and torsional gyroscopes [31,32]. 

Basically, a micro-gyroscope is composed of two sets of mass-spring-damper systems, one for driving 

and the other for sensing. Besides the solid-state sensors, many innovative microscale technologies that 

are not based on solid state materials also provide promising solutions for body motion sensing. In 
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particular, microsensors based on liquid-state proof mass gain particular attentions because their 

sensing principles are closer to those of the natural motion sensors. These sensors fulfill the low 

frequency requirement that is critical for human body motion measurement. 

In this paper, state-of-the-art microscale motion sensing technologies that can be utilized for human 

body motion determination will be introduced. The review starts with the introduction of a natural 

motion sensing system, namely the human vestibular organ. Its anatomy and physiological function are 

elaborated. This is followed by a comprehensive review of conventional solid-state sensors. The 

representative configurations, design principles, key fabrication approaches and sensing mechanisms of 

micromachined accelerometers and gyroscopes are described. Afterwards, several innovative motion 

sensing technologies based on non solid-state materials are introduced, including the biologically 

inspired hair cell accelerometer, liquid droplet based motion sensors, and thermal convection based 

accelerometers. Finally, representative applications of man-made sensors for body motion measurement 

are elaborated. The development and expansion of this field in the near future are also discussed. 

2. Human Vestibular System 

Posture recognition and motion sensation in living creatures is accomplished by the coordination of 

a number of different organs. For example, humans can identify their motion states using eyes, ears, 

the vestibular system, joints, skin, along with many other inner organs. The subject can adjust his 

gesture accordingly in real time using the feedback mechanism coordinated by the central and 

peripheral neural systems. Among these organs, human vestibular system is a naturally established 

motion sensing apparatus locating in the inner ear [33]. It senses the body acceleration and head 

rotation, which are subsequently transferred to the central and peripheral neural systems for balance 

control and gaze stabilization. The anatomy of a vestibular system is illustrated in Figure 2 [34].  

Figure 2. Schematic of the human vestibular system showing the three perpendicular  

semi-canals and the otolith (utricle and saccule) in the inner ear. 

 

The system is composed of two sets of end organs, namely the semicircular canals and the otoliths. 

The semicircular canals are in charge of rotational movement sensing, while the otoliths are in charge 

of translational movement sensing. The semicircular canals are filled with a body fluid, named 
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endolymph, which moves relatively to the canal wall when the subject experiences head rotation. In 

response to the fluid movement, the hair cell bundles on the canal wall bend and generate pulses of 

action potentials. The frequency of the bioelectric pulses is proportional to the intensity of the hair cell 

bending and reflects the angular rates of the head rotation. In order to perceive the movement in the 

three-dimensional space, the vestibular system in each ear contains three semicircular canals 

perpendicular to each other, which are called horizontal, anterior and posterior semicircular canals 

respectively. These canals are arranged in a way that each canal in one ear has a parallel counterpart in 

the other ear. With such a configuration, when a canal in one ear is stimulated, the corresponding 

counterpart in the other ear is inhibited. This push-pull fashion allows human beings to differentiate 

the direction of the rotational movements. The semicircular canals system is an indispensable part of 

the vestibule-ocular reflex (VOR), which stabilizes images on the retina during head movement. The 

VOR receives the head rotation information and produces eye movement in the opposite direction to 

preserve the image in the center of the visual field. Figure 3 illustrates the relationship between the 

sensory inputs and the motors output, showing the role of VOR in the adjustment of eye movement. If 

the VOR system is impaired, blurred vision occurs, even under small head tremors, leading to vertigo 

and dizziness. Moreover, appropriate motor impulses for postural adjustments cannot be achieved, 

which results in symptoms that accompany body unsteadiness.  

 

Figure 3. Balance control in human body. 

 

 

 

While the semicircular canals are responsible for angular rate measurement, the otoliths sense the 

linear acceleration. The otolith in each ear contains two small organs called utricle and saccule. 

