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Abstract: On-demand information retrieval enables users to query and collect up-to-date 
sensing information from sensor nodes. Since high energy efficiency is required in a sensor 
network, it is desirable to disseminate query messages with small traffic overhead and to 
collect sensing data with low energy consumption. However, on-demand query messages 
are generally forwarded to sensor nodes in network-wide broadcasts, which create large 
traffic overhead. In addition, since on-demand information retrieval may introduce 
intermittent and spatial data collections, the construction and maintenance of conventional 
aggregation structures such as clusters and chains will be at high cost. In this paper, we 
propose an on-demand information retrieval approach that exploits the name resolution of 
data queries according to the attribute and location of each sensor node. The proposed 
approach localises each query dissemination and enable localised data collection with 
maximised aggregation. To illustrate the effectiveness of the proposed approach, an 
analytical model that describes the criteria of sink proxy selection is provided. The 
evaluation results reveal that the proposed scheme significantly reduces energy 
consumption and improves the balance of energy consumption among sensor nodes by 
alleviating heavy traffic near the sink. 

Keywords: on-demand information retrievals; localised data query; data collection; 
attribute-object name; sink proxy; balancing of energy consumption 
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1. Introduction 

Recent progress in wireless sensor networks has revealed that multifarious sensors can be used to 
monitor various environment objects, such as plants, farm soil, factory instruments, and bird nests. To 
support ubiquitous computing, sensor networks should be integrated with the Internet, enabling people 
around the world to ubiquitously access information about the physical world [1]. In wireless sensor 
networks, sensor nodes can either periodically report sensing data to a server in a proactive manner, or 
deliver sensing data on-demand, namely when a user queries the sensor nodes only. On-demand 
information retrieval enables interaction between Internet users and sensor nodes, and lets a user 
retrieve up-to-date sensing information (such as the up-to-date landscape of a region) [1-4]. 

On-demand information retrieval consists of a data query phase and a data collection phase. A user 
initiates the process by sending a query message to a sensor network through the sink node, which 
broadcasts the query message to nodes in the network. The destination of a user’s query is not 
described by the sensors’ identifiers (IDs) but by the users’ interest, as represented by the name of data 
attributes [2]. For instance, a typical query would not be destined to a certain sensor node for its 
temperature data, but rather to the corresponding sensor nodes for ‘the temperature in the north-west 
quadrant’. Upon receiving the query message, the sensor nodes that match the query deliver sensing 
data to the sink node. The sink node then sends to the user the collected sensing data via the Internet. 

Because of the power constraints of battery-powered sensor nodes, energy efficiency is a substantial 
requirement of information retrieval in sensor networks. For this reason, each query message should be 
sent to sensor nodes with small traffic overhead and sensing data should be collected with low and 
balanced energy consumption. However, on-demand query messages are generally forwarded to sensor 
nodes in network-wide broadcasts, which create a large traffic overhead. Although geocasting can be 
used to localise a query dissemination area, the success of conventional query geocasting relies on two 
assumptions: the user specifies a region as the query’s designated area and the specified query region 
includes all sensors that are corresponding to the query [5,6]. In fact, a user who issues a query to 
sensor networks often knows only the attributes of his/her interests, such as temperature information, 
and the name or location of relevant query objects such as a room. The location of a query object that 
the user knows may also be different from the location where the relevant sensors are deployed. 

Sensing data collection has meanwhile been the subject of extensive research. Data aggregation is a 
key solution to achieve energy efficiency. To aggregate sensing data in the sensor network, various 
network structures such as clusters and chains are utilised. Most of these data collection structures are 
applied to the proactive data collection, in which sensors periodically report data to a data server [7-11]. 
Note that on-demand information retrieval initiates query and data collection at arbitrary times from 
users with diverse interests. This makes it difficult to utilise data aggregation structures of clusters or 
chains, because of the complexity of setup and maintenance of the network structures of data aggregation. 

Many conventional on-demand data collection approaches adopt reverse trees, which are built based 
on the query dissemination. Sensing data are delivered in the tree towards the sink node, which is the 
root of the tree. However, this on-demand data collection is inefficient because of the large and 
unbalanced energy consumption in the network. Because most data are accumulated at a sink node 
with multihop relays, nodes near the sink node are likely to consume more energy than nodes remote 
to the sink node. 
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This paper addresses the problem of how to localise query dissemination and maximise data 
aggregation in an on-demand manner. The goal of the proposed approach is not only to reduce total 
energy consumption of information retrieval in sensor networks, but also to balance energy 
consumption among individual sensor nodes. We propose an approach of localised on-demand 
information retrieval that explores the name resolution for each query before the query message is 
forwarded to sensor nodes. The name resolution resolves a query name to the addresses of sensors that 
are corresponding to the query, leading to node-wise information retrieval in sensor networks. 
According to the location of each sensor that corresponds to the query, the area where the resolved 
sensors reside can be specified. To localise query dissemination and maximise in-network data 
aggregation, we propose the use of sink proxies as local query broadcasters and local data collectors. 
Each sink proxy is selected among sensor nodes according to the name resolution result. 

