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Abstract: This paper describes a new method for predicting the dédidityaf thin gaseous
plumes in hyperspectral images. The novelty of this metlsothe use of basis vectors
for each of the spectral channels of a collection instrumerdalculate noise-equivalent
concentration-pathlengths instead of matching scendspigeabsorbance spectra of gases
in a library. This method provides insight into regions of §pectrum where gas detection
will be relatively easier or harder, as influenced by groumdissivity, temperature contrast,
and the atmosphere. Our results show that data collectaompig could be influenced by
information about when potential plumes are likely to berdaackground segments that are
most conducive to detection.
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1. Introduction

The value of hyperspectral imagery in detecting evidenceéhof gaseous plumes is dependent
upon the ability of the analysis tools to detect those maltenvhen they are present. If an image
collection mission is being planned, information shouldavailable regarding the scene background
and the anticipated materials of interest. In this paperrwestigate methods for using image analysis
tools to predict the minimum detectable concentratiorreagth (MDCL) for plumes over specific
backgrounds prior to image collection. The intent is to dgvean approach for determining under
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what conditions gases of interest can be detected overfgpbackgrounds and at what minimum
concentration-pathlengths.

Estimating MDCLs for thin gaseous plumes using thermal imgglata is complicated by many
factors. Methods for gas plume detection have been studieth&vely and are reviewed by various
authors [-4]. Very often the approach is to evaluate specific gases gwetific backgrounds and
temperature emissivity (TE) contrasts. The difficultieshvihis approach for mission planning is that
small gas libraries result in efficient searching but rislssed detections because member gases may
not cover all the gases in the image. Large libraries reauiower searching and can have multiple
detections because of spectral feature overlap.

An alternative approach to the detection problem with ghraties is described by Chilton and
Walsh B]. They use a set of basis vectors (BV) consisting of one BVefach spectral channel. The
BV for channeln has a 1 in the:-th location and zeros elsewhere. Their results show thalymg a
whitened-matched filter to each BV in succession will idgrgpectral channels with anomalous activity.
The library in this case is the set of BVs that correspond thepectral channel and is defined by the
resolution and bandwidth of the image. This approach isuli$ef detection because it spans the full
spectral dimension of the image and is agnostic to indivigaa characteristics, thus resolving the issue
of missed detections because of mismatches between imags gad library members.

In this paper we extend the application of BVs to estimate theise-equivalent
concentration-pathlength (NECL) for pixels in an image orage segment, relate the NECL to
the signal-to-noise ratio (SNR) for an image or image segnam estimate the MDCL for gases that
have a single dominant spectral peak. We validate our MDGLIte by injecting gases into an AHI
image and using whitened-matched filtering to get empinpecababilities of detectionK,;) and false
detection probabilitiesK;,). We compare the empirical results to the MDCL predictionthase P,
and Py, values. Extension of these results to gases with multipigpevarrants further research.

2. Method Development

In this section, we present the assumed physics-basechcadrmodel and the NECL estimation
method using unit basis vectors instead of actual gas aésocelspectra.

2.1. Physics-based Radiance Model

The three-layer physics-based radiance model at a pixetisame as that considered by Chilton and
Walsh []. For a pixel with a plume made up @f. gases, as a function of wavelength(in xm):

Lobs(A) = 7a(A) (B(Tp; A) = €4(A) B(Ty; V) Z ¢ A;(A) + Ta(N)eg(N) B(Tg; A) + Lu(A) +1(A) (1)

whereL,;s(\) represents sensor-recorded radiand@'jiim? « sr* um) at wavelength\, 7, () ande, (\)
are dimensionless terms representing the atmospherenissigty and ground emissivity, respectively,
B(T'; M) has radiance units and is Planck’s Blackbody functibnand, (K) represent the plume and
ground temperature, respectively;()\) is the absorbance coefficient of ga (ppm-m)~—*, ¢; is the
concentration-pathlength of gagsin ppm-m, L, (\) is the atmospheric upwelling radiance, amgh)
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includes unmodeled effects and sensor node We assume that the hyperspectral image has been
analyzed and reasonable estimates of ground temperatdrgrannd emissivity have been produced
at each pixel; available through the use of a tool such asn@g#d Land Surface Temperature and
Emissivity Retrieval (OLSTER) algorithm developed by Baweet al. [6]. Ground truth information
about the background may be available for a collection tattggt has been monitored over a period
of time.