Because of their physical orientations in the head, the utricle is sensitive to the motion in the horizontal 

direction, and the saccule senses the movement in the vertical direction. Similar to the semicircular 

canals, the otoliths are also composed of endolymph and hair cells. Upon an external motion, the 

inertial movement of endolymph stimulates the hair cells by bending them. The bioelectric signals 

generated by the hair cells are transferred to and interpreted by the brain. Along with the inputs from 

the eyes and the joints, the brain obtains the balance states of the human body and sends commands to 

the motor system for postural control. Interestingly, although the gravity is equivalent to a linear 

acceleration along the vertical direction from a kinetic view, the vestibular system can distinguish the 

gravity from the linear acceleration quite well by not fully understood mechanisms. 
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Since the vestibular system is an indispensable part of the human balance system, its disorder 

causes a range of symptoms including blurred vision, vertigo, chronic dizziness, and increased fall 

risk. According to the clinical survey, more than 6.2 million adults in the United States have reported 

chronic balance problems and more than 1 billion U.S. dollars are spent each year on the medical care 

of such diseases [35]. Vestibular disorder can be caused by various reasons, such as injury, infection, 

neural diseases, surgery, drug poisoning, etc., making pharmaceutical treatments alone ineffective for 

their treatment [36]. It is clear that vestibular prosthesis is necessary to help patients with balance 

problems. Nowadays, many man-made motion sensors with the functions comparable to that of the 

vestibular system have been developed. In the following sections, state-of-the-art technologies of  

man-made motion sensors that have potentials for evaluation of body motion disorder or vestibular 

prosthesis are reviewed. 

3. Solid-State Motion Sensors 

3.1. Cantilever Based Accelerometers  

The use of cantilever based accelerometers for assessing human body movement was first proposed in 

the 1950s, although the devices in the early stage were somewhat unreliable, large and expensive [37]. 

Thanks to the revolutionary advancement of microfabrication technologies, state-of-the-art  

micro-accelerometers have become more accurate, reliable, smaller and cost effective [38-42]. Their 

applications in biomedical areas have been extensively explored, significantly changing this field of 

body motion measurement [43-45].  

A typical cantilever based accelerometer structure can be represented by a mass-spring-damper 

system, as illustrated in Figure 4. The key component is a proof mass suspended by a compliant beam 

(cantilever) anchored to a supporting frame. The inertial force generates a relative movement between 

the proof mass and the supporting frame, and induces mechanical stress within the cantilever. Both of 

the relative movement and the mechanical stress can indicate the external acceleration.  

Figure 4. A second-order mass-spring-damper system representing a cantilever based accelerometer. 

 

 

Equation (1) is the second-order mathematical model that describes the movement of the proof mass 

as a function of the applied external acceleration [46]: 

0sin
2

2

 tamkx
dt

dx
b

dt

xd
m   (1) 

m 

k 

b 

maFexternal



Sensors 2011, 11                            

 

643 

where m is the proof mass, x is the displacement of the proof mass, t is the time variable, b is the 

damping coefficient, k is the spring constant of the cantilever, a is the external acceleration to be 

determined, and  is the angular frequency of the external acceleration. In a cantilever based 

microaccelerometer, the displacement of the proof mass is often on the order of a few m or less. Such 

a small displacement needs to be converted to a measurable physical signal to determine the external 

acceleration. Many sensing mechanisms have been utilized to determine the cantilever displacement 

and hereby the acceleration, through capacitive, piezoresistive, piezoelectric or tunneling current 

measurement. 

3.1.1. Capacitive Accelerometer 

Capacitive accelerometers are one of the most widely used solid-state motion sensors on the  

market [47,48]. The relative displacement between the proof mass and the supporting frame is derived 

from the change of electrical capacitance when the movable electrode plate displaces either  

in-plane or out-of-plane with the stationary supporting frame (Figure 5). In practice, the movable 

electrodes and the stationary frame are often in the form of interdigitated electrode fingers (a.k.a. 

comb-drive structures). The overlapping area of the movable fingers and the stationary fingers and the 

gap distance between the fingers are important parameters determining the measuring sensitivity [49]. 

Figure 5. Schematic of the capacitive measurement of the proof mass movement. 

 

3.1.2. Piezoresistive and Piezoelectric Accelerometers 

Micromachined piezoresistive accelerometers were first described by Roylance and Angell [50], 

and are currently used in various industrial applications. The configuration of the cantilever structures 

in piezoresistive accelerometers is similar to those in capacitive accelerometers [51], while their 

electrical measuring mechanisms are different. In piezoresistive accelerometers, a piezoresistor is often 

patterned on a thin suspending cantilever which connects the proof mass and the supporting frame. 