The specific features of this paper are as follows: first, an attribute-object naming system and query 
resolution operation are adopted in the on-demand information retrieval. The query resolution, which 
could be considered analogous to the function of the Domain Name System (DNS) in the Internet, 
resolves a query’s name to local node IDs, the locations of a collective of corresponding sensors, and 
sink proxies, before the query message is disseminated to the sensor network. Second, we adopt a 
localised on-demand information routing scheme that consists of two parts: Localised Data Query 
Distribution (LDQD) and Localised Sensing Data Collection (LSDC). LDQD and LSDC significantly 
reduce the energy consumption of information retrieval. Given consideration of the temporal-spatial 
nature of user queries, LDQD and LSDC adopt dynamic sink proxies based on query content to 
improve the balance of energy consumption among sensor nodes. Third, to effectively select a sink 
proxy for each query, an analytical model is provided to describe the criteria of sink proxy selection. 
Both energy efficiency and energy balance are considered to effectively choose and utilise sink proxies. 
Fourth, this paper extensively studies the performance of the proposed approach for localised data 
query and collection through simulation evaluations of the NS-2 simulator integrated with the IEEE 
802.15.4 module [12,13]. In the simulation, we investigate protocol performance in terms of both total 
energy consumption and the distribution of energy consumption among individual sensor nodes. 

The remainder of this paper is organised as follows. Section 2 introduces the related work. Section 
3 introduces the procedures for a proposed approach to localised information retrieval. Section 4 
describes the system analysis of the proposed approach. Section 5 describes the evaluation and 
numerical results of the proposed approach and Section 6 concludes. 

2. Related Works 

Information retrieval in sensor networks can be broadly categorised into two types: proactive and 
on-demand. In proactive information retrieval, sensor nodes periodically report data with a predefined 
data rate and data delivery infrastructures. Meanwhile, in on-demand information retrieval, a query is 
delivered to the sensor network and data are collected according to the query’s requirements. 

Existing approaches for proactive information retrieval mainly focus on the energy-efficient 
collection of sensor data [7-11,14,15]. To aggregate sensing data, sensor nodes are organised into 
infrastructures, such as clusters, chains or optimised trees. For example, LEACH (Low-Energy 
Adaptive Clustering Hierarchy) is a prevailing scheme of proactive data collection based on a dynamic 
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clustering approach [7]. In LEACH, data can be efficiently collected and aggregated in a hierarchical 
way. EEDC (Energy Efficient Data Collection) is another proactive data collection approach based on 
a cluster infrastructure [9]. It introduces an energy-efficient data collection approach by exploiting 
spatiotemporal correlation of sensing data. Energy efficiency is achieved by reducing the spatial 
sampling rate of sensor nodes. PEGASIS (Power-Efficient Gathering in Sensor Information Systems) 
organises sensor nodes into a chain structure rather than clusters [15]. The network structures of data 
aggregation, such as clusters and chains, significantly improve the energy efficiency of data collection. 
However, generating and maintaining a network structure entail much additional cost. In addition, a 
fixed network structure for data collection creates an energy imbalance. That is, the nodes near the sink 
node or cluster head generally consume much more energy than other nodes do. 

Unlike proactive data collection, query-based on-demand information retrieval generally has a 
temporary organization of sensor nodes to collect data. A straightforward approach for on-demand 
information retrieval generally utilises a broadcast-reverse tree based model. A query is broadcast from 
the sink to the network and then a tree structure is constructed together with the task allocation of 
query. Sensors report their data back to the sink using the tree structure. Collected data can be 
aggregated on the tree. Most on-demand information retrieval approaches follow this model, but they 
differ in the mechanisms they use for query propagation and route selection for data collection [16-19]. 

Efficient query propagation is considered in [16]. The target is to propagate query message to a 
limited number of nodes so as to save energy. The ideal case is the minimized tree that includes no 
redundant broadcast of query message. However, this tree-based query requires repetition of sink 
queries and is not suitable to the arbitrary queries from users. 