The mean-adjusted radiance (subtracting the average offtpdume pixels) is

NMILmM%JMAMZmQﬂﬂﬂhﬂﬁﬁZ}MAM+MM (@)

where('(-) is the temperature-emissivity contrast
C(N Ty, Ty, €g) = B(Tp; A) — €9(A)B(Ty; A) (3)

and »n, a vector, contains clutter and noise terms and is apprdgignaero-mean with covariance
matrix .
In linear algebra terms, across the spectral channels, tiegu@ becomes the statistical
regression model
r=Xp+n (4)

where
X=71,0C0OA (5)

T, is the atmospheric transmissivity vect6t,s the temperature-emissivity contrast vectlis a matrix
whose columns are the gas absorbancespgasa@ vector of concentration-pathlengths.

2.2. Noise-Equivalent Concentration-Pathlength

The noise-equivalent concentration-pathlength (NECL)isneasure of the uncertainty in the
quantification of a particular gas for each pixel in hypecsga imagery. In statistical terms, the NECL
of a particular gas is the estimated standard deviationeofdighted least-squares regression estimate
of the concentration-pathlength of the gas for non-plumxelpi The NECL is equivalent to the amount
of gas which gives a SNR of I7]. Such a quantity is often used to produce a minimal detéetab
concentration-pathlength, e.g., typically MDGL 4 x NECL, where 4 is the sum of z-scores of the
Gaussian distribution associated with the ~ 0.95 and P;, ~ 0.05. Empirical estimates of NECL
values are typically calculated from hyperspectral imgder each gas. We propose an approach to
generalized NECL values using basis vectors.

For a gas of interest, the empirical single-gas NECL is dated by first choosing a likely plume
temperature; fitting the whitened matched filter for that gasvery off-plume pixel; and then taking
the standard deviation of those matched filter outputs. Ehdet A in Equation 5 be the absorbance
spectrum of the gas of interest. Then for each off-plumeldeed its ground temperature and ground
emissivity) compute the matched filter output

m=(X'Sr)/(X'27X) . (6)
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The NECL of that gas at the chosen plume temperature is timelata deviation of then values.
A further refinement is to compute the NECL for each pixel typeimage segments (with the
segment-specific mean-adjustment in Equation 2 and seggpenificy in Equation 6).

Thus, for each gas in a library of candidates, for each pyyed tand for various plume temperatures,
NECL values may be estimated. The success of this methoddsmmn having the plume chemicals
in the search library. If the plume chemicals are not knowmosing the gas search library can be
a challenge. Due to these factors, we propose a method indepeof the chemicals in the plume,
namely, using a set of surrogate spectra which span therapeettor space.

The simplest set of basis vectors are the coordinate untorgecFor aN, channel hyperspectral
instrument, theV, basis vector NECL values (BV-NECL) are computed by replgchin Equation 5
with the NV, basis vectors, one at a time. Smaller NECL values indicatedeariability or noise and an
easier detection environment. With BV-NECL values, theeasment of relative ease of detection can
be made on a channel-by-channel basis, indicating speegians where gases will be easier or harder
to detect, given the ground emissivity, temperature cehtend atmosphere. Because the basis vectors
are not scaled to the appropriate units of absorbance spdwtrBV-NECL values are not in the units of
ppm-m. The BV-NECL values may be compared in relative terms. The section demonstrates that
BV-NECL values inppm-m units can be estimated for gases with a single dominant péakverting
BV-NECL values tgopm-m units for multi-peak gases is an area for further invesiogat