Due to the mechanical flexibility of the cantilever, a large mechanical strain occurs as the external 

acceleration displaces the proof mass. The strain is derived from the electrical resistance change in the 

piezoresistor. 

Piezoresistive accelerometers can be fabricated by both surface micromachining and bulk 

micromachining [52-54]. By using a piezoresistor as the sensing component, this type of 

accelerometers is advantageous due to the relatively simple configuration and fabrication. Nonetheless, 
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piezoresistive accelerometers are highly vulnerable to the temperature variation. Improved designs 

includes the use of a large proof mass, integration with a temperature compensation circuitry, and the 

monolithic implementation with CMOS electronics [55,56]. 

Piezoelectric accelerometers have the similar configuration with the piezoresistive counterparts, but 

measuring the acceleration from the electrical voltage induced by the mechanical displacement of the 

cantilever [57]. A notable difference is that piezoelectric accelerometers only respond to dynamic 

signals while the piezoresistive sensors can measure displacements under low and zero frequencies. 

3.1.3. Tunneling Accelerometers 

The tunnel effect describes the phenomenon that occurs when a conductive sharp tip and a counter 

electrode are positioned at a small gap distance on the order of 10 Å and set at a DC voltage bias, 

established an electric tunneling current between the tip and the electrode before the two parts contact 

each other [58]. The electric tunneling current changes exponentially with the gap distance. Such 

exponential relationship provides an ultrasensitive approach for displacement detection, and has been 

utilized for the implementation of a micromachined tunneling accelerometer with high resolution [59]. 

In a typical configuration, the proof mass is attached to the conductive tip and positioned at a small gap 

to the counter electrode. During the measurement, the tunneling voltage remains constant. The proof 

mass is brought close to or away from the counter electrode upon an external acceleration. The change 

of tunneling current reflects the displacement of the cantilever and is a measure of the external 

acceleration. It is reported that the tunneling current changes by a factor of two for each Å of 

displacement, providing an ultra high sensitivity. In addition, since the tunneling tip is only effective 

within the local area around the tip (1 m
2
), the device can be further miniaturized without affecting 

the electrical measurement. The tunneling tip is usually fabricated by KOH etching of (100) single 

crystal silicon followed by metal deposition. Anodic bonding is usually employed to assemble the tip 

and counter electrode [60]. 

3.2. Gyroscopes 

Gyroscopes refer to the sensors that measure the rotary rate of an object. A micromachined 

gyroscope utilizes the Coriolis effect to convert the rotary motion of the subject into a measurable 

linear motion. The rotary rate can therefore be determined using the above described sensing 

mechanisms of measuring linear accelerations. 

As known, Coriolis effect refers to the generation of an imaginary force (Coriolis force) 

perpendicular to the moving direction of the subject within a rotating coordinate system [61]. This is 

illustrated in Figure 6(a) and briefed described as below. Imagine that an observer sitting on the x-axis 

of a rotating coordinate system around z-axis observes a moving particle traveling at the velocity V in 

the space. Because of the rotating coordinate system, the particle has a trajectory toward the x-axis 

with an acceleration 2V ×  from the view of the observer. This apparent acceleration observed in a 

rotating coordinate system is called Coriolis acceleration, proportional to the rotation rate of the 

coordinate system () and the traveling velocity of the object (V). According to this phenomenon, a 

micromachined gyroscope without any rotary parts can be designed, which consists of two sets of 

mass-spring-damper systems positioned in the perpendicular directions [Figure 6(b)]. One set is in the 
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driving mode and the other is in the sensing mode. Each of the mass-spring-damper sets is basically a 

linear accelerometer. During the operation, the proof mass in the driving set is actuated at a certain 

frequency. Upon a rotary movement of the frame, the Coriolis acceleration generated in the orthogonal 

direction provides inputs to the sensing set, which is measured by the sensing mode accelerometer.  

Figure 6. Schematic of the vibratory gyroscope. (a) illustration of  Coriolis effect; and  

(b) the mass-spring-dasher system of a vibratory gyroscope. 