If a query specifies a query area, a spatial query broadcast can be archived based on geocasting or 
multicasting, which reduce redundant traffic overhead and achieve energy efficiency [5,20]. A typical 
approach Location based multicast (LBM) can be used to efficiently broadcast query messages in 
on-demand information retrieval in the case that there is a predefined region as the query destination [20]. 
LBM uses a multicast zone that is rectangular in shape and contains both the sender and all destination 
nodes. LBM assumes a roughly predefined region in which destination nodes reside. But the 
predefined region of destined sensor nodes might be either large or not available to a user who initiates 
on-demand information retrieval. 

Although geocasting can be used to localise a query dissemination area, these operations rely on the 
assumptions that the user specifies a region as a query designated area. In fact, a user-defined region of 
destined sensor nodes may not always be available to a user who initiates on-demand information 
retrieval, or it may differ from the area that contains the sensor nodes corresponding to the query. 
There are other location based approaches that attempt to achieve localised routing operations in 
ad-hoc networks, however, most of these approaches focus either on end-to-end routing issues or only 
on the dissemination of a message to a predetermined area [5]. 

The route(s) for a sensor node to reply with data can be selected based on various criteria, for 
example, using a small hopcount in [21-23], minimum energy cost of data delivery in [17], adopting 
reliable routes from multiple candidates to avoid route failure in [3], or using an alternative path 
obtained from neighbouring nodes to improve security [24]. The reverse-tree-based data collection is 
simple to construct and imposes little additional overhead, as it is built on the basis of query 
dissemination. In contrast, a data collection tree with a root at the sink causes most of the collected 
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data to be aggregated at the sink, and nodes near the sink experience heavier traffic than nodes remote 
from the sink, draining their energy faster and leading to network faults even though there are many 
nodes with substantial residual energy. 

A tour based data collection approaches is proposed in [25]. The aim of this approach is to save 
energy consumption in data collection and query propagation. The sink builds a source route as a tour 
for data collection, and the source route tour guides the delivery of query together with data collection 
from sensors. In the data collection from small sensors, this approach is good to reduce energy. 
However, in case of data collection from a large number of nodes, the source route is a high cost of 
overhead for each sensor to handle. Further, the efficiency of source route is low and complex [26]. 

Mobile sink based data collection has been studied in recent years. The support of mobile sinks in 
sensor networks increases the flexibility of user interaction with sensor networks. The mobile sink can 
be a user’s mobile phone. It can be applied in case a user is in the sensor networks. The mobile sink 
alleviates the energy overuse at a certain place as that in the sensor networks with static sink [27,28]. 
On the other hand, the mobility of mobile sink introduces the routing complexity. Using mobile sink to 
fetch sensing data was considered in [29]. When sensing data is required, the mobile sink will go to the 
place near the sensor node, and direct collect sensing data by one-hop communication. This requires 
the high intelligent sink which can move automatically. This approach might be applied to the 
intelligent robot network. 

Recent researches have tried to analyze the phenomenon of uneven energy consumption in sensor 
network [30-32]. One attempt to alleviate the problem of energy uneven consumption by using 
specialized node deployment is proposed in [30]. More nodes are deployed near the sink node to share 
the energy consumption. The demerit of this approach is that the specialized deployment also causes 
deployment redundancy. 

This paper discusses the problems in on-demand information retrieval. The disadvantages of 
conventional on-demand information retrieval are summarized as follows: first, query messages are 
often broadcast throughout the network in a data-centric manner, without distinguishing the 
corresponding individual sensor node ID. These on-demand data queries generate an excessive amount 
of redundant network traffic and energy consumption in large sensor networks. Second, sensor nodes 
reply to queries by sending data back towards the sink node via various paths (such as the reversed 
paths obtained from query broadcasting), and most of the data are accumulated at a sink node. This 
causes high and unbalanced energy consumption, since nodes near the sink node are likely to consume 
more energy than nodes remote from the sink node. 

3. Localised Information Retrieval with Query Resolution 

3.1. Query Resolution Mechanism 

A query resolution resolves the name of a query to the corresponding sensor nodes before the query 
message is forwarded to sensor nodes. A query resolution is somewhat analogous to the name 
resolution at the Domain Name System (DNS) widely used on the Internet. Domain name resolution is 
a process of resolving a host name to an IP address before a user sends the initial IP packet. A main 
function of domain name resolution is to facilitate the IP routing from the source node to the 
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destination. Similarly, the query resolution mechanism in our scheme attempts to resolve each query’s 
name to facilitate efficient query dissemination and data aggregation in sensor networks. 

