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Abstract: Wireless sensor networks (WSNs) generally have a many-to-one structure so
that event information flows from sensors to a unique sink. In recent WSN applications,
many-to-many structures evolved due to the need for conveying collected event information
to multiple sinks. Privacy preserved data collection models in the literature do not solve the
problems of WSN applications in which network has multiple un-trusted sinks with different
level of privacy requirements. This study proposes a data collection framework bases
on k-anonymity for preventing record disclosure of collected event information in WSNs.
Proposed method takes the anonymity requirements of multiple sinks into consideration
by providing different levels of privacy for each destination sink. Attributes, which may
identify an event owner, are generalized or encrypted in order to meet the different anonymity
requirements of sinks at the same anonymized output. If the same output is formed, it can
be multicasted to all sinks. The other trivial solution is to produce different anonymized
outputs for each sink and send them to related sinks. Multicasting is an energy efficient data
sending alternative for some sensor nodes. Since minimization of energy consumption is
an important design criteria for WSNs, multicasting the same event information to multiple
sinks reduces the energy consumption of overall network.
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1. Introduction

Recent technological advances produce low cost wireless sensors for observing many physical
phenomena of the world like temperature, humidity etc. As wireless sensor technology takes progress,
the missions of WSNs get complicated; they are used in human, enemy, habitat, structure or
traffic monitoring applications. With the advent of wireless body networks, applications for health
monitoring of patients outside the hospitals or home-caring of elderly people have been designed and
implemented widely.

Recent WSNs have begun to collect much more information than simple WSNs observing temperature
or humidity value of an environment. In an addition to spatio-temporal information of an event,
especially in object monitoring applications, other attributes of monitored objects are gathered by
sensors. For example, traffic monitoring applications collect velocity, direction and size information
of a vehicle.

As the complexity of wireless sensor applications increase, structures of WSNs have evolved in order
to meet the new application requirements. WSNs generally have many-to-one structure so that sensors
collect event information from the area and send to a unique sink. Some recent sensor applications
have begun to use many-to-many structure, which means that there exists multiple sinks in the deployed
environment. WSN application may need to send the same event information to different sinks rather
than a unique sink. For example, in a home-caring application for elderly people, information about the
elderly person can be sent to a family member and a nurse at the same time.

As the capability of WSNs improves, privacy preserving is becoming one of the major problems
in these networks. Huge amount of information about an individual is collected and distributed.
Individuals generally need to restrict the details of personal information. Therefore, countermeasures
for privacy threats have to cover both needs: enable data collection and restrict the storage of some
private parts.

Network and database communities approach the privacy problem from different aspects. The
network community mostly thinks that hiding sender and/or receiver in network communications is the
prominent privacy problem. Privacy threat models presented by this community are based on concealing
communication profiles against traffic analysis attacks. These attacks focus on external threats like global
or local eavesdropping.

On the other hand, database community uses “data” per se as the subject of privacy. They bring
solutions for privacy preserved storage and sharing of data. However, privacy models are not suitable for
the actual needs of network applications, where data is gathered from users and relayed to data collectors.
There are some models that fully trust data collection parties, which are not very realistic in most of the
cases. There are some other models that consider data collector as an un-trusted entity. However, in such
models, privacy preservation is provided by sending perturbed data to the data collector, which limits the
types of analysis that can be performed by data collector.

Also, data collection models do not meet the requirements of having many data collectors with
different privacy levels, which may be the case in a WSN. This issue has to be dealt by WSN designers.
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In most of the WSNs, minimization of energy consumption is one of the primary criteria due to limited
battery capacity or unavailability of battery replacements. All other security countermeasures as well as
the privacy preserving solutions have to perform their works with minimum energy.

In this study, privacy preserving data collection framework is proposed for WSNs. The framework is
based on a network model which has multiple un-trusted sinks. Privacy requirement level of each sink is
assumed to be different from each other, which can be a realistic scenario in recent WSN applications.
Our proposed framework meets all the privacy requirements while consuming low amount of energy.

This paper is organized as follows: In Section 2, motivation of the study and some background
information are given. This section also includes the description of threat/network model and statement
of our contributions. Section 3 discusses the details of proposed anonymization method. Section 4
shows the experimental results of simulations. Literature review of the topic is presented in Section 5
Section 6 concludes the study.

2. Motivation and Background

Privacy is the ability of an individual or group to decide which information about themselves should
not be disclosed or which information would be revealed to whom. Therefore, a privacy framework have
to use methods which can be easily adapted to different requirements of applications and users.

The wide usage of WSNs in monitoring applications makes people’s life easy but they may cause
violation of privacy. Untrusted parties can access the collected information by eavesdropping, physically
capturing the sensors, or bypassing authentication to remotely access sensors or central databases [1].
Data encryption, key distribution and authentication mechanisms can limit the effects caused by these
types of threats. Applicability of these mechanisms are not straightforward in WSNs, due to limitations
like physical capturing possibility of cryptographic credentials or limited battery usage. Many studies
proposed various methods in order to solve these security problems under the limitations of WSNs [2,3].

Restricting the details of information gathered by WSN is required for limiting the privacy risks
originated from untrusted parties. On the other side, privacy requirements of individuals also force the
designers of WSNs to carry out some restrictions for data shared with trusted parties. These trusted
parties are actually sinks in WSNs. There are mainly two reasons for these types of requirements: First,
the trusted party can be captured physically by un-trusted parties. Especially in applications where
attackers have high motivation or where major vulnerabilities exist, including lack of physical security,
data shared with trusted parties have to obey some privacy criteria. Enemy tracking, health monitoring,
or wild-life monitoring applications are examples for these types of applications. The second reason
is that individuals generally want to hide detail information of their personal lives directly from the
trusted party. For example, in applications where health monitoring is performed outside the hospital,
individuals do not want their exact location and time information to be sent to hospital particularly in
non-urgent times. However, they may want to weaken their privacy requirements in urgent times in
order to get appropriate medical helps. If there are many sinks in WSN, requirements of individuals may
change for each sink as well. Revisiting health monitoring applications, information about individuals
may be sent to the family members as well as to hospital. In these applications, individuals may be
willing to share more detail information with their family members but not necessarily with the hospital.
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2.1. Privacy Preserving Data Publishing vs. Privacy Preserving Data Mining

Many studies about data privacy has been done in the database field under the name of “privacy
preserving data publishing” [4]. The main aim is to provide privacy of data tables which are exchanged
by other parties. At first glance, it may be assumed that privacy problem can be easily solved by stripping
off the attributes which identifies individuals like name, social security number, etc. However, it is
shown that it is possible to identify the owner of a record by using the residual data and other public
information sources. This attack is called “re-identification attack” [5]. Re-identification attack is based
on the assertion that some attributes, called quasi-identifiers, can easily help to identify the individuals
although they do not uniquely identify them. Anonymity, which is defined as being not identifiable of
an individual within set of individuals [6], is used as a privacy criterion in order to make data resistant to
“re-identification attacks”. “k-anonymity” brings a specific restriction to anonymity so that an individual
is hidden among at least k other individuals [5]. Quasi-identifier attributes are generalized or suppressed
in order to meet the requirements of anonymity. In a generalization operation, attribute is replaced by a
more general one like replacement of birth data “04.05.1977” by 1977. One attribute or all attributes of
a record are deleted in a suppression operation. These operations cause information loss so anonymity
solutions intrinsically try to solve a trade-off between information loss and privacy. They try to cause
minimum information loss while achieving the required level of privacy.

