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Abstract: This paper describes a new method for predicting the detectability of thin gaseous

plumes in hyperspectral images. The novelty of this method is the use of basis vectors

for each of the spectral channels of a collection instrumentto calculate noise-equivalent

concentration-pathlengths instead of matching scene pixels to absorbance spectra of gases

in a library. This method provides insight into regions of the spectrum where gas detection

will be relatively easier or harder, as influenced by ground emissivity, temperature contrast,

and the atmosphere. Our results show that data collection planning could be influenced by

information about when potential plumes are likely to be over background segments that are

most conducive to detection.
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1. Introduction

The value of hyperspectral imagery in detecting evidence ofthin gaseous plumes is dependent

upon the ability of the analysis tools to detect those materials when they are present. If an image

collection mission is being planned, information should beavailable regarding the scene background

and the anticipated materials of interest. In this paper we investigate methods for using image analysis

tools to predict the minimum detectable concentration-pathlength (MDCL) for plumes over specific

backgrounds prior to image collection. The intent is to develop an approach for determining under
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what conditions gases of interest can be detected over specific backgrounds and at what minimum

concentration-pathlengths.

Estimating MDCLs for thin gaseous plumes using thermal imaging data is complicated by many

factors. Methods for gas plume detection have been studied extensively and are reviewed by various

authors [1–4]. Very often the approach is to evaluate specific gases over specific backgrounds and

temperature emissivity (TE) contrasts. The difficulties with this approach for mission planning is that

small gas libraries result in efficient searching but risk missed detections because member gases may

not cover all the gases in the image. Large libraries result in slower searching and can have multiple

detections because of spectral feature overlap.

An alternative approach to the detection problem with gas libraries is described by Chilton and

Walsh [5]. They use a set of basis vectors (BV) consisting of one BV foreach spectral channel. The

BV for channeln has a 1 in then-th location and zeros elsewhere. Their results show that applying a

whitened-matched filter to each BV in succession will identify spectral channels with anomalous activity.

The library in this case is the set of BVs that correspond to each spectral channel and is defined by the

resolution and bandwidth of the image. This approach is useful for detection because it spans the full

spectral dimension of the image and is agnostic to individual gas characteristics, thus resolving the issue

of missed detections because of mismatches between image gases and library members.

In this paper we extend the application of BVs to estimate thenoise-equivalent

concentration-pathlength (NECL) for pixels in an image or image segment, relate the NECL to

the signal-to-noise ratio (SNR) for an image or image segment, and estimate the MDCL for gases that

have a single dominant spectral peak. We validate our MDCL results by injecting gases into an AHI

image and using whitened-matched filtering to get empiricalprobabilities of detection (Pd) and false

detection probabilities (Pfa). We compare the empirical results to the MDCL predictions at thosePd

andPfa values. Extension of these results to gases with multiple peaks warrants further research.

2. Method Development

In this section, we present the assumed physics-based radiance model and the NECL estimation

method using unit basis vectors instead of actual gas absorbance spectra.

2.1. Physics-based Radiance Model

The three-layer physics-based radiance model at a pixel is the same as that considered by Chilton and

Walsh [5]. For a pixel with a plume made up ofNc gases, as a function of wavelength,λ (in µm):

Lobs(λ) = τa(λ) (B(Tp;λ)− ǫg(λ)B(Tg;λ))

Nc
∑

j=1

cjAj(λ) + τa(λ)ǫg(λ)B(Tg;λ) + Lu(λ) + n(λ) (1)

whereLobs(λ) represents sensor-recorded radiance inW/(m2∗sr∗µm) at wavelengthλ, τa(λ) andǫg(λ)

are dimensionless terms representing the atmosphere transmissivity and ground emissivity, respectively,

B(T ;λ) has radiance units and is Planck’s Blackbody function,Tp andTg (K) represent the plume and

ground temperature, respectively,Aj(λ) is the absorbance coefficient of gasj in (ppm-m)−1, cj is the

concentration-pathlength of gasj in ppm-m, Lu(λ) is the atmospheric upwelling radiance, andn(λ)
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includes unmodeled effects and sensor noise [2]. We assume that the hyperspectral image has been

analyzed and reasonable estimates of ground temperature and ground emissivity have been produced

at each pixel; available through the use of a tool such as Optimized Land Surface Temperature and

Emissivity Retrieval (OLSTER) algorithm developed by Boonmeeet al. [6]. Ground truth information

about the background may be available for a collection target that has been monitored over a period

of time.