 

The governing equations of the system in Figure 6(b) can be described by two mass-spring-damper 

systems coupled in two orthogonal directions [61]: 

xmykycym

xkxcxm

zyyy

xxx









2


 (2) 

where x and y are the displacements of the proof mass in x and y directions respectively, cx and cy are 

the damping coefficients in the two directions, kx and ky are the spring constants in the two directions, 

τx and τy are the external force in the driving and sensing modes, and Ωz is the angular rate of the 

coordinate system to be determined. It should be pointed out that the above configuration only presents 

one typical form of linear vibratory micromachined gyroscope. Many other configurations, including 

but not limited to linear vibratory gyroscopes [62] and torsional gyroscopes [63], are also available. 

3.3. Packaging and Integration 

Packaging and integration are essential for solid-state micromachined inertial sensors. Packaging 

not only provides a mechanical housing to avoid the damping, manage the thermal transfer, isolate the 

mechanical shock and protect the sensors from a harsh chemical environment, but also electrically 

connects the sensor to the outside environment and isolates it from external electromagnetic 

interference. The packaging also reduces the variation of damping conditions among devices designed 

and fabricated through the same process [64]. The packaging techniques should be considered at the 

design phase since different packaging methods may require different fabrication processes and 

configurations. In practice, anodic bonding, eutectic bonding, thermal fusion bonding or glass frit 

bonding techniques are regularly used [46].  

x 

y 

z 

Traveling particle 

V 

aCOR=2V×Ω 

Ω 

Rotation rate 

Coriolis acceleration 

(a) (b) 

m 

ky Cy 

kx 

Cx 

Spring frame 

Proof mass 

x 

y 



Sensors 2011, 11                            

 

646 

The mechanical sensing components in solid-state inertial sensors need to be integrated with the 

controlling and measuring circuitry. Two types of integration methods, namely hybrid integration and 

monolithic integration, are usually used [55]. Hybrid integration employs wire bonding to electrically 

connect the sensing component with its controlling IC, where the electrical interconnects are exposed 

outside the packaging. Monolithic integration, on the other hand, fabricates the sensor and its controlling 

IC simultaneously within a single step. It thus minimizes the contact issues and parasitic effects, which is 

good for many CMOS-compatible fabrication processes [46]. Detailed discussion of packaging and 

integration is beyond the scope of this review, and can be found in literatures [46,51-55,64].  

4. Non Solid-State Motion Sensors 

From the above description of solid-state motion sensors, it is not difficult to figure out that motion 

detection using man-made solid-state sensors is somewhat different from that of natural motion 

sensing systems which relies on non solid-state materials. One notable difference is the range of 

measuring frequency. The resonance frequency of a miniaturized motion sensor using solid-state proof 

mass is often on the order of a few kHz or above [61], while the typical frequency of body motion is 

often below 10 Hz [3,6,7,10]. To reduce the resonance frequency, a slender cantilever (i.e., large 

length to width ratio) is often needed. This however increases fabrication and packaging complexity, 

and reduces the mechanical robustness of the sensors. Inspired by natural motion sensors, non  

solid-state motion sensors have been recently proposed as another man-made motion sensing 

mechanism, which utilize various different sensing principles for body motion detection. Specifically, 

sensors using fluidic or gaseous materials as the proof mass are depicted. Their distinct characteristics 

are compared with solid-state sensors in terms of frequency response, fabrication, packaging and 

integration methods. Since most of these non solid-state motion sensors are emerging during the past 

two years, there have not been extensive reports that apply these sensors for body motion measurement. 

This section therefore focuses mainly on the working principles and sensor developments. 

4.1. Hair Cell Based Motion Sensor 

As above mentioned, the human vestibular system measures body motion based on the bending of 

hair cell bundles. Inspired by this, an artificial hair cell sensor using polymeric and metallic materials 

was developed [65]. The utility of such a sensor in motion measurement is also demonstrated [66].  