Privacy preserving data mining is another major field in privacy studies [7]. Privacy preserving data
mining techniques perturb the original data so that application of data mining techniques to perturbed
data will give the same accurate mining results. However, the party that obtains perturbed data has no
possibility to obtain the original data that may violate the privacy of data owners. Some attributes of
data records may be modified with false data, they may be swapped among different records or totally
artificially created new records can be inserted to original data sets at the data owner side.

Privacy preserving data publishing techniques do not change the truthfulness of data at record level.
They try to collect information as much as possible. They aim to provide data for widespread categories
of data analysis tasks. In situations where the details of data analysis that would be performed by data
collector party is not known in advance or there is a huge need for performing various types of analysis
tasks at data collector side, data publishing techniques are preferred. The proposed framework in this
paper is based on privacy preserving data publishing.

2.2. Privacy Preserving Data Collection Models

Studies on privacy problem mostly concentrated on achieving collection and sharing of data under
the required privacy constraints in order to make efficient knowledge-based decisions. Data collection
refers to the conveying of user data from data owners to a central data collector. In some situations,
data collector may share this data with other third parties. Privacy preserving data collection is modelled
according to the trust level between data owner and data collector party. These models are categorized
into two categories, trusted data collection model [4] and un-trusted data collection model [8].

In trusted data collection model, [4] as shown in Figure 1, data is collected from data owners by
data collector party named as data publisher. Data publisher shares data with data recipient who will
actually use it for performing a required data analysis task. Here, data collection and data sharing are
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separate operations. A generic example is the application where hospitals share medical records with
medical research institutions. In this example, data owners are patients, data publishers are hospitals
and data recipients are medical research institutions. Data publishers collect all the details of records of
data owners (R1, R2, · · ·Rn) but they are required to share privacy preserved data with data recipients.
Data owners do not trust data recipient parties; however, they are required to fully trust data publishers
in completing privacy preserving operations. Also data owners have to be sure that their data is not
maliciously or unintentionally used for illegal duties by staff of data publishers.

Figure 1. Trusted data collection model.

An intrinsic assumption of this model is that data publisher does not know the details of analysis
or data mining tasks which will be performed by data recipient. This may be due to situation that data
publisher lacks technical expertise in the corresponding analysis methods or data publisher does not even
know what type of analysis will be done on shared data in data recipient part. Privacy preserving data
publishing methods are used to cover the requirements of this model.

In un-trusted data collection model as shown in Figure 2, data owners send their records to data
collector but they do not trust it. Data collection and data sharing do not occur separately as in the
trusted model. Privacy preservation has to be done at the data owner side and privacy preserved data
(R

′
1, R

′
2, · · ·R

′
n) are collected by data collectors. Privacy preserved data mining methods use this model.

In network applications that collect data from users, determination of analysis and mining tasks in the
network design stage may limit the capability of this data collection system. Also, the requirements of
analysis tasks may change with time. Therefore, in most of the time, privacy preserved data publishing
methods are more useful in data collection applications. On the other side, these methods require
a trusted data collector party or data publisher which collects centrally all the data. However, data
owners may not fully trust them. Any person with malicious intent in the data collector site may
have possibility to reach all the private data. Another possibility may be that due to inefficiency of
security countermeasures at the data collector site or security problems during data collection operations,
attackers can obtain private data. Data owners generally may want data to be privacy preserved before
reaching these parties. Also, it is possible as in WSNs so that more than one sinks having different levels
of privacy requirements may exist in the network. Therefore, a new model has to be devised so that
privacy preserving data publishing methods can be applied for several un-trusted data collectors having
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different privacy needs. Since privacy preserving data publishing methods have to work on different
users records for anonymization, they have to be collected somewhere before untrusted data collectors.

Figure 2. Untrusted data collection model.

A required model for privacy preserved data collection is shown in Figure 3. In this model, data
owners send their data to local trusted parties. Appropriate privacy preserving operations are done at
these local ones and privacy preserved data is sent to the data collector, which is untrusted for users.
Since local data collectors are distributed, compromising one collector does not compromise all data
in this model. If truthfulness of collected data records are allowed to change, privacy preserved data
mining techniques can be applied as privacy preserving operations. On the other side, privacy preserved
data publishing techniques are the most appropriate ones if data collectors do not tolerate changes in
data truthfulness.

Figure 3. Distributed trusted data collection model.
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2.3. Threat and Network Model

Threat model is based on the requirement that data gathered by sinks has to have k-anonymity property
in which different sinks require different amounts of k value. This means individuals who are owner of
sensed data do not want sinks to identify their records among other records of k individuals within a
data collected in a specified time-frame through the quasi-identifier fields of records. For simplicity, it
is assumed that one event record is generated for each individual within that time-frame. The required
privacy levels of each sink differs so that, suppose there are n sinks, each ith sink has a privacy level pi
where each level requires to share ki-anonymous data with ith sink and inequality of k1 < k2... < kn

is valid.
Sensors are clustered in separate sensor groups according to sensor localizations where each group

has a group head sensor. In our network model which is shown in Figure 4, each sensor conveys its
readings to group heads, they k-anonymizes data and send this k-anonymized output to each sink.

Figure 4. Network model.

If we compare network model of WSN with privacy preserved data collection model given in
Figure 3, it can be stated that each group head sensor acts as a local trusted party and each sink is
assumed an untrusted data collector.

Threat model does not directly address confidentiality of data in transit. However, data which is sent
from group head sensors to sinks have kn-anonymity property. By eavesdropping on this data, attackers
can obtain only kn-anonymous data.