Figure 1 illustrates an example of a query resolution process. We use an Attribute-Objects name 
(AO name) based on low-level naming, that describes the query’s name as well as the properties of 
sensor nodes. A user’s query can be specified by the interested objects and attributes of sensor data. 
For instance, in a building automation application, a query might be what temperature (attribute) status 
is in the storage room (object). In a factory application, a query could concern the vibration (attribute) 
status around the robot in a manufacturing line (object). In the same way, a sensor node can be 
described by the object that it is monitoring, and the physical attribute such as temperature or humidity 
that describes a sensor’s type. 

Figure 1. Query to IDs resolution. 
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A resolution table is adopted in the query resolution mechanism to discover the locality of sensor 
nodes corresponding to a query. The resolution table maps the attribute name of each query and 
sensing IDs. The query resolution table is implemented at the sink node of a sensor network. This is 
because the sink node generally has greater power and memory capacity than sensor nodes have. The 
query resolution table is initially achieved by the following two operations: 

(a) Each sensor node registers its ID, location, sensing attributes and monitoring object (if the 
sensor knows it) with the sink node. 

(b) A sink node constructs a table that maps sensing attributes and monitoring objects to sensor IDs. 

The registration can operate in conjunction with the network configuration in the phase of network 
formation, minimising additional overhead. Because the sink node is generally a powerful node, it can 
maintain a large resolution table. Although the use of location information may increase the 
complexity of the system, the development of localization sin sensor networks in the past decades has 
provided more and more low cost, easily-maintained locating system [19,33,34]. Many applications of 
sensor networks use location of sensors to know the network deployment, obtain sensing context, 
analyze sensing data, and to perform network maintenance, recovery, and task management, etc. 
Because a general static sensor node is used in a sensor network, the requirements for updating the 
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location of sensor node are minimal. The object that a sensor is monitoring refers to static objects that 
the sensors are monitoring over the long term, instead of the dynamic results that a sensor detected. 

The sink node processes each query before it is disseminated to sensor nodes. As shown in Figure 1, 
when the sink node receives a query message, it resolves the name of the query (i.e., AT1, MO1 in the 
example of Figure 1) to the corresponding sensor IDs (i.e., node 1, 3, 9, 16, 27), according to the 
resolution table. After a query’s name is translated into an ID group corresponding to sensor nodes, the 
sink node calculates the query area by deriving a rectangle in which all corresponding sensor nodes 
reside. A rectangle area is calculated as follows, based on the locations (xi,yi) of each sensor node i 
that is in the ID list obtained from the query resolution: 

Rect = [min(x1,x2,…xn), min(y1,y2,…yn), max(x1,x2,…xn), max(y1,y2,…yn)] (1)

where n is the number of corresponding sensor nodes. 
A sink proxy that will be used for localised query broadcasts of queries and local data collections is 

then selected according to the query resolution result. As show in Figure 2, there are two types of sink 
proxy selection schemes. One is fixed selection scheme, in which an identical sink proxy (such as node 9 
in the Figure 2 A) will be selected at different times for the queries (such as Q1, Q2, Q3 in Figure 2 A) 
that have the same query resolution result; the other is dynamic selection scheme, in which various 
sink proxies will be selected at different times for the queries that have the same query resolution result, 
as shown in Figure 2 (B). 

Figure 2. Two Types of Sink Proxy Selections. 
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Consequently, the sink proxy provides the node information at which the query message starts to be 
broadcasted and the query area gives a region in which a query message can be disseminated. 
According to the calculated query area and sink proxy, the distribution of a query message is 
performed by two steps: unicast distribution and geocast distribution. These are introduced in the 
following subsection. 

3.2. Localised Data Query Distribution with the Sink Proxy 

Localised Data Query Distribution (LDQD) consists of two steps: Query unicast, and Query geocast. 
The unicast distribution is used to deliver query messages from a sink node to the sink proxy. The sink 
node calculates a source route to a sink proxy based on the nodes’ location. There are a number of 
potential approaches to building a source route. For example, the sink node first selects the node that is 
nearest the sink proxy among one-hop neighbours of the sink node. The selected node is included in 
the source route. In the same way, the sink node continues to calculate the next node in the source 
route, by selecting the node nearest to the sink proxy among the neighbours of the previous selected 
node in the source route. This process continues until a source route is found to the sink proxy. Similar 
approaches were elaborated in [35]. 