3. Application

As an illustration of the method proposed above, the AHI iemagh no plume was used. This image
was collected with the Airborne Hyperspectral Imager boyitthe University of Hawaii and provided
to us by the Chester F. Carlson Center for Imagery Sciencedtdster Institute of Technology (RIT).
The spectra are in 50 channels corresponding to wavelefgims8.094 to 11.533:m. The ground
temperatures and ground emissivities were extracted fremmirhage using the OLSTER algorithm
developed by Boonmest al. [6] at RIT.

A k-th nearest neighbor approach was used to extract 11 entiers from the ground emissivities.
Each pixel was assigned to groups associated with thesedrieznbers based on the correlation of
its ground emissivity to the endmembers. If no correlaticas wreater than 0.8, the pixel was not
assigned to any of the 11 groups, which created a “group O’haksigned pixels. This conservative
approach to image segmentation left a large proportioneoptkels unassigned. Having 11 endmembers
to segment the image and using 0.8 as the minimum correlatiefiicient value are arbitrary choices
to get clear distinctions among the groups and lower theimvginoup variances to demonstrate the
BV-NECL method. The numbers of pixels assigned to the 12gg@ue given in Table 1. There were
enough pixels in each group to calculate by-group BV-NEClues. Figure 1 shows the segmentation
of the AHI scene into the 11 groups.

The robust averages and standard deviations of the groomgketature of the pixels in each group
are also given in Table 1. For comparison, the robust aveaagestandard deviation of the ground
temperature for the unsegmented scene3ae? °K and 5.87 °K, respectively. These individual
group average ground temperatures and & hotter plume temperature were used to compute the
temperature-emissivity contrast for each of the 11 endneesjlsee Figure 2.
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Figure 1. Segmented AHI Image. The 11 pixel group assignments aredteti. White
areas are unassigned.

Figure 2. Endmember Temperature-Emissivity Contrasts. A plume &atpre5 °K
hotter than the average ground temperature of each pixabgnas used to compute the
temperature-emissivity contrasts for the endmembers.
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The robust variance method used here was developed by €aggtHawkinsg]. The robust variance
formula for a random sample of size { X, X», ..., X,,}, is
1 & !
V=|- X; — X |2 0.457 + 0.494 7
- Z | V2] /(0457 +0.494/n) W)
where X is either the mean or trimmed-mean of the sample. We used idh@ler®0% of the data to
calculate a 5% trimmed mean.
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Table 1. Group segmentation summary.

Pixel | Number Average Ground Standard
Group | of Pixels ~ Temperature  Deviatign
(K) (K)

0 40,605 305.8 4.84

1 14,407 311.6 3.54

2 4,716 307.1 1.82

3 2,627 311.0 2.17

4 3,588 310.1 1.97

5 12,049 301.5 0.59

6 14,675 311.9 3.15

7 6,051 311.1 2.85

8 1,530 302.1 1.20

9 5,876 310.0 2.50

10 17,752 315.0 4.70

11 924 311.9 2.73

The pixels in each of the 11 groups were mean-centered anavifieened match filtered using the set
of basis vectors instead of a particular gas and 7 differemhe temperatures:5, 0, +2, +5, +10, +15,
and+20 °K from the average ground temperature of the group. The B\GNEalues for each group
were then estimated using a robust standard deviation aftiitened match filter results. The trimmed
mean and robust variance method were used to estimate ti¢EBV- values in order to stabilize the
estimates in the presence of extreme values.