Resistance to active attacks like malicious node attacks and false packet injection ones are out of the
threat model scope.
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2.4. Our Contribution

In this paper, k-anonymity notion is adapted as a privacy framework for WSN applications having
multiple sinks. Collected event information is iteratively k-anonymized for all sinks each having different
privacy levels. Encryption operation with appropriate key management schema is used in addition to
generalization in order to meet the different requirements in one k-anonymized output. Achieving all
privacy requirements in one output considerably decreases the energy consumption so that this output can
be multicasted to multiple sinks instead of sending different outputs for each sink. Bottom-up clustering
idea is used during k-anonymization process.

3. Proposed Anonymization Method, Iterative k-Anonymous Clustering Method (Ik-ACM)

Proposed k-anonymization method, iterative k-Anonymization (Ik-ACM), is based on the
k-Anonymous Clustering Method given in [9]. Ik-ACM basically produces a common k-anonymous data
that meets each requirements of sinks by the help of encryption operation in addition to generalization
operation. The main aim is to meet the privacy requirements with the minimum information loss. Sensor
nodes directly transmit their sensed data to their group head sensors. After anonymization of data by
using encryption and generalization at group head node, anonymized output is sent to each sink. Each
sink decrypts the related encrypted parts and obtains data with required level of privacy.

Ik-ACM is based on hierarchical bottom-up clustering idea. Quasi-identifier attributes of records are
extracted from event data and they are fed as input vectors to iterative hierarchical clustering process. The
basic idea is to partition the input vectors into clusters where each cluster has at least k vectors. During
the clustering, each cluster generates a representative vector which contains common generalized values
or encrypted versions of attributes of all vectors belonging to that cluster. Vectors of clusters are all
replaced with this representative vector in the anonymous output. Since an appropriate distance function
is used during clustering and appropriate generalizations, this replacement is expected to create minimum
information loss. k-anonymization work takes place in group head sensors.

Subsection 3.1 explains how collected information is represented in our proposed method. In
Subsection 3.2, distance metric which is used in the clustering process is described. Subsection 3.3 briefs
how a common output is formed for meeting the needs of each sink. Subsection 3.4 gives the details of
bottom-up clustering process which is the core of the proposed method. Subsection 3.5 investigates the
computational complexity of method. Subsection 3.6 explains the details about the usage of proposed
method in a WSN topology so that energy consumption is minimized.

3.1. Data Representation

Suppose input data is a table T having m attributes, r records. Tij , represents the j’th attribute of
the i’th record where, {i : 1 ≤ i ≤ r} and {j : 1 ≤ j ≤ m} . Table T is represented by a set of bit
strings B, where Bij is bit string representation of j’th attribute of i’th record. k’th bit of Bij is shown
as Bij(k). Suppose that j’th attribute of table is categorical and there are dj distinct values. These values
are indexed by k and shown as Vj(k)where {k : 1 ≤ k ≤ dj}. Bit string of this categorical attribute has
a size of dj and formed as follows:
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If Tij = Vj(k) then Bij(k) = 1 else Bij(k) = 0 as ∀k : 0 ≤ k ≤ dj ,
If attribute is numerical, the range of attribute is divided into equal-sized intervals. Assume that j’th

attribute is numeric and attribute range is divided into dj number of intervals. Each interval is indexed
by k. Bit string representation of this numeric attribute has a size of dj and formed as follows:

If Tij intersects with k′th interval, then Bij(k) = 1 else Bij(k) = 0 as ∀k : 0 ≤ k ≤ dj

Any attribute of original data before anonymization process has only one true bit in its bit string.
However, the number of true bits increase due to the information loss during anonymization.

3.2. Information Loss Metric

Calculating the data loss of k-anonymous data is needed to predict the performance of our proposed
method under different k-anonymity parameters. In our study, we use the entropy concept of information
theory to measure the information loss [10]. The difference of entropies between the k-anonymous data
and the original data constitutes the information loss. Suppose that T is the input data set having r

records and m attributes, B is the bit string representation of this data set and C is the random variable
that gets the probability value of an attribute value in a k-anonymous data entry being the actual attribute
value in the original data. Assume that all the entries of B is normalized according to the number of bits
having value “1” in that entry (from now on we refer “true bit” to a bit having value “1”) and normalized
version forms data set B. A sample data set is shown in Table 1. Here, there are two records; each record
has three attributes; each attribute is categorical and each has five distinct attribute values. Table 2 shows
the normalized version of data. During normalization, each entry is divided by the number of true bits in
the corresponding bit string entry.

Table 1. A sample bit string representation set.

Records Bi1 Bi2 Bi3

T1 00010 01000 10000

T2 01100 11100 01111

Table 2. A sample normalized version of bit string representation set.

Records Bi1 Bi2 Bi3

T1 00010 01000 10000

T2 01
2
1
2
00 1

3
1
3
1
3
00 01

4
1
4
1
4
1
4

Information loss of a data table T , IL(T ), is equal to the conditional entropy, H(C | B). Here,
conditional entropy gives the uncertainty about the prediction of the original attribute values of a record
when we have the knowledge of corresponding k-anonymous bit strings of that record. Original data has
only one true bit in each bit string because each original data entry corresponds to one attribute value.
However, in k-anonymous data, each entry may have more than one attribute value and each attribute
value is represented by an additional bit. Therefore, if an entry has only one true bit, that entry does not
have information loss. In this situation, we have no doubt that this true bit is the true bit that comes from
the original data. As the number of true bits increases, disorder of the data increases because it is harder
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to predict which one of them is the original true bit. Prediction gets harder because information is lost
due to the increase in the number of true bits. Conditional entropy, which is used in order to calculate the
disorder of the data, is a well measurement tool for the information loss. Conditional entropy H(C | B),
which is equal to information loss of table T , IL(T ), can be found as follows:

IL(T ) = H(C | B) =
∑

Bij∈B p(Bij)H(C | B = Bij)

IL(T ) = −
∑

Bij∈B
p(Bij)

∑
k∈{1..z}

p(C = k | Bij) log p(C = k | Bij) (1)

In Equation 1, it is assumed that each attribute is converted to bit strings having size z. This means
all categorical attributes have z distinct attribute values and all numerical attributes have z number of
interval ranges. Also, it is assumed that all k’s, where the equalities of p(C = k | Bij) = 0 are true, are
excluded from the summation. C random variable can take values from the set {1..z}. Actually, B is
calculated for finding the value of this random variable.

p(C = k | B = Bij) = Bij(k) for each k : 1 ≤ k ≤ z (2)