After the query message is delivered to the sink proxy in the query area, it is geographically 
broadcast to all sensor nodes inside the query area. The sink proxy forwards the query message to its 
one-hop neighbours. As illustrated in algorithm1, upon receiving the query message, each sensor node 
checks whether it should relay the packet to its neighbours by the following rules: a) Has not received 
this packet before; b) In the query area. If both a) and b) are satisfied, a sensor node will relay the 
packet to its neighbouring nodes. Otherwise, the sensor node just discards the packet. 

3.3. Localised Sensing Data Collection with the Sink Proxy 

Localised Sensing Data Collection (LSDC) consists of three steps: local data delivery, data 
aggregation, and aggregated data delivery to the sink node. An example of the LSDC scheme is 
illustrated in Figure 3. On receiving a query message, the corresponding sensor nodes send the sensing 
data back to the sink proxy in a local region. This is achieved using the reverse path obtained from the 
query geocast initiated by the sink proxy. The sink proxy, such as node 9 shown in Figure 3, collects 
the sensing data locally before forwarding it to the sink node. The sink proxy aggregates the sensing 
data by placing multiple sensing data into one packet. To efficiently aggregate sensing data and deliver 
the aggregated data to the sink node, the sink proxy sends the aggregated data according to the 
following two conditions: (a) The number of aggregated sensing data equals the largest number that 
the packet can contain; (b) The number of aggregated sensing data equals the number of the total 
corresponding nodes, which is calculated from the sink node. If either of these two conditions is 
satisfied, the sink proxy delivers the aggregated packet to the sink node. The sink proxy sends 
aggregated data to the sink node by unicasting, which can be obtained from the query dissemination. 
Finally, the sink node collects all data that correspond to the query. The collected data are then 
delivered to the user who initiated the query. 
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Figure 3. LSDC data collection. 
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4.1. Selection of Effective Sink Proxies 

The effective selection of sink proxies is expected to result in both balanced and decreased energy 
consumption of compared with the conventional S2 retrieval model. Because the use of sink proxies 
enables maximum data aggregation among various sensor nodes, it alleviates the heavy energy 
consumption near the sink. Hence, if the use of each selected sink proxy also causes a lower energy 
cost compared with the conventional S2 information retrieval approach, the proposed approach then 
achieves both balanced and decreased energy consumption. Therefore, the basic criterion for the 
selection of a successful sink proxy is that both the following two conditions are satisfied: (a) The 
energy cost of the S3 query is no larger than that of conventional S2 query; (b) The energy cost of the 
S3 data collection is not larger than that of the conventional S2 data collection. 

A. Data query cost and effective sink-proxies for the data query. 

For analytic tractability, we analyze S2 and S3 schemes in a simple setting. We assume the query 
area is a square consisting of N nodes. The average energy consumption of a one-hop transmission of a 
packet is assumed to be 0E . 

In the one-to-many model of an S2 query, flooding is typically adopted for disseminating a query to 
nodes in the network. The energy cost EQ2 of a data query is given by: 

02 ENEQ ∗=  (2)

In S3 information retrieval, in contrast, the operation consists of unicasting from sink to sink_proxy, 
and geocasting from sink_proxy to sensors in the geocast area, which is a combined rectangle area that 
contains both sink proxy and the query area. Given that b is the ratio of the node number in the geocast 
to the total node number N, and 10 ≤< b . Therefore, Nb∗  is the node number in the query geocast area 
of S3. Let uR be the hops of transmission in the unicast from the sink to the sink proxy. Then, the 
energy cost of S3 query can be computed as: 

3QE 00 ERENb u ∗+∗∗=  (3)

As a result, the ratio QR  of query cost of S3 to S2 is given as follows: 
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The smaller b and Ru are, the smaller RQ is. This means greater energy savings. 
When a S3 query saves energy compared with the conventional S2 approach, the ratio of the S3 

query cost to the S2 query cost is no larger than 1. That is: 

1≤QR  (5)

When Ru ≤ N(1-b), we have RQ ≤ 1. Therefore, an effective sink proxy should enable Ru ≤ N(1-b). If 
a query interest area is defined, the value of b and Ru can be determined by the position of a sink 
proxy. Given a sink proxy candidate with location coordinates of (x,y), and an resolved query area 
(Xmin, Xmax, Ymin, Ymax), as shown in Figure 4, we can determine whether the sink proxy 
candidate is a suitable sink proxy for S3 query geocasting by calculating b and Ru if the sink proxy 
candidate is used. The query geocast area in S3 model can be calculated as (X’min, X’max, Y’min, 
Y’max), where X’min = min(x, Xmin), X’max = max(x, Xmax), Y’min = min(y, Ymin),  
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Y’max = max(y, Ymax). We can then determine the ratio R of query geocast area to the network area. 
R equals b, assuming nodes are uniformly deployed. Further, since Ru is the shortest hopcount from 
the Sink to the sink proxy candidate, it can be calculated according to the Greedy Perimeter Stateless 
Routing (GPSR) hop-by-hop routing process [26]. Consequently, RQ can be obtained.  