The mean-adjusted radiance (subtracting the average of theoff-plume pixels) is

r(λ) = Lobs(λ)− L̄off (λ) = τa(λ)C(λ;Tp, Tg, ǫg)
k
∑

j=1

cjAj(λ) + η(λ) (2)

whereC(·) is the temperature-emissivity contrast

C(λ;Tp, Tg, ǫg) = B(Tp;λ)− ǫg(λ)B(Tg;λ) (3)

and η, a vector, contains clutter and noise terms and is approximately zero-mean with covariance

matrixΣ.

In linear algebra terms, across the spectral channels, Equation 2 becomes the statistical

regression model

r = Xβ + η (4)

where

X = τa ⊙C ⊙A (5)

τa is the atmospheric transmissivity vector,C is the temperature-emissivity contrast vector,A is a matrix

whose columns are the gas absorbances, andβ is a vector of concentration-pathlengths.

2.2. Noise-Equivalent Concentration-Pathlength

The noise-equivalent concentration-pathlength (NECL) isa measure of the uncertainty in the

quantification of a particular gas for each pixel in hyperspectral imagery. In statistical terms, the NECL

of a particular gas is the estimated standard deviation of the weighted least-squares regression estimate

of the concentration-pathlength of the gas for non-plume pixels. The NECL is equivalent to the amount

of gas which gives a SNR of 1 [7]. Such a quantity is often used to produce a minimal detectable

concentration-pathlength, e.g., typically MDCL= 4 × NECL, where 4 is the sum of z-scores of the

Gaussian distribution associated with thePd ≈ 0.95 andPfa ≈ 0.05. Empirical estimates of NECL

values are typically calculated from hyperspectral imagery for each gas. We propose an approach to

generalized NECL values using basis vectors.

For a gas of interest, the empirical single-gas NECL is calculated by first choosing a likely plume

temperature; fitting the whitened matched filter for that gasat every off-plume pixel; and then taking

the standard deviation of those matched filter outputs. Thatis, letA in Equation 5 be the absorbance

spectrum of the gas of interest. Then for each off-plume pixel (and its ground temperature and ground

emissivity) compute the matched filter output

m = (X ′Σ−1r)/(X ′Σ−1X) . (6)
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The NECL of that gas at the chosen plume temperature is the standard deviation of them values.

A further refinement is to compute the NECL for each pixel typein image segments (with the

segment-specific mean-adjustment in Equation 2 and segment-specificΣ in Equation 6).

Thus, for each gas in a library of candidates, for each pixel type, and for various plume temperatures,

NECL values may be estimated. The success of this method depends on having the plume chemicals

in the search library. If the plume chemicals are not known, choosing the gas search library can be

a challenge. Due to these factors, we propose a method independent of the chemicals in the plume,

namely, using a set of surrogate spectra which span the spectral vector space.

The simplest set of basis vectors are the coordinate unit vectors. For aNλ channel hyperspectral

instrument, theNλ basis vector NECL values (BV-NECL) are computed by replacing A in Equation 5

with theNλ basis vectors, one at a time. Smaller NECL values indicate lower variability or noise and an

easier detection environment. With BV-NECL values, the assessment of relative ease of detection can

be made on a channel-by-channel basis, indicating spectralregions where gases will be easier or harder

to detect, given the ground emissivity, temperature contrast, and atmosphere. Because the basis vectors

are not scaled to the appropriate units of absorbance spectra, the BV-NECL values are not in the units of

ppm-m. The BV-NECL values may be compared in relative terms. The next section demonstrates that

BV-NECL values inppm-m units can be estimated for gases with a single dominant peak.Converting

BV-NECL values toppm-m units for multi-peak gases is an area for further investigation.