In Equation 1, it is assumed that each record has equal probability to be chosen and each attribute
of record has the same probability, therefore probability mass function of j’th attribute of i’th record,
p(Bij), is calculated as p(Bij) =

1
m.r

. Equation 1 can be rewritten as follows:

IL(T ) = −
∑

Bij∈B

1

m.r

∑
k∈1..z

Bij(k). logBij(k) (3)

Suppose that F is the array that contains the number of true bits of the bit string array B. Total number
of true bits in Bij is Fij . Total number of elements in Bij(k) that has the value of 1

Fij
is equal to Fij ,

and the rest is zero. Therefore, the second sum operation of Equation 3 yields the value, log 1
Fij

. The
simplest equation for the information loss of data table T , IL(T ), can be calculated as follows:

IL(T ) = −
∑

Fij∈F

1

m.r
log

1

Fij

=
1

m.r

∑
Fij∈F

logFij (4)

3.3. Iterative Anonymization Model

In the WSN, there are n sinks, m sensors and m.(n − 1) symmetric encryption keys. Each sensor
shares different key with each sink. Sharing is performed by physically deploying of keys to the sensors
and to the sinks during network set-up phase of WSN. Since, it is not known which sensor will be group
head during the operation of WSN, all sensors share different key with each sink.

lth sensor shares key with pth sink which is labelled as elp. ith sink contains list of the keys of all
sensors as eli, e

l
i+1, ..., e

l
n−1 where 0 < l < m.

Each sensors store n − 1 keys. Practically, the number of multiple sinks may be between 2 and 5,
sensors can easily store this number of keys in their limited memory. On the other side each sink contains
the number of keys between 0 and m.(n − 1) keys. Since sinks can have memories with higher sizes,
these number of keys can be stored in sinks easily.
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In the literature, there exist various group head selection and group formation methods [11]. It is
assumed that appropriate one used during formation of groups and selection of group head sensor. The
keys are assumed to be physically distributed to the sinks and to the sensors before deployment.

In the proposed method, anonymization is completed in n iterative steps as shown Figure 5 in each
group head sensor. Assume that we operate on lth sensor which is selected as a group head sensor during
WSN operation. In the first step, by using only generalization operation, input data is k1-anonymized.
In the second step, k1-anonymized data is k2-anonymized by encrypting the chosen data parts with el1.
For each ith step to nth step, anonymization is done by encryption using key, eli−1. The output after nth

step is multicasted to all sinks.

Figure 5. Steps of iterative anonymization.

After the arrival of anonymous data to sink from lth group head sensor, each sink decrypts the data
with their keys. The resulting data after decryption actually has the level of privacy required for that
sink. ith sink can only decrypt the data which is encrypted after the ith iterations; because it has the
corresponding keys. Data parts encrypted by the keys, el1, e

l
2, ..., e

l
i−2, cannot be decrypted, therefore

they can be considered as suppression operations for that sink. 1st sink, which has to get data with
lowest privacy criteria, can decrypt all the encrypted parts and the result data is actually k1-anonymized.
On the other hand, nth sink has no key and gathers data as kn-anonymized.

3.4. Bottom-Up Hierarchical Clustering Process

Ik-ACM is based on forming clusters of input vectors iteratively. Input data to Ik-ACM is represented
as T and ith input vector is Ti. Each cluster is numerated as Lh

j in each iteration, h, where j is the
index number of cluster. Input vector set of cluster Lh

j is represented by V h
j , the number of input

vectors belonging to that cluster is |V h
j |, and representative vector is Rh

j . Suppose that kth data item
of representative vector is denoted as Rh

j [k]. Representative vector is actually the anonymized output
of input vectors belonging to that cluster which is formed by generalization and encryption operations
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of some data parts of vectors. Assume that Dh is distance matrix of iteration h. It contains distances
between each cluster pairs.

Algorithm of Ik-ACM is given in Algorithm 1. Hierarchical clustering process starts with the
initialization phase given in second step of main function. In this phase each input vector constitutes
separate cluster and that vector is also representative vector of the cluster. As given in the fourth phase
of algorithm, iterations are divided into anonymization steps. Iterations continue until nth-anonymization
step. In each iteration, by using the information loss metric described in Section 3.2, distances between
each cluster are calculated. Distance between any two clusters is actually equal to the information loss
that may occur if both clusters are merged. Two clusters having smallest distance, assume that clusters,
Lh
s and Lh

t , are chosen for merging. New bigger cluster, Lh+1
u which contains the vector items of both

clusters is formed and old two clusters are deleted. |V h+1
u | is equal to the sum of |V h

s | and |V h
t |. For

the first step of cluster operations (k1-anonymization stage), anonymity operation is generalization. In
these generalization operations, Rh+1

u [k], is equal to the XOR of Rh
s [k] and Rh

t [k]. Encryption is used as
an anonymity operation in all anonymization steps except k1-anonymization. Assume that two clusters,
Ls
h, Lt

h are chosen as the closest cluster pair at hth iteration of Ik-ACM and this iteration corresponds to
(i + 1)th-anonymization step. The newly created cluster is labelled as Lst

h and Eei−1
(x) represents the

encrypted output of input x with key ei−1. Formation of representative vector for newly created cluster,
Rst

h , is given in Algorithm 2.
A sample cluster combination by encryption operation is shown in Figure 6. Assume that represented

vectors of two closest clusters, Lh
t and Lh

s are ‘0011 0010 1000’ and ‘0100 0010 1000’, respectively. The
values of vectors indicate that data records have three attributes each having four distinct attribute values.
First bit strings of vectors, ‘0011’ and ‘0100’ are compared. Since they are not identical, concatenation
of values are encrypted. This encryption result forms the first bit string of representative vector of newly
created cluster, Lh+1

ts . Second bit strings of clusters, ‘0010’ and ‘0100’, are identical. Therefore, second
bit string of new cluster is also ‘0100’. By using the same method, third bit string is found as ‘1000’.

Clustering process occurs in each iteration of anonymization model described in Section 3.3. In
that model, each iteration takes ki-anonymized output, clustering operations are completed until data is
ki+1-anonymized. In the first iteration raw data is k1-anonymized by generalization operations. In the
second one and the rest of all iterations data is anonymized to a higher level by encryption operations
where different key is used in each iteration.

The anonymized output of Ik-ACM is actually the representative vectors gathered at the end of nth

steps. The formation of output is given in fifth and sixth phases of main function given in Algorithm 1.
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Algorithm 1. Ik-ACM Algorithm.