If: 

1
2

3 ≤
+∗

==
N

RNb
E
E

R u

Q

Q
Q , 

then the sink proxy candidate can be selected as a sink proxy for S3 query geocasting. 

Figure 4. Selection of effective sink proxy for data query. 
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B. Data collection cost and effective sink-proxies for the data query. 

In the many-to-one model of S2 data collection, the energy cost can be approximately given by the 
sum cost of the replied data unicast from each sensor node to the sink. Note α  is the ratio of sensor 
nodes that will reply a query message, and N∗α  is the node number of sensor nodes corresponding to 
the query of S3. Let 0R  be the average route length from each corresponding sensor node to the sink. 
Thus, the energy cost of S2 data collection, denoted by 2CE , can be written as: 

002 * RENEC ∗∗=α  (6)

In S3 information retrieval, meanwhile, the data collection cost is the sum cost of local data 
collection and delivery of the aggregated data. Given aR as the average route length from each 
corresponding sensor node to the sink proxy, let β  be the ratio of aggregated data size to the 
un-aggregated data size. Thus, the data collection cost in S3 information retrieval 3CE  can be denoted by: 

003 )( ERNRENE uaC ∗∗∗∗+∗∗∗= αβα  (7)

Consequently, the ratio of data-collection cost of S3 to S2 is computed as: 
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αβα  (8)

In data collection operations, adopting an appropriate sink proxy consumes no larger energy than 
the conventional S2 approach. That is: 

1≤CR  (9)
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when 1≤CR ( ua RRR ∗+> β0 ), there is energy saving in S3 data collection compared with S2  
data collection. 

This result indicates that the smaller β  is, the smaller the relative cost of S3 becomes. The use of a 
sink proxy enables maximum aggregation of small sensor data and the smallest β , since all data are 
collected at the sink proxy and are aggregated before being transmitting to the sink. 

0R , uR  and aR  can be calculated at the sink node based on the GPSR route discovery protocol 
that is described in [36], given the location of the sink proxy and resolved nodes corresponding to the 
query. 0R  is a parameter that depends on the position of the corresponding sensor when using the 
shortest path routing. The values of uR  and uR depend on the location of the sink proxy. As a result, the 
ratio of data-collection cost of S3 to S2 depends on the aggregation ratio and the position of  
sink proxy. 

4.2. Impact on the Energy Bottleneck 

With conventional S2 data collection, there is an energy bottleneck at the sink node. This occurs in 
multihop wireless sensor networks because most of the data are accumulated at the sink node, and 
nodes near the sink node are likely to consume more energy than nodes far removed from the sink 
node. The impact of the S3 model is that data are aggregated to the maximum degree before being 
delivered to the sink node and the sink proxy is selected from various sensor nodes, so that energy 
consumption is much balanced. 

We analyze the impact of the S3 model on the energy bottleneck, with a specific focus on the 
energy reduction at the one-hop neighbour nodes of the sink node. Given a sensor network consisting 
of N nodes, and average energy consumption of a one-hop transmission of a packet assumed to be 0E . 
Note α  is the ratio of sensor nodes that will respond to a query message. Then, energy consumption 

)1(2 hopES  at one-hop neighbour nodes of the sink in the conventional S2 model can be denoted as: 

02 )1( ENhopES ∗∗=α  (10)

where N∗α  is the number of sensor nodes corresponding to a query. The energy consumption at the 
one hop neighbour nodes of sink in S3 model is denoted as: 

003 )1( EENhopES ∗+∗∗∗= γβα  (11)

where β  is the ratio of aggregated data size to un-aggregated data size, 0E∗γ  is the energy 
consumed at one-hop nodes for relaying a packet from a sensor to the sink proxy before collecting data 
at the sink. When the network is large, the number of one-hop nodes is small compared with the 
number of nodes in the network, the relay probability is very small, and 0E∗γ  can be ignored, and so: 

βα ∗∗∗= 03 )1( ENhopES  (12)

This means that energy consumption is β times the S2 model (β ≤ 1). The greater the aggregation 
capability of the network, the smaller the β is, leading to more energy savings. For example, when  
10 packets each with 5 bytes of payload data are aggregated into one packet with a 10 × 5 payload, 
sharing one header with 28 bytes, β is (10 × 5 + 28)/(5 + 28) × 10 = 25%. 