Figures 3, 4, and 5 show plots of the BV-NECL values for thré¢he pixel groups. Groups 1
and 11 were chosen because their temperature-emissivitsasts were most different from the others
and Group 3 was chosen to represent the other groups. Twoad@henomena are demonstrated with
these plots. First, as the temperature contrast betweegrdled and plume increases, the BV-NECL
values decrease and become more similar across the spangalof the date?]. This is an interesting
outcome when plume temperature exceeds ground tempeflzuaeise, as one can see in Figure 3,
changes in detectability are much larger in the harder teaiee¢gion of channels 30 through 50 than in
channels 10 to 20. The implication is that the detectabilitg plume in an image will be at least partly
controlled by its extent and the cooling or heating it undegyto equilibriate to ambient atmospheric
temperature. A gas with spectral activity in channels 10dtasdikely to be easier to detect than a gas
with spectral activity in channels 30 to 50.

The second interesting feature of these plots is the cosgrariof the —5 °K, 0 °K,
and +5 °K temperature lines. The results were produced using the6 18%ndard
atmosphere, so the differences result from the ground entiss for each group.
Walsh et al. [9] present an analysis of how temperature contrast and entyssi
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influence detection. One can see that the channels where iffegegces between-5 °K
and0 °K BV-NECL values are large in Figures 3 and 5 correspond tekfaanels where the endmembers
(1 and 11) in Figure 2 have higher temperature-emissivitytrests. The flat temperature-emissivity
contrast of endmember 3 corresponds to the flat BV-NECL wlineFigure 4. The implication
to mission planning is that data collection might be manafggdcomplex scenes with multiple
backgrounds to detect potential plumes over those segneéritee scene most conducive to their
detection.

Figure 3. Segmented Basis Vector NECL Values: Group 1. NECL valueshier50 unit
vectors (corresponding to the 50 spectral channels) wemguted at 7 different plume
temperatures from-5 °K to +20 °K more than the average ground temperatiire6 °K.
Only the pixels assigned to Group 1 were used in the caloulsti
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The BV-NECL values can be used to make inference about trextiten capability of single-peak
gases. The appropriate BV-NECL values can be scaled byiudgioy the maximum absorbance of
the gas to estimate its NECL values. For example, consideroBioethane (Gas 7) from the AHI
chemical library shown in Figure 6. For this gas, we are corexe with the BV-NECL values for
the 6th channel where the maximum absorbance is 0.00Q®#% 1) ~!. We can compare the scaled
6th channel BV-NECL values to the actual empirical NECL eslicomputed for Gas 7 across the
11 groups (see Table 2 for comparisons using7a°K temperature plume). We set a detection
critical value for a 1% probability of false alarmPf,) at 2.326 xBV-NECL/0.000345. We also
estimate the minimum detectable level that gives 95% prilibabf detection (7;) at that 1%F;,
as(2.326 + 1.645) x BV-NECL/0.000345 =3.971 x BV-NECL/0.000345. Here 2.326 and 1.645 are
z-scores of the Gaussian distribution corresponding tptababilities of 0.01 and 0.05.

Table 2 gives the estimated MDCL for485°K plume temperature across the 11 groups in the AHI
image. The table also provides the empirieal andF; values for critical values set using the BV-NECL
values. All of the empirical, values are higher than the nominal 124,. The empiricalP; values,
assuming a gas concentration-pathlength at the BV-NEGedb@&stimated MDCLs, are only slightly
lower than the nominal 95%. The differences between the matand empirical; and Py, values are
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Figure 4. Segmented Basis Vector NECL Values: Group 3. NECL valueshier50 unit
vectors (corresponding to the 50 spectral channels) wemguoted at 7 different plume
temperatures from-5 °K to 420 °K more than the average ground temperatiire( °K.
Only the pixels assigned to Group 3 were used in the caloulsiti
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Figure 5. Segmented Basis Vector NECL Values: Group 11. NECL values fo
the 50 unit vectors (corresponding to the 50 spectral cHaypwere computed at 7 different
plume temperatures from5 °K to +20 °K more than the average ground temperature
311.9 °K. Only the pixels assigned to Group 11 were used in the caticuis.
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due to differences in the tails of the within-pixel group temed matched filter distributions compared
to the Gaussian distribution. In this case, the tails of tmpiecal distribution are heavier than the
Gaussian distribution. Using the Gaussian to make inferabout quantiles for small probabilities (less
than about 2%) are inaccurate. The heavier tails are pryloaigl to mixed pixels.