Function Cluster Combination
Input : parameter, k, distance matrix, Dh, key, elstep no−1, anonymization step, step no
Output: New cluster, Lh+1

u , updated distance matrix, Dh+1

1. Find clusters, Lh
s , Lh

t , having minimum distance in distance matrix Dh;
create a new cluster Lh+1

u

2. V h+1
u ← V h

s

∪
V h
t

3. |V h+1
u | = |V h

s |+ |V h
t |

4. If step no == 1

For each zth bit string of representative vector, Rh+1
u [z] = Rh

s [z] OR Rh
t [z]

else
Rh+1

u ← Function Form Encrypted Representative Vector (Lh
s , L

h
t , estep no−1)

(Function is given in Algorithm 1.)
5. Remove clusters, Lh

s , Lh
t

6. Find the distance of Lh+1
u to other clusters, update Dh+1

Main Function Ik-ACM

Input : Table, T , number of records, r, number of attributes, m, number of sinks, n,
anonymization parameters k1, k2, ..., kn, index of group head sensor, l
Output: Anonymized table, Ik-ACM(T )
Initialization
1. h = 1

2. for all i where {i : 0 < i < r}
2.1. Create cluster array, {L1

i }
2.2. Add record, Ti to V 1

i

2.3. Set initial size of cluster, |V 1
i | = 1

2.4. Initialize the representative vector, R1
i ← Ti

2.5. Initialize the distance matrix D1 by using Equation 4
Iterative steps for multilevel k-anonymization
3. step no = 1

4. while step no ̸= n

4.1. while not for each cluster |V h
i | ≥ kstep no

4.1.1 Call Function ClusterCombination (k, Dh,elstep no−1,step no)
4.1.2 h=h+1

4.2. step no=step no+1
Form the output of Ik-ACM
5. Ik-ACM (T) is initialized to empty set
6. for each cluster, Lh

s in Lh where {s : 0 < s < |Lh|}
6.1. Append Rh

s and |V h
s | to Ik-ACM(T )
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Algorithm 2. Forming of representative vector.

Function Form Encrypted Representative Vector

Input : Representative vectors, representative vector, Rs
h, representative vector, Rt

h, key elstep no−1

Output:Representative vector of new cluster, Ru
h+1

For each attribute m

if Rs
h[m] = Rt

h[m] then
Ru

h+1[m] = Rt
h[m]

else
Ru

h+1[m] = Eelstep no−1
(Rs

h[m]||Rt
h[m])

Figure 6. A sample case for cluster combination with encryption operations.

3.5. Complexity Analysis of Ik-ACM

Ik-ACM bases on the k-Anonymous Clustering Method given in [9]. In terms of complexity analysis,
they do not differ with each other. In this subsection, complexity analysis is described as in [9].

Suppose that Ik-ACM works on an input consisting of n event records and each record has m

attributes. All of the m has distinct V different attribute value. Initialization phase mainly calculates the
initial distance matrix and the running time of this part is O(n2.m.V ). Initially there are n clusters and
at the end of kn-anonymization phase, the minimum number of clusters is n/kn. Therefore, n − n/kn

cluster combination operation occurs. Cluster combination consists of finding the minimum distance
in the distance matrix and matrix reorganizing so that the distance values of new cluster are added
and distance values of previous clusters are removed. If binary heap structure is used for finding
minimum distance, formation of initial min heap structure with n2 elements is O(n2). In a heap,
finding the minimum operation is O(1). However, removing distances of merged clusters from heap
and adding the distances of new cluster to the heap need 2n deletion and n addition operations which
cost O(n log(n)). Reorganization of distance matrix can be done in O(n.m.V ) time sequentially with
maintaining the heap. As a result, cost of each cluster combination operation is O(nlogn + nmV ).
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Recall that maximum number of cluster combination operations is n − n/kn, the algorithm reaches
to the end of kn-anonymization phase in O(n2logn + n2mV ). Forming the output of Ik-ACM takes
O(n/kn.m). Formation of output does not change the overall running time. Totally, Ik-ACM takes
O(n2logn + n2.2mV ). m and V generally have lower values so they can be assumed as a constant
factor. The running time can be fine-tuned to O(n2logn).

3.6. Multicasting and Energy Saving

Main aim of k-Anonymity solutions is providing the required privacy level with minimum information
loss. However another factor, minimization of energy consumption, is an important criteria in
WSNs. A sensor node consumes energy for different processes like event sensing, CPU processing,
or transmitting/receiving data packets. Among these processes, transmission/reception operations
consumes much of the energy. Table 3 shows energy consumption rates for transmission/reception which
are published in technical report written by Carman et al. [12]. It is stated that energy consumption
ratio of transmission/reception of one byte data to energy consumption of encryption of one byte data
is 2333.34. Since each sensor node acts as a router for the messages of other nodes and one message goes
over many hops in the network, energy saving for transmission/reception operations becomes a crucial
design criterion. Shortening the length of messages and decreasing the number of travelled hops would
help to reduce energy enormously.

Table 3. Energy consumption ratios.

Energy Consumption Ratios Ratio Value
Transmission/Reception 1.5
Transmission/Encryption 2333.34
Encryption/Decryption 1

In a WSN topology where there are multiple sinks and each sink has different privacy criteria, the
basic solution of anonymization is that group head sensor anonymizes the data, produces different
outputs for each requirement of sink and sends each output to related sink in different paths as shown
in Figure 7 (in this figure, there are two sinks in WSN). This sending method is called as multipath.
However, Ik-ACM produces unique output which is ready for multicasting. One anonymized output that
guarantees all the privacy requirements, is sent to a multicast point. After reaching to multicast point,
one copy of data is sent to sink1 and the other copy is sent to sink2 as presented in Figure 8. Multicasting
schema decreases the number of travelled hops for some group head nodes.

Assume that there are two sinks named Sink1, Sink2. Sink1 requires k1-anonymized data and
Sink2 requires k2-anonymized data. The lengths of anonymized outputs are lk1 and lk2, which
are obtained by k-anonymization with only generalization operation for having k1-anonymized and
k2-anonymized data, respectively. Data length of anonymous data generated by Ik-ACM is labelled
as lIkACM . The number of hops in the shortest route from group head sensor, G, to Sink1 and Sink2 is
represented as hG,Sink1, hG,Sink2 respectively. Also assume that the hop distance between G and multicast
point, M , is hG,M , distances from M to Sink1 and Sink2 are hM,Sink1 and hM,Sink2, respectively. Unique
anonymized data is sent to, M , if an appropriate node exists in the network which holds the Inequality 5.
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Among the possible node candidates, the one which minimizes the value of hG,M + hM,Sink1 + hM,Sink2

is chosen.