Sensors 2011, 11 
 

 

353

5. Simulation Evaluation and Numerical Results 

5.1. Evaluation Metric, Objects, and Simulation Setup 

We evaluate our proposed protocols using an NS-2 simulator, which is integrated with the IEEE 
802.15.4 based MAC module [12,13]. In the simulation description, we call conventional on-demand 
approaches S2 (Sink-sensors), and our proposed approach S3 (sinl-sink_proxy-sensors). 

The following protocols are evaluated in the simulation: 

Flooding: A S2 approach with flooding based query dissemination and many-to-one data collection 
from reverse paths of the flooding [3]. 
LBM based information retrieval: A S2 approach with location-based multicasting for query 
dissemination and data collection from reverse paths of multicasting [20]. 
LDQD: Localised Data Query Distribution in S3 approach. 
LSDC: Localised Sensing Data Collection in S3 approach. 

LDQD and LSDC schemes are classified according to the position of the sink proxy. For instance, 
schemes that choose the centre node in the query area as a sink proxy are called LDQD centre and 
LSDC centre; schemes that use the nearest node in the query area as a sink proxy are called LDQD 
sink; schemes that use the random selected sink proxy in the query area are called LDQD limited 
random and LSDC limited random, schemes that use the network-wide random selected sink proxy are 
called LDQD network random and LSDC network random, etc. 

The protocols are evaluated using the following metrics: 

Ratio of energy consumption: The ratio of energy consumption for the proposed protocol S3 
compared with conventional approaches S2, which includes flooding-based and LBM based protocols. 
It is defined as:

2

3

S

S
ratio E

ER = ; where 2SE is the energy consumption of conventional approaches of on-

demand information retrieval (including Flooding and LBM); and 3SE is the energy consumption of 
proposed approaches of on-demand information retrieval. 

Energy consumption at each node: The energy consumption at each sensor node during the simulation. 

Unless otherwise stated, the simulation is set up as follows. There are 100 sensor nodes and 1 sink 
node in the network. The sensor nodes are distributed over a square of 100 m × 100 m, and the detailed 
topology of the sensor network is shown in Figure 5. The network topology is static and all nodes are 
connected to each other by either single-hop or multi-hop links. Each sensor node is equipped with an 
IEEE 802.15.4 radio module, and has a radio range of 15 m. The maximum number of sensing data 
that can be aggregated in a packet is set to 10. 
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Figure 5. Simulation topology. 
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5.2. Numerical Results 

We first study the total energy consumption and data delivery ratio in sensor networks. To evaluate 
the information retrieval operation with various queries from users, in the simulation we adopt the 
variable of square areas in which users query sensors for data. The selection of the area being queried 
is defined by squares of different dimensions. The position of each square in relation to the 
corresponding nodes is randomly selected among the network. The total energy consumption in a 
round of data query and collection is the average of 10 cycles of data query and collection. 

Figures 6 (A) and (B) present the ratio of energy consumption in the proposed S3 based approaches 
to the conventional S2 based protocols, which include Flooding and LBM. Most of S3 based 
approaches, except for LDQD + LSDC Network Random approach, highly reduce the energy 
consumption compared with S2 approaches, especially when the length of the square being queried is 
small. In the S3 based approaches, the LDQD + LSCD Center approach that adopts the centre node of 
the query area as the sink proxy achieves optimised performance when the length of the square being 
queried is larger than 20, with a ratio of 25–90% energy consumption compared to the flooding-based 
protocol and 50–90% compared to the LBM-based protocol. The smaller the length of the square being 
queried, the larger the ratio of energy savings for the proposed approach. The exception is the  
LDQD + LSDC Network Random, which has greater energy consumption than LBM when the length 
of square is small because the network-wide random selection of a sink proxy cannot achieve a 
localised query and data collection for small query areas. 

In addition to the evaluation of total energy consumption in the network, we studied the distribution 
of energy consumption at individual sensor nodes. To evaluate the impact of dynamic sink proxy 
rotation on the energy consumption among individual sensor nodes, we set up a simulation consisting 
of 40 identical queries with and each query was followed by a data collection operation. The length of 
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query square is set to 40 m and the maximum number of sensing data that can be aggregated in a 
packet is set to 20. 

Figure 6. Ratio of energy consumption for approaches using S2 and S3 models. 
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(A) Energy consumption ratio of S3 to S2 with Flooding. 
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(B) Energy consumption ratio of S3 to S2 with LBM. 