3. Application

As an illustration of the method proposed above, the AHI image with no plume was used. This image

was collected with the Airborne Hyperspectral Imager builtby the University of Hawaii and provided

to us by the Chester F. Carlson Center for Imagery Science at Rochester Institute of Technology (RIT).

The spectra are in 50 channels corresponding to wavelengthsfrom 8.094 to 11.533µm. The ground

temperatures and ground emissivities were extracted from the image using the OLSTER algorithm

developed by Boonmeeet al. [6] at RIT.

A k-th nearest neighbor approach was used to extract 11 endmembers from the ground emissivities.

Each pixel was assigned to groups associated with these 11 endmembers based on the correlation of

its ground emissivity to the endmembers. If no correlation was greater than 0.8, the pixel was not

assigned to any of the 11 groups, which created a “group 0” of unassigned pixels. This conservative

approach to image segmentation left a large proportion of the pixels unassigned. Having 11 endmembers

to segment the image and using 0.8 as the minimum correlationcoefficient value are arbitrary choices

to get clear distinctions among the groups and lower the within-group variances to demonstrate the

BV-NECL method. The numbers of pixels assigned to the 12 groups are given in Table 1. There were

enough pixels in each group to calculate by-group BV-NECL values. Figure 1 shows the segmentation

of the AHI scene into the 11 groups.

The robust averages and standard deviations of the ground temperature of the pixels in each group

are also given in Table 1. For comparison, the robust averageand standard deviation of the ground

temperature for the unsegmented scene are308.7 ◦K and 5.87 ◦K, respectively. These individual

group average ground temperatures and a5 ◦K hotter plume temperature were used to compute the

temperature-emissivity contrast for each of the 11 endmembers, see Figure 2.
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Figure 1. Segmented AHI Image. The 11 pixel group assignments are indicated. White

areas are unassigned.
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Figure 2. Endmember Temperature-Emissivity Contrasts. A plume temperature5 ◦K

hotter than the average ground temperature of each pixel group was used to compute the

temperature-emissivity contrasts for the endmembers.
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The robust variance method used here was developed by Cressie and Hawkins [8]. The robust variance

formula for a random sample of sizen, {X1, X2, . . . , Xn}, is

V =

(

1

n

n
∑

i=1

|Xi − X̄ |1/2

)4

/(0.457 + 0.494/n) , (7)

whereX̄ is either the mean or trimmed-mean of the sample. We used the middle 90% of the data to

calculate a 5% trimmed mean.
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Table 1. Group segmentation summary.

Pixel Number Average Ground Standard

Group of Pixels Temperature Deviation

(K) (K)

0 40,605 305.8 4.84

1 14,407 311.6 3.54

2 4,716 307.1 1.82

3 2,627 311.0 2.17

4 3,588 310.1 1.97

5 12,049 301.5 0.59

6 14,675 311.9 3.15

7 6,051 311.1 2.85

8 1,530 302.1 1.20

9 5,876 310.0 2.50

10 17,752 315.0 4.70

11 924 311.9 2.73

The pixels in each of the 11 groups were mean-centered and then whitened match filtered using the set

of basis vectors instead of a particular gas and 7 different plume temperatures:−5, 0, +2, +5, +10, +15,

and+20 ◦K from the average ground temperature of the group. The BV-NECL values for each group

were then estimated using a robust standard deviation of thewhitened match filter results. The trimmed

mean and robust variance method were used to estimate the BV-NECL values in order to stabilize the

estimates in the presence of extreme values.