(hG,Sink1.lk1) + (hG,Sink2.lk2) > (hG,M + hM,Sink1 + hM,Sink2).lIkACM (5)

Figure 7. Routes when multiple k-anonymized outputs are generated.

Figure 8. Routes when Ik-ACM anonymized output is multicasted to sinks.

If there is no appropriate M point, group head nodes prepare output for each sink and send them in
different paths to sinks by multipathing. Location of sinks and location of group head sensor effect the
selection among multicasting and multipathing.

Inequality 5 determines the level of energy consumption of multicasting and multipathing methods
since it includes number of hops and the length of messages. It is assumed that the location of sinks
are known by group head nodes and they are able to calculate the above inequalities with the routing
information they have. Also they form the outputs for multicasting and multipathing, calculate the
lengths of outputs, determine and use the best one in terms of energy saving.
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4. Performance Evaluation of Ik-ACM

In this part, information loss and energy saving trade-off is deeply investigated. Since the effectiveness
of multicasting depends on the locations of sinks and distribution of sensor nodes, different experiments
with different WSN topologies are performed.

Simulations are done by program that we developed in java. This program generates synthetic data
with five attributes which are all categorical. Each categoric attribute has five distinct attribute values.
Ik-ACM is implemented and synthetic data is k-anonymized. In experiments, WSNs with different
topologies are simulated and energy ratio calculations are performed according to Equation 7. Running
of experiments are performed in a laptop having 1.20 Ghz CPU and 2GB RAM.

First experiment investigates the effect of sink locations. The size of WSN field is set to 500m×500m.
Distance of each hop, R, is taken as 10 m. There are two sinks in the field, sink1 and sink2. It is
assumed that each sensor is uniformly distributed through the region. In every region having size of
10m × 10m, there is one group head sensor node. All the sensors convey their readings to their group
head nodes. Then, they anonymize data and relays it to the sinks. Each group head node calculates the
cost of multipathing and multicasting for a given set of data, chooses the best method for data sending.

The number of hops from sensor node to group head node and from group head node to sinks
are calculated and they are taken into consideration in calculation of energy consumption. Energy
consumption does not only depend on the number of hops; length of the messages are also important for
the final results. Message lengths are taken into account during energy calculations.

Assume that energy consumption of method named as “multipath method” is denoted as Emultipath.
Energy consumption of method that uses multicasting when appropriate is represented as Ehybrid. Energy
saving ratio, ES, is computed as follows:

ES = 1− Ehybrid

Emultipath

(6)

ES = 1−
∑

for·all·G min((hG,Sink1.lk1) + (hG,Sink2.lk2), ((hG,M + hM,Sink1 + hM,Sink2).lIkACM))∑
for·all· (hG,Sink1.lk1) + (hG,Sink2.lk2)

(7)

Values of k1, k2 are chosen as 3 and 6 respectively. Input records have five attributes each having
distinct four attribute values. The range of information loss is computed as [0.0 2.0] in this experiment.
If all group head nodes use multipath method, information loss for the data sent to sink1 is found as 0.44
and data loss for sink2 is 0.88. Total information loss of the whole system is 0.66 for multipath method.
If multicasting with Ik-ACM is used when appropriate, information loss for sink1 also does not change
since the first step of Ik-ACM is a normal k1-anonymization step. However, information loss of sink2
and energy saving ratios change. Table 4 gives the results obtained for different sink locations. Five
different locations as given in the first column are chosen. Second column presents total information
loss occurred in the system. The number of nodes using multicasting and multipathing methods are
shown in third and fourth columns. Last column gives the result of energy saving according to the case
when all nodes are using multipathing method.
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Table 4. Results of using hybrid and multipathing together with different sink locations.

Location of Sinks Total Info Number of Group Number of Group ES
(coordinates) Loss For Head Nodes Using Head Nodes Using (%)

(bits) Multicasting Method Multipathing Method
(0,0),(500,500) 0.73 716 1784 3
(0,0),(500,0) 0.79 1287 1213 6

(100,0),(400,0) 0.84 1813 687 14
(150,0),(350,0) 0.87 2137 363 22
(200,0),(300,0) 0.90 2406 94 32

As the sinks get closer to each other, it is observed that the number of group head nodes using
multicasting increase due to finding optimum multicast points. In the case where the sinks are located
in coordinates of (0,0) and (500,500), sinks have the maximum distance between each other. 716 group
head nodes, out of 2500 nodes, choose multicasting as the best alternative. Information loss increases
to 0.73 bits but energy gain is very limited, 3%. In this topology, the number of multicasting nodes is
lower and energy consumptions of hybrid and multipathing methods do not differ. If sinks are located in
coordinates (200,0) and (300,0), 2406 nodes choose multicasting. In this case, energy saving increases
to 32% and information loss increases to 0.90. Actually, there is a trade-off between data utility and
energy consumption. If there is a need for energy minimization and some sinks can tolerate additional
data losses, using multicasting when appropriate in some network topologies may be an efficient solution.

Other than the location of sinks, another parameter that may effect the efficiency of hybrid method
is the total size of WSN field. Figure 9 shows the overall performance results of WSN fields
having different sizes and different sink locations. As the size of sensor field increases, hybrid
method makes the network consume less energy. For example, when the sink coordinates are (0,0)
and (0,500), energy saving is 0.22 for WSN size, 500 m × 500 m, however gain rises to 0.35 for mode
wider size, 1,000 m × 1,000 m. Since, the distance between each sink is not different in both
situations, ratio of group head nodes which choose multicasting increases in wider WSN fields. In field
size 500 m × 500 m, 1287 of 2500 group head nodes choose multicasting. On the other side, in field
having sizes 1000 m × 1000 m, 8787 of 10000 group head nodes select multicasting option. The cost of
increasing the energy saving is the lower data utility since information loss increases to 0.88 from 0.79
in 1000 m×1000 m sized field. In experiments having sink locations like (0,0), (0,500) and (0,0),
(500,500), energy savings are nearly 3–6 sized fields which seem that hybrid method does not create
any promising results. However, in wider sized area like 1000 m × 1,000 m, hybrid method yields good
results so that energy saving is above than 20%, If the sink locations are (200,0) and (300,0) for a WSN
size 1,000 m× 1,000 m, energy saving is 40% which is maximum gain among the all experiments. Total
information loss rises to 0.91 from 0.66 if we compare hybrid with multipathing.
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Figure 9. Performance comparison of topologies with different WSN area sizes.
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5. Related Work

Studies on privacy problem mostly concentrated on achieving sharing of databases under the required
privacy constraints in order to make efficient knowledge-based decisions. Generic name, “Privacy
Preserving Data Publishing”, is given to these efforts [4]. k-anonymity notion is introduced by Samarati
and Sweeney in [5]. It is shown that k-anonymization with minimum number of suppression is
NP-hard [13]. Some optimal k-anonymization algorithms have been presented which may be feasible for
small sized data sets [14,15]. Greedy heuristics algorithms are proposed to find approximate solutions
for large data sets [16,17].