Figure 7(a) shows the schematic of the artificial hair cell, where a cantilever with a piezoresistive 

strain-gauge is suspended in the atmosphere and an SU-8 pillar is attached on the distal end of the 

cantilever. An on-axis force towards the SU-8 pillar induces a mechanical strain at the cantilever base 

and is measured by a piezoresistor. The artificial hair cell sensor is integrated within a fluidic system to 

mimic the natural vestibular system [Figure 7(b)]. By placing the artificial hair cell sensor inside a 

channel filled with water, the device possesses the geometry similar to that of a semicircular canal in 

the vestibular system. When an external acceleration is applied, the fluid inside the channel has a 

relative movement with the sensor and bends the hair cell to a certain extent corresponding to the 

acceleration magnitude. Different from a cantilever based accelerometer, the system uses the liquid 

fluid as the proof mass, while the cantilever sensor is a measuring apparatus rather than a sensing 



Sensors 2011, 11                            

 

647 

component. The sensor shows a good linearity and a sensitivity of 16.9 mV/g with a water-filled 

channel system under accelerations at 225 Hz. 

Figure 7. Artificial hair cell sensor. (a) the schematic view; and (b) the cross sectional 

schematic of a prototype. 

 

4.2. Liquid Droplet Based Accelerometer 

Another instance of motion sensor utilizing the liquid as the proof mass is the liquid droplet based 

motion sensor, which uses a liquid droplet as the proof mass. The basic structure and configuration of 

such a sensor can be found in [67] and is seen in Figure 8.  

 

Figure 8. Liquid droplet based accelerometer. (a) the schematic view; and (b) a prototype 

without the PDMS cover. 

 

 

It consists of a hydrophobic substrate patterned with an array of microelectrodes and a 20 L saline 

droplet resides on top of the substrate. When an external acceleration is applied, the ionic droplet 

moves relatively with the substrate surface due to the inertial effect. This relative motion is captured by 

the electrode array as the conductive ionic droplet changes the electrical impedance between every two 

adjacent microelectrodes. In the droplet based motion sensor, the wettability of the substrate surface 

determines the dynamic contact angle hysteresis and surface friction of the droplet movement. A 

superhydrophobic surface is desired to obtain a sensor with low measuring threshold, high sensitivity 

and good linearity. The governing equation of a liquid droplet based sensor can be expressed as [67]: 
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where m is droplet mass, x is the relative displacement, t is the time variable, b is the damping 

coefficient, a is the magnitude of the external acceleration, and Fthreshold denotes the capillary force due 

to the dynamic contact angle hysteresis. 

It is noted that comparing to the governing equation of a solid-state accelerometer, Equation (3) 

lacks a term representing the spring. As the result, the liquid droplet does not return to the original 

point, which makes it incapable of continuous measurement. An improved design is presented by 

utilizing a curved channel instead of a planar substrate to hold the liquid droplet [68], shown in  

Figure 9. As the liquid droplet displaces, the tangential component of the gravity along the channel 

surface provides the restoring force and moves the droplet back to the origin. The governing equation 

in this situation can be expressed as [68]: 

 )cos()2sin()sin( 0

2  tfagRR    (4) 

where: R is the radius of the circular channel,   

m

b
  is the dimensionless damping coefficient and  

R

x
  is the angular displacement of the droplet,  

g is gravity,  

a0 is the magnitude of the external acceleration and  

f is the frequency of the external acceleration.  

Figure 9. The improved design of liquid-state motion sensor with a curved channel. (a) the 

schematic and (b) the prototype. 

 

 

A non-linear spring is involved that allows continuous measurement. The relationship between the 

droplet displacement and the frequency and magnitude of external acceleration shows the sensor has 

the greatest response around 8.7 Hz (Figure 10), which is within the frequency range of human body 

motion (<10 Hz). It is therefore feasible to apply liquid droplet based motion sensor for low frequency 

body motion sensing. 
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Figure 10. The frequency response of a liquid droplet based motion sensor, where the 

resonance frequency is around 8.7 Hz.  

 

4.3. Liquid-Metal Based Accelerometer 

A similar approach is to measure the external acceleration based on the motion of a microscale 

liquid-metal (LM) droplet [69]. The concept is shown in Figure 11(a). The LM droplet initially stays in 

the center of the glass channel, connecting the electrodes across the middle of the channel. When an 

external acceleration is applied, the droplet will move towards one end of the channel and be deformed 

by the channel. As the droplet moves, it covers the corresponding electrodes. The position of the LM 

droplet, and hereby the external acceleration, can thus be indicated by the light-emitting diodes (LED) 

connected to the electrodes [Figure 11(b)]. Linear accelerations as large as 40 g can be measured. 

Figure 11. Liquid-metal droplet based accelerometer. (a) the schematic view; and (b) a 

prototype tilted at 45°. 