The estimated MDCLs range from 218 to 5gpm-m with three values below 280, three values
between 320 and 400, three values between 400 and 500, angatwes over 500. The range
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Figure 6. Gas 7 Absorbance Spectrum.
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and distribution of these results indicate that segmentiregscene reveals important differences in
detectability over the various backgrounds that warransimeration in planning a data collection.

This study used a gas with a single dominant spectral pealwhitedned matched filtering to produce
the empirical detection estimates. The single-peak gasseksted to demonstrate the BV-NECL
method because it represents the simplest challenge amdafyunding factors that might be associated
with multi-peak gases are eliminated. If the method faileg@rovide useful results with this gas, then
any promising results with multi-peak gases would veryllikee arbitrary. Initial efforts to apply the
BV-NECL technique to multi-peak gases indicate that extegthe method to these gases will require
further development. Additionally, we used whitened mattfiltering because itis a common technique
for gas detection in hyperspectral images. How the BV-NE&ihhique performs with other estimators
has not been investigated.

4. Conclusions

We presented a method for predicting the detectability of ttaseous plumes in hyperspectral
images. The novelty of this method is that using basis vedtmreach of the spectral channels of a
collection instrument to calculate NECL values insteadlwfry gases provides insight into regions of
the spectrum where gas detection will be relatively easiéaoder, as influenced by ground emissivity,
temperature contrast, and atmosphere. We also relaterém [yer physics-based radiance model to
NECL values, to SNRs, and finally to MDCLSs.

We segmented an AHI image and analyzed it with these techaiqQur results indicate that there
are meaningful differences across the MDCLs calculatedHerscene segments with a factor of 2.5
between the highest and lowest MDCLs (5g@mm versus 218ppmm). The implication is that
data collection planning could be influenced by informatadoout when potential plumes are likely
to be over background segments that are most conduciveedotaet. Our results also show that these
considerations are most important with small temperatargrasts between the ground and plume. As
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Table 2. Comparison of estimated and empirical detectability fos Gaising+-5 °K plume

temperature.
Pixel | Number Scaled Empirical Empirical Estimated Empirica
Group | of Pixels BV-NECL NECL Py, MDCL P,
(ppmrm)  (ppm-m)  (nominal 1%) ppm-m) (nominal 95%)
1 14,407 55.0 56.6 2.33% 218 94.1%
2 4,716 127.7 118.7 1.42% 507 95.1%
3 2,627 87.9 85.7 2.09% 349 94.5%
4 3,588 101.8 100.1 2.90% 404 94.6%
5 12,049 99.0 86.8 2.34% 393 97.0%
6 14,675 80.6 85.2 2.64% 320 93.2%
7 6,051 123.0 124.1 2.89% 488 93.2%
8 1,530 70.0 65.2 1.63% 278 94.8%
9 5,876 136.0 131.3 2.26% 540 93.9%
10 17,752 117.5 111.9 2.32% 467 93.1%
11 924 57.8 57.1 1.52% 230 94.4%

the difference in temperature increases, the BV-NECL safjet smaller, indicating that gases are easier
to detect, and channel-to-channel differences across B¥iNvalues decrease.

The example we present is for a single-peak gas. Our resutissthe 11 scene segments for this gas
and for other single-peak gases indicate that we get vergt ggreement (within a few percent) between
the scaled BV-NECL values and empirical NECL values esthdty mean-centering and whitened
match filtering each of the scene segments with the basisngedEstimating scaled NECL values and
MDCLs for multi-peak gases is a challenging problem and aa &r additional research.
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