All these k-anonymity solutions solve the prevention of “record linkage attack” which is actually
finding the owner of a record through quasi-identifier attributes. However, it is shown that without
finding the exact owner of a record, if sensitive attribute exists in a record, it may be possible to
identify sensitive attribute of an individual in some circumstances by an attack called “attribute linkage
attack” [4]. This problem is also named as “attribute disclosure” [18]. In order to prevent attribute linkage
and record linkage together, k-anonymity notion extended in some studies. Machanavajjhala et al.
extended k-anonymity with a l-diversity notion that also prevents the identity disclosure when attackers
have background knowledge [18]. Notion of p-sensitive is introduced so that p of k-anonymized records
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having identical quasi-identifier attribute values have to have distinct sensitive attribute values [19].
Generalization hierarchies are constructed for sensitive attributes and extended version of p-sensitive
notion is adapted in [20]. An additional requirement, t-closeness, for l-diversity is defined in [21]. In
this study, distribution of sensitive attributes in a record set having identical quasi-identifier attribute
values are adjusted so that it is close to the distribution of that attribute in overall data set.

Anonymity is considered as hiding the identities of sender or receiver of a communication in data and
communication networks for many years. DC-Net and mix-net solutions are proposed for achieving
sender or receiver anonymity [22,23]. Especially, mix-net idea have been used in many practical
Internet applications like web and e-mail [24,25]. In ad-hoc networks, routing protocols for anonymous
transmission of the data packets are designed.

Studies about the anonymity problem in WSNs basically try to hide location or time information of
the events. Gruteser et al. [26,27] proposed anonymity solutions for providing high degree of privacy
in a sensor network that gives location-based services. Ozturk et al. [28] proposed phantom routing
method for hiding location information of originator sensor node in a sensor network. Threat model
is based on an existence of only one movable adversary node in the environment. Location privacy
protection of receiver in a WSN is provided by a routing protocol in [29]. Proposed routing protocol
prevents the eavesdropper to identify the receiver by tracing the wireless packets. It randomizes the
routing paths and injects fake packets in order to mislead eavesdroppers. Wadaa et al. [30] studied on
providing anonymity of coordinate system, cluster and routing structures during the network setup of a
WSN. Protection of location privacy is guaranteed by k-anonymity in location based services those are
given on mobile networks [31].

Privacy studies of WSN community generally focuse on hiding sender or receiver entities from local
or global eavesdroppers. However, in data collection applications, sender or receiver entities are known
by all parties. Privacy threat models of data collection applications should concentrate on privacy of
collected data against data collectors rather than hiding the communicated entities. On the other side,
the ones which deal with privacy of collected data propose solutions only for location and time data of
events. An event may have other attributes which may violate the privacy of individuals.

In this paper, since the targeted applications are data collection ones, collected data is considered as
the subject of privacy. All attributes those may help to distinguish an individual are considered during
anonymization. Privacy is guaranteed against for the data collector parties which are actually sinks in
WSN applications. Also, by the proposed method, it is possible to provide different privacy requirements
of many sinks.

6. Conclusions

In this paper, privacy preserving data collection framework is proposed for WSNs. The network and
threat model of framework states that there exists multiple sinks and each sink has different level of
privacy requirements.

In order to meet the requirements of network and threat model, we propose a method called Ik-ACM
(Iterative k-Anonymization Clustering Method). Proposed Ik-ACM reduces energy consumption while
fulfilling the required different privacy levels of sinks.
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Ik-ACM Method uses encryption operations with generalization operations in order to have one
common anonymized output. This common output enables us to multicast the same message to all
sinks. Multicasting of this output enables WSN to reduce amount of energy consumed for transmitting
it to the sinks. In WSN, each local region has one group head node. They gather event data from sensors
of their local region, anonymize it and send it to the all sinks. According to the positions of group head
nodes and their distances to sinks, multicasting can be better alternative for some of the group head
nodes. Each group head node decides whether multicasting is appropriate for itself or not. If it decreases
energy consumption, group head node uses it. Multicasting method degrades the quality of data gathered
by some sinks. Here, there is a trade-off between data loss and energy consumption. WSN designers
has to decide about the trade-off between energy saving and information loss. We analyze this trade-off
for different sized WSN topologies and for different sink locations. Our analyses show that, in a WSN
having two sinks, it is possible to save 32% of energy, however the loss of data utility received by one of
the sink increases to 0.90 from 0.66 in some topologies.

References

1. Chan, H.; Perrig, A. Security and privacy in sensor networks. Computer 2003, 36, 103-105.
2. Boyle, D.; Newe, T. Security protocols for use with wireless sensor networks: A survey of

security architectures, In Proceedings of the Third International Conference on Wireless and Mobile
Communications (ICWMC 2007), Guadeloupe, France, 4–9 March 2007.

3. Xiao, Y.; Rayi, V.K.; Sun, B.; Du, X.; Hu, F.; Galloway, M.; A survey of key management schemes
in wireless sensor networks, Comput. Commun. 2007, 30, 2314-2341.

4. Fung, B.C.M.; Wang, K.; Chen, R.; Yu, P.S. Privacy-preserving data publishing: A Survey on recent
developments. ACM Comput. Surv. 2009, 42, 1-53.

5. Sweeney, L. k-anonymity: A model for protecting privacy. Int. J. Uncertain. Fuziness,
Knowl.-Based Syst. 2002, 10, 557-570.

6. Pfitzmann, A.; Khntopp, M.; Anonymity, unobservability, and pseudonymity—A proposal for
terminology. In Designing Privacy Enhancing Technologies; Springer: Berlin, Germany, 2001;
Volume 2009/2001, pp. 1-9.

7. Aggarwal, C.C.; Yu, P.S. A general survey of privacy preserving data mining models and algorithms.
Priv. Preserving Data Min. Models Algorithm. 2008, 34, 11-52.

8. Gkoulalas-Divanis, A.; Verykiosc, V.S. An overview of rrivacy preserving data mining. Crossroads
2009, 15, doi: 10.1145/1558897.1558903.