 

4.4. Thermal Convection Based Accelerometer 

Thermal convection based accelerometer uses air as the inertial component [70]. A suspending 

electrical microheater is used to heat the surrounding air [Figure 12(a)]. Once a thermal equilibrium is 

developed, the temperature field has a radial pattern where the air close to the heater is at a higher 

temperature, and the air at a distance is at a lower temperature. At a steady state, the temperature 

distribution is symmetric. When an external acceleration is applied, the temperature field around the 

heater changes due to the inertial effect of the air, resulting in an asymmetric temperature field, which 

can be predicted using finite element analysis [Figure 12(b)] [71]. Such an asymmetric temperature 

(a) (b) 
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field around the heater is measured by the temperature transducers patterned around the heaters, which 

can be either thermocouples or thermistors. 

Figure 12. Thermal convection based accelerometer. (a) the typical configuration; and  

(b) an external acceleration induces temperature field asymmetry around the microheater. 

 

Since the suspending heating element increases the fabrication complexity and is less robust to 

vibration shocks, an improved design is to pattern the heaters on a surface with low thermal 

conductivity. For example, porous silicon has been used as the thermal isolation material between the 

microheater and the substrate [71]. 

Like sensors using liquid materials as the proof mass, thermal convection-based accelerometers also 

have good sensing performance within the frequency range below 100 Hz, which covers the frequency 

range of body motion. Representative characteristics of solid-state accelerometers and non solid-state 

motion sensors are compared in Table 1.  

Table 1. Comparison of typical man-made inertial sensing systems. 

 Solid-state accelerometers 

[41,42,61] 

Artificial hair-cell  

accelerometer [66] 

Droplet-based sensors  

[67-69] 

Proof mass material 
Solid state materials 

(e.g., polycrystalline silicon) 
Water 

Physiological 

saline Mercury 

Measurement range 

50 g (airbag) 

2 g (Vehicle stability system) 

1 g (Navigation) 

Not available 40 g [69] 

Sensitivity 
1–2 mV/g(Piezoresistive) 

20 fF/g 
16.9 mV/g at 225 Hz 114.35 °/g at 10 Hz 

Resonant frequency 1 k–100 kHz 225 Hz 2–10 Hz 

Packaging and Integration Vacuum Package No vacuum package required No vacuum package required 

Power consumption 0.4 mW Not available 90 W 

 

It is seen that although all the systems are based on inertial effects, they possess vastly different 

characteristics. The unique characteristic of each sensing type renders it more suitable for some 

applications over others. For biomedical applications, sensors with biocompatible materials, suitable 

measurement ranges and relatively low resonant frequencies are particularly desirable. 
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5. Applications of Motion Detection 

Current motion detection and measurement technologies include the use of camera recording 

systems and solid-state motion sensors. In particular, camera based recording systems based on 

tracking of multiple feature points of the subject are widely used in biomedical, military, 

entertainment, sports and robotics applications. Since such imaging based motion tracking is not the 

focus of this review, interested readers can refer to the literature [72,73] for more details. Here, we 

confine our discussion within the use of solid-state portable microsensors, which has long existence 

and mature fabrication, packaging and integration technologies. We hope the discussion of engrafting 

solid-state sensors into biological researches and clinical practices could shed light on the use of non 

solid-state motion sensors in the future. 

5.1. Fall Evaluation 

As mentioned at the beginning of this review, one of the most straightforward applications of 

motion sensors is to evaluate balance disorders. A common occurrence in the aging population is 

unexpected falls. Based on the clinical survey, one out of every three 65-year and elder falls each year. 