Figures 3, 4, and 5 show plots of the BV-NECL values for three of the pixel groups. Groups 1

and 11 were chosen because their temperature-emissivity contrasts were most different from the others

and Group 3 was chosen to represent the other groups. Two general phenomena are demonstrated with

these plots. First, as the temperature contrast between theground and plume increases, the BV-NECL

values decrease and become more similar across the spectralrange of the data [2]. This is an interesting

outcome when plume temperature exceeds ground temperaturebecause, as one can see in Figure 3,

changes in detectability are much larger in the harder to detect region of channels 30 through 50 than in

channels 10 to 20. The implication is that the detectabilityof a plume in an image will be at least partly

controlled by its extent and the cooling or heating it undergoes to equilibriate to ambient atmospheric

temperature. A gas with spectral activity in channels 10 to 20 is likely to be easier to detect than a gas

with spectral activity in channels 30 to 50.

The second interesting feature of these plots is the comparison of the −5 ◦K, 0 ◦K,

and +5 ◦K temperature lines. The results were produced using the 1976 standard

atmosphere, so the differences result from the ground emissivities for each group.

Walsh et al. [9] present an analysis of how temperature contrast and emissivity
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influence detection. One can see that the channels where the differences between−5 ◦K

and0 ◦K BV-NECL values are large in Figures 3 and 5 correspond to thechannels where the endmembers

(1 and 11) in Figure 2 have higher temperature-emissivity contrasts. The flat temperature-emissivity

contrast of endmember 3 corresponds to the flat BV-NECL values in Figure 4. The implication

to mission planning is that data collection might be managedfor complex scenes with multiple

backgrounds to detect potential plumes over those segmentsof the scene most conducive to their

detection.

Figure 3. Segmented Basis Vector NECL Values: Group 1. NECL values forthe 50 unit

vectors (corresponding to the 50 spectral channels) were computed at 7 different plume

temperatures from−5 ◦K to +20 ◦K more than the average ground temperature311.6 ◦K.

Only the pixels assigned to Group 1 were used in the calculations.
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The BV-NECL values can be used to make inference about the detection capability of single-peak

gases. The appropriate BV-NECL values can be scaled by dividing by the maximum absorbance of

the gas to estimate its NECL values. For example, consider Dibromoethane (Gas 7) from the AHI

chemical library shown in Figure 6. For this gas, we are concerned with the BV-NECL values for

the 6th channel where the maximum absorbance is 0.000345 (ppm-m)−1. We can compare the scaled

6th channel BV-NECL values to the actual empirical NECL values computed for Gas 7 across the

11 groups (see Table 2 for comparisons using a+5 ◦K temperature plume). We set a detection

critical value for a 1% probability of false alarm (Pfa) at 2.326 ×BV-NECL/0.000345. We also

estimate the minimum detectable level that gives 95% probability of detection (Pd) at that 1%Pfa

as(2.326 + 1.645) × BV-NECL/0.000345 =3.971 × BV-NECL/0.000345. Here 2.326 and 1.645 are

z-scores of the Gaussian distribution corresponding to tail probabilities of 0.01 and 0.05.

Table 2 gives the estimated MDCL for a+5◦K plume temperature across the 11 groups in the AHI

image. The table also provides the empiricalPfa andPd values for critical values set using the BV-NECL

values. All of the empiricalPfa values are higher than the nominal 1%Pfa. The empiricalPd values,

assuming a gas concentration-pathlength at the BV-NECL-based estimated MDCLs, are only slightly

lower than the nominal 95%. The differences between the nomimal and empiricalPd andPfa values are



Sensors 2010, 10 8659

Figure 4. Segmented Basis Vector NECL Values: Group 3. NECL values forthe 50 unit

vectors (corresponding to the 50 spectral channels) were computed at 7 different plume

temperatures from−5 ◦K to +20 ◦K more than the average ground temperature311.0 ◦K.