9. Bahsi, H.; Levi, A. k-Anonymity based framework for privacy preserving data collection in wireless
sensor networks. Turk. J. Electr. Eng. Comput. Sci. 2010, 18, 241-271.

10. Andritsos, P.; Tzerpos, V. Software clustering based on information loss minimization. In
Proceedings of the 10th Working Conference on Reverse Engineering(WCRE’03), Victoria, Canada,
13–16 November 2003; IEEE Computer Society: Washington, DC, USA, 2003; p. 334.

11. Abbasi, A.A.; Younis, M. A survey on clustering algorithms for wireless sensor networks. Comput.
Commun. 2007, 30, 2826-2841.



Sensors 2010, 10 8396

12. Carman, D.W.; Kruus, P.S.; Matt, B.J. Constraints and Approaches for Distributed Sensor Network
Security; Technical Report 00-010; NAI Labs, The Security Research Division Network Associates,
Inc.: Los Angeles, CA, USA, 2000.

13. Meyerson, A.; Williams, R. On the complexity of optimal k-anonymity. In Proceedings of the 23rd
ACM SIGMOD-SIGACT-SIGART Symposium on the Principles of Database Systems, Paris, France,
June 2004; pp. 223-228.

14. Lefevre, K.; Dewitt, D.J.; Ramakrishnan, R. Incognito: Efficient full-domain k-anonymity.
In Proceedings of the 2005 ACM SIGMOD international conference on Management of data,
Baltimore, MD, USA, 14–16 June 2005; ACM: New York, NY, USA, 2005; pp. 49-60.

15. Samarati, P. Protecting respondents’ identities in microdata release. IEEE Trans. Know. Data Eng.
2005, 13, 1010-1027.

16. Aggarwal, G.; Feder, T.; Kenthapadi, K.; Motwani, R.; Panigraphy, R.; Thomas, D.; Zhu, A.
Anonymizing tables. In Database Theory - ICDT 2005; Springer: Berlin, Germany; Volume
3363/2005, pp. 246-258.

17. Sweeney, L. Datafly: A System for providing anonymity in medical data. In Proceedings of
the IFIP TC11 WG11.3 Eleventh International Conference on Database Securty XI: Status and
Prospects, Lake Tahoe, CA, USA 10–13 August 1997; Chapman & Hall, Ltd.: London, UK, 1997;
pp. 356-381.

18. Machanavajjhala, A.; Gehrke, J.; Kifer, D.; Venkitasubramaniam, M. l-Diversity: Privacy beyond
k-anonymity. In Proceedings of the 22nd International Conference Data Engineering (ICDE),
Atlanta, GA, USA, 3–7 April 2006.

19. Truta, T.M.; Bindu, V. Privacy protection: p-Sensitive k-anonymity property. In Proceedings of the
22th IEEE International Conference of Data Engineering (ICDE), Atlanta, GA, USA, 3–7 April
2006.

20. Campan, A.; Truta, T.M. Extended p-sensitive k-anonymity. Stud. Univ. BabesBolyai Infor., 2006,
LI, 19-30.

21. Li, N.; Li, T.; Venkatasubramanian, S. t-Closeness: Privacy beyond k-anonymity and
l-diversity. In Proceedings of IEEE 23rd International Conference on Data Engineering (ICDE07),
Istanbul, Turkey, April 2007; Available on line: http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.92.587 (accessed on 30 July 2010).

22. Chaum, D. The dining cryptographers problem: Unconditional sender and receipent untraceability.
J. Cryptol. 1988, 1, 65-75.

23. Chaum, D. Untraceable electronic mail, return addresses, and digital pseudonyms. Commun.
Associations Comput. Mach. 1981, 24, 84-88.

24. Gulcu, C.; Tsudik, G. Mixing email with BABEL. In Proceedings of 1996 Symposium on Network
and Distributed System Security (SNDSS ’96), San Diego, CA, USA, 22–23 February 1996.

25. Reiter, M.K. Rubin, A.D. Anonymous web transactions with crowds. Commun. ACM 1999, 42,
32-48.

26. Gruteser, M.; Grunwald, D. Anonymous usage of location-based services through spatial and
temporal cloaking. In Proceedings of the 1st International Conference On Mobile Systems,



Sensors 2010, 10 8397

Applications, Services (MobiSYS), San Franscisco, CA, USA, 5–8 May 2003; ACM: New York,
NY, USA, 2003; pp. 31-42.

27. Gruteser, M.; Schelle, G.; Jain, A.; Han, R.; Grundwald, D. Privacy-aware location sensor networks.
In Proceedings the 9th USENIX Workshop on Hot Topics in Operating Systems (HotOS), Lihue, HI,
USA, 18–21 May 2003.

28. Ozturk, C.; Zhang, Y.; Trappe, W. Source-location privacy in energy-constrained sensor network
routing, In Proceedings of the 2004 ACM Workshop on Security of Ad Hoc and Sensor Networks,
Washington DC, USA, 25 October 2004; ACM: New York, NY, USA, 2004; pp. 88-93.

29. Jian, Y.; Chen, S.; Zhang, Z.; Zhang, L. Protecting receiver-location privacy in wireless sensor
networks. In Proceedings of the 26th Annual IEEE Conference on Computer Communications
(IEEE INFOCOM 2007), Anchorage, AK, USA, 6–12 May 2007.

30. Wadaa, A.; Olariu, S.; Wilson, L.; Eltoweissy, M.; Jones, K. On providing anonymity in wireless
sensor networks. In Proceedings of the Tenth International Conference on Parallel and Distributed
Systems (ICPADS’04), Newport Beach, CA, USA, 7–9 July 2004; IEEE Computer Society:
Washington, DC, USA, 2004.

31. Gedik, B.; Liu, L. Protecting location privacy with personalized k-anonymity: Architecture and
algorithms. IEEE Trans. Mob. Comput. 2008, 7, 1-18.

c⃝ 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/.)


	Introduction
	Motivation and Background
	Privacy Preserving Data Publishing vs. Privacy Preserving Data Mining
	Privacy Preserving Data Collection Models
	Threat and Network Model
	Our Contribution

	Proposed Anonymization Method, Iterative k-Anonymous Clustering Method (Ik-ACM)
	Data Representation
	Information Loss Metric
	Iterative Anonymization Model
	Bottom-Up Hierarchical Clustering Process
	Complexity Analysis of Ik-ACM
	Multicasting and Energy Saving

	Performance Evaluation of Ik-ACM
	Related Work
	Conclusions