This often causes severe problems such as hip fractures and even deaths. In the clinical practice, Berg 

Balance Scale (BBS) and the Timed Up and Go test (TUG) are the standard methods for evaluation of 

balance capacity. In these behavioral tests, the patient is asked to perform a series of motion tasks, e.g., 

sitting unsupported, reaching forwards while standing, and turning around while carrying a full cup of 

water. The time used for accomplishing such tasks is the measure of the patient’s balance  

capability [74,75]. These methods require a doctor’s input and tend to be subjective. A quantitative 

alternative solution of balance assessment is proposed using a commercial tri-axial accelerometer 

(ActivPal
TM

 Trio) [76], where the torso acceleration of both healthy and balance disordered patients 

under different clinical conditions are measured. The comparison with BBS and TUG testings shows 

that the accelerometry data inversely correlates with BBS scores and positively correlates with TUG 

values with statistical significance. The difference of the accelerometry data between the fallers and 

the non-fallers can clearly sort different balance conditions, which shows the feasibility of using solid-

state accelerometers for quantitative balance evaluation. Many research groups and industrial partners 

are developing algorithms that judge the existence of an emergency fall [77,78], where the 

characteristics of the acceleration change during the fall are investigated to give an early warning to 

the subject for gestural adjustment. The development of the algorithms and the design of the sensor 

network are beyond the scope of this review, and can be found in the literature [79-81]. 

 

5.2. Balance Prosthesis 

The balance prosthesis system usually involves a vibrotactile feedback system that contains a 

motion sensing system and a tactor actuation system. The sensing system uses solid-state 

accelerometers and gyroscopes to detect the body orientation and provides this information to the 

patient through the mechanical actuators. As a result, the patient can adjust his motor system for 

controlling body posture. A representative vibrotactile feedback system with three capacitive 

accelerometers can be found in [82], which effectively reduces the sway in patients with bilateral 
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vestibular loss. A motion sensor with six DOFs sensing capacity applied in a vibrotactile system can 

lead to the improvement of dynamic gait index (DGI, a fall risk factor) in community older adults by 

observing significant improvement of mediolateral sway control in the subjects [83]. With the current 

development of solid-state motion sensors, a sensor with six DOFs sensing capacity can be 

implemented within a chip whose planar area is as small as 5 mm × 5 mm, similar to that of human 

vestibular organ, which make the implantable balance prosthesis possible. However, despite of the 

extensive studies about implantable artificial vestibular system [84,85], clinical demonstration of 

vestibular prosthesis has not been available. This is largely due to the lack of understanding of the 

interface between the vestibular system and the neural system. In addition, the biocompatibility and 

long-term reliability of the solid-state sensors, and the signal processing for appropriate data 

interpretation still need investigation. 

5.3. Sport Medicine 

In sports medicine, motion sensors can be used to measure the intensity of the physical activities, 

and hereby the energy expenditure during the exercise. For example, the acceleration and the oxygen 

consumption during treadmill walking and stair walking are successfully correlated in a recent  

study [86]. The exercise activities of patients with chronic heart failure are monitored using 

pedometers, a conventional scale inertial sensor with the similar working principle as the solid-state 

accelerometer but only counts the steps that a subject has walked [87]. Moreover, utilizing a network 

of solid-state sensors, different activity types, posture and gaits can be recognized, which could 

provide a comprehensive measure of energy expenditure [88]. When combined with other types of 

sensors, e.g., thermal sensors for body temperature monitoring and pressure sensor for blood pressure 

monitoring, these sensors are expected to provide a better estimate of energy expenditure and 

metabolic work, which contribute greatly to rehabilitation. 

5.4. Remote Patient Surveillance 

Personalized healthcare service, especially monitoring of daily activities is passionately advocated 

by U.S. healthcare practitioners. Giant healthcare and electronic companies including Intel, 

Qualcomm, Philips, General Electric, etc. are working aggressively in this emerging area [89]. People 

with suddenly reduced physical activities need special and/or immediate attention, even if the 

reduction is not recognized by the subjects themselves. For example, deterioration of chronic diseases 

such as chronic heart failure, diabetes, and Alzheimer’s disease usually correlates with decreased 

activities [90]. Wearable motion sensors carried by the patient can transfer information about the 

reduced physical activities in a timely fashion through a wireless sensor network to help the clinician 

in charge reach a treatment decision. Remote patient surveillance is also critical for the hospitals, 

where miniaturized motion sensors can be integrated on the hospital beds as well as on the patient 

body. Combining the measurement obtained from other types of sensors (e.g., pressure sensors), these 

motion sensors give the physical activities of the patient to decide whether he needs critical and 

emergent care [e.g., the patients in Intensive Care Unit (ICU)]. This practice is expected to reduce 

considerably the cost of critical care. 
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5.5. Improving Radiation Oncology 