Only the pixels assigned to Group 3 were used in the calculations.
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Figure 5. Segmented Basis Vector NECL Values: Group 11. NECL values for

the 50 unit vectors (corresponding to the 50 spectral channels) were computed at 7 different

plume temperatures from−5 ◦K to +20 ◦K more than the average ground temperature

311.9 ◦K. Only the pixels assigned to Group 11 were used in the calculations.
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due to differences in the tails of the within-pixel group whitened matched filter distributions compared

to the Gaussian distribution. In this case, the tails of the empirical distribution are heavier than the

Gaussian distribution. Using the Gaussian to make inference about quantiles for small probabilities (less

than about 2%) are inaccurate. The heavier tails are probably due to mixed pixels.

The estimated MDCLs range from 218 to 540ppm-m with three values below 280, three values

between 320 and 400, three values between 400 and 500, and twovalues over 500. The range
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Figure 6. Gas 7 Absorbance Spectrum.
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and distribution of these results indicate that segmentingthe scene reveals important differences in

detectability over the various backgrounds that warrant consideration in planning a data collection.

This study used a gas with a single dominant spectral peak andwhitened matched filtering to produce

the empirical detection estimates. The single-peak gas wasselected to demonstrate the BV-NECL

method because it represents the simplest challenge and anyconfounding factors that might be associated

with multi-peak gases are eliminated. If the method failed to provide useful results with this gas, then

any promising results with multi-peak gases would very likely be arbitrary. Initial efforts to apply the

BV-NECL technique to multi-peak gases indicate that extending the method to these gases will require

further development. Additionally, we used whitened matched filtering because it is a common technique

for gas detection in hyperspectral images. How the BV-NECL technique performs with other estimators

has not been investigated.

4. Conclusions

We presented a method for predicting the detectability of thin gaseous plumes in hyperspectral

images. The novelty of this method is that using basis vectors for each of the spectral channels of a

collection instrument to calculate NECL values instead of library gases provides insight into regions of

the spectrum where gas detection will be relatively easier or harder, as influenced by ground emissivity,

temperature contrast, and atmosphere. We also relate the three-layer physics-based radiance model to

NECL values, to SNRs, and finally to MDCLs.

We segmented an AHI image and analyzed it with these techniques. Our results indicate that there

are meaningful differences across the MDCLs calculated forthe scene segments with a factor of 2.5

between the highest and lowest MDCLs (540ppm-m versus 218ppm-m). The implication is that

data collection planning could be influenced by informationabout when potential plumes are likely

to be over background segments that are most conducive to detection. Our results also show that these

considerations are most important with small temperature contrasts between the ground and plume. As
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Table 2. Comparison of estimated and empirical detectability for Gas 7 using+5 ◦K plume

temperature.

Pixel Number Scaled Empirical Empirical Estimated Empirical

Group of Pixels BV-NECL NECL Pfa MDCL Pd

(ppm-m) (ppm-m) (nominal 1%) (ppm-m) (nominal 95%)

1 14,407 55.0 56.6 2.33% 218 94.1%

2 4,716 127.7 118.7 1.42% 507 95.1%

3 2,627 87.9 85.7 2.09% 349 94.5%

4 3,588 101.8 100.1 2.90% 404 94.6%

5 12,049 99.0 86.8 2.34% 393 97.0%

6 14,675 80.6 85.2 2.64% 320 93.2%

7 6,051 123.0 124.1 2.89% 488 93.2%

8 1,530 70.0 65.2 1.63% 278 94.8%

9 5,876 136.0 131.3 2.26% 540 93.9%

10 17,752 117.5 111.9 2.32% 467 93.1%

11 924 57.8 57.1 1.52% 230 94.4%

the difference in temperature increases, the BV-NECL values get smaller, indicating that gases are easier

to detect, and channel-to-channel differences across BV-NECL values decrease.

The example we present is for a single-peak gas. Our results across the 11 scene segments for this gas

and for other single-peak gases indicate that we get very good agreement (within a few percent) between

the scaled BV-NECL values and empirical NECL values estimated by mean-centering and whitened

match filtering each of the scene segments with the basis vectors. Estimating scaled NECL values and

MDCLs for multi-peak gases is a challenging problem and an area for additional research.
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