Figures 7 (A) and (B) shows an example of the distribution of energy consumption at each sensor 
node in the data collection operation. Flooding-query based data collection and LBM based data 
collections have high and non-uniform energy consumption with respect to both sending and receiving 
data. LSDC-center and LSCD-sink based data collections have much lower energy consumption at 
sensor nodes. LSCD-Random, in which the sink proxy is random selected in every query and rotates 
among sensor nodes, has the lowest value of the max energy consumption among sensor nodes. Hence, 
it has most uniform energy distribution among sensor nodes. 

We also set up a simulation consisting of three query objects, which are selected in the network. 
Sensor nodes monitoring each object are located within a 20 m × 20 m square, in which effective sink 
proxy can be obtained. For each query object, 40 rounds of queries and data collections are performed. 
In the simulation S2 approach adopts LDQD + LSDC Limited Random with effective sink proxies. 
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Figure 7. Energy consumption at each sensor node in data collection. 
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(A) Energy consumption of sending packet at each node. 
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(B) Energy consumption of receiving packets at each node. 

Figure 8 (A) illustrates the energy consumption at nodes with respect to their hop-distances to the 
sink. In the conventional S2 model, nodes of one-hop neighbours of the sink have the largest energy 
consumption, far larger than that of nodes with a long distance to the sink. In the S3 model, the energy 
consumption was about 40% of that of the S2 model at nodes of one-hop neighbours of the sink, 
leading to significant alleviation of the energy bottleneck. Figure 8 (B) shows the energy consumption 
ratio of the S3 model to the S2 model. Energy consumption at nodes near the sink is significantly 
reduced using the S3 model. On the other hand, energy consumption at nodes located at a far distance 
is larger using the S3 model, leading to a more balanced energy distribution compared with the 
conventional S2 model. This is because the S3 model utilises dynamic sink proxies to balance energy 
consumption, and the sink node’s operations are distributed to sensor nodes. 
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Figure 8. Energy consumption with regard to hop-distance. 

 
(A) Hop-wise energy distribution. 

 
(B) Energy consumption ratio. 

Figures 9 (A) and (B) show the energy consumption of data queries at each sensor node. S2 queries 
have high energy consumption at most sensor nodes. The proposed S3 based query has much lower 
energy consumption for most sensor nodes. The largest energy consumption of the S3 query among 
sensor nodes is about 0.13 J, which is much smaller than that of S2 (0.2 J). 

Figure 9. Energy consumption distribution among nodes. 

 
(A) Conventional S2 Query energy distribution. 
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Figure 9. Cont. 

 
(B) Proposed S3 query energy distribution. 

 
(C) Conventional S2 data reply energy distribution. 

 
(D) Proposed S3 data reply energy distribution. 
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Figures 9 (C) and (D) show the distribution of energy consumption among sensor nodes in the data 
collection (reply) operation. S2-based data collection has high and non-uniform energy consumption at 
sensor nodes. Nodes near the sink node have the highest energy consumption: up to 0.42 J. In contrast, 
S3-based data collection has much lower energy consumption at sensor nodes. The highest energy 
consumption for S3 is 0.17 J, which is about 40% of that in S2-based data collection. Further, S3 data 
collection has more uniform energy distribution among sensor nodes. 

6. Conclusions 

This paper has proposed an on-demand localised information retrieval scheme for sensor networks 
with awareness of a user query’s content. In the proposed scheme, a query’s name is resolved into the 
IDs and locations of corresponding sensor nodes before being distributed to the network. According to 
the location of sensor nodes, query distribution and data collection are performed in a corresponding 
local area. The query message is efficiently unicasted to the sink proxy in a query area, and is then 
forwarded to a localised area of the network. Sensing data are collected at a sink proxy, at which data 
are aggregated and sent to the sink node. We provided an analytical model to describe the criteria of 
sink proxy selection and we analyzed the impact of the proposed approach on alleviating the energy 
bottleneck in data collection. The simulation results show that the proposed scheme significantly 
reduces the energy consumption of data query and data collection in the network. And the energy 
consumption is more uniformly distributed among sensor nodes than in conventional approaches of 
on-demand information retrieval. The proposed scheme achieves 60% of energy reduction at the 
neighbouring nodes of the sink in the simulation. 

From the evaluation results, we know that the proposed scheme is promising for applications where 
sensing data are queried on-demand from users with diverse interests. As for future work, the 
in-network and high-level context abstracting of sensing data are considered. The maximised data 
aggregation in the proposed information retrieval model is expected to provide high effectiveness of 
context abstracting at sensor nodes. 
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