Position monitoring of tumors during radiation therapy is particularly essential for an effective 

cancer treatment. Even a nearly imperceptible movement may have a substantial negative impact on a 

patient’s outcome [91]. The position change of a solid tumor can be caused by two events, the mobility 

of the tumor organ itself and the movement of the patient’s body, e.g., breathing. In order to properly 

deliver the radiation dose to a defined region, vigilant and active monitoring of the tumor position is 

required. Solid-state accelerometers are extensively used for this purpose. Depending on the two 

sources of movement, both tumor position monitoring (organ-level) and body motion monitoring 

(body-level) can be implemented. Bandala reported a tumor motion tracking method using wireless 

inertial sensors [25], which contains a three-axis accelerometer, a single-axis gyroscope, a dual-axis 

gyroscope, a Bluetooth module for wireless data transmission and a microcontroller equipped with the 

tracking algorithm. The miniaturized navigation system tracks the tumor motion comprehensively with 

six DOFs. The system has shown satisfactory functionality when tested ex vivo. Researchers also 

monitored body motion to indirectly measure the tumor position, which does not require implanting 

the sensor into the tumor organ and simplifies the medical implementation. For example, a low-cost 

wireless accelerometer is placed on patient’s skin to detect the head motion, which predicts the brain 

tumor position during the radiation. These studies demonstrate the feasibility of improving radiation 

oncology efficacy using miniaturized motion sensors [92]. 

6. Outlooks and Concluding Remarks 

As aforementioned, in contrast to the solid-state sensors that have been widely used for body 

motion measurement, the applications of non solid-state motion sensors are still in the initial stage. The 

implementation of body motion sensing using liquid-state sensors or air based sensors is yet to come. 

Nonetheless, sensors using non solid-state proof masses possess unique characteristics as outlined 

below, which may make themselves the next paradigms of motion sensors for biomedical applications. 

Different from solid-state sensors whose resonance frequency is often on the order of kHz or higher, 

non solid-state sensors have a much lower resonance frequency, which are often on the order or lower 

than a couple of hundred Hz. For example, the primary resonance of a hair cell sensor is at 225 Hz and 

the secondary resonance at 115 Hz. The liquid droplet sensor can have a resonance frequency  

below 10 Hz. The thermal convectional sensor works best under 100 Hz. Given that the frequency of 

body motion is usually within the low frequency domain on the order of a few Hz or below, these non 

solid-state sensors have large response and are adequate for body motion detection. In addition, non 

solid-state sensors often have simple configurations and are less vulnerable to mechanical shocks. By 

eliminating the suspending cantilever structures, the mechanical robustness of these sensors can also 

be improved. Although it is too early to envision a clear market potential for non solid-state motion 

sensors, the intelligence of these sensors adds new insights to the knowledge base. They are expected 

to play an increasingly important role in body motion sensing in the future. 

The continuous market growth of body motion sensors is governed by both cost and intelligence. 

Packaging and integration of solid-state sensors, which account for a large fraction of the sensor cost, 

will remain as a critical cost determinant in the future. Instead of using a single sensor, the use of 
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sensor networks for comprehensive body motion detection has gained and will continue to gain 

extraordinary attention. The integration and coordination of multiple sensors for appropriate 

interpretation of specific body activities are essential for the success of intelligent sensors. In addition, 

the human-sensor interface will be increasingly important, especially for the implantable sensors. With 

the rapid development of personalized patient care and the technological advances of portable motion 

sensors that are integrated within the consuming electronic products, e.g., iPhone
TM

, the emerging field 

of portable personalized medical care products, which are supported by open source intelligence 

worldwide, are expected to grow. This is not only essential for the solid-state motion sensors, but also 

applicable for non solid-state sensors if they could be engrafted on such products. 

In summary, a comprehensive review of state-of-the-art technologies of motion sensors for body 

motion detection is presented. The anatomy and physiological function of the natural human motion 

sensor system are introduced, followed by the elaboration of typical configurations, and sensing 

principles and key fabrication approaches of conventional solid-state motion sensors and the emerging 

non solid-state motion sensors. The applications of these sensors for body motion measurement are 

introduced, and the future development of the field is commented. Although not all-inclusive, this 

review aims to cover the critical conventional sensing modalities as well as typical emerging 

technologies which may play a leading role in the market of body motion sensing in the near future. 
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