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Abstract: AHN-2 is the second part of the Actueel Hoogtebestand Nederland project, 
which concerns the acquisition of high-resolution altimetry data over the entire 
Netherlands using airborne laser scanning. The accuracy assessment of laser altimetry data 
usually relies on comparing corresponding tie elements, often points or lines, in the 
overlapping strips. This paper proposes a new approach to strip adjustment and accuracy 
assessment of AHN-2 data by using planar features. In the proposed approach a 
transformation is estimated between two overlapping strips by minimizing the distances 
between points in one strip and their corresponding planes in the other. The planes and the 
corresponding points are extracted in an automated segmentation process. The point-to-plane 
distances are used as observables in an estimation model, whereby the parameters of a 
transformation between the two strips and their associated quality measures are estimated. 
We demonstrate the performance of the method for the accuracy assessment of the AHN-2 
dataset over Zeeland province of The Netherlands. The results show vertical offsets of up 
to 4 cm between the overlapping strips, and horizontal offsets ranging from 2 cm to 34 cm. 

Keywords: Airborne Laser Scanning; altimetry; accuracy assessment; strip adjustment; 
planar features; least-squares estimation 
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1. Introduction 

Airborne Laser Scanning is an active optical range measurement technique that is used for acquiring 
accurate height data of the ground surface. The advantages of airborne laser scanning include high 
measurement accuracy, fast acquisition capability, and large spatial coverage. The Netherlands is the 
first country that was entirely covered by airborne laser altimetry measurements through the Actueel 
Hoogtebestand Nederland (AHN) project [1]. The second part of the national laser altimetry project 
AHN-2 is being carried out since 2007 by several companies, and will be completed in 2012. The new 
height model has an unprecedented spatial resolution: it has an average density of 10 points per square 
meter [2]. This unique high-resolution height model is used in a variety of applications, including 
water storage determination, subsidence studies, forest volume mapping, monitoring of coastal areas 
and 3D modeling of urban environments. 

The airborne laser scanning measurements are acquired in multiple flight strips, and are 
independently georeferenced using data from on-board navigation sensors, i.e., Global Navigation 
Satellite System (GNSS) and Inertial Navigation System (INS). The systematic and random errors 
introduced by the scanning mechanism as well as the navigation sensors accumulate in the final point 
cloud. This results in an offset and misalignment between data of overlapping flight strips. The 
quantification and elimination of the offset and misalignment between the overlapping strips is an 
important issue in airborne laser scanning, and is commonly referred to as strip adjustment. Moreover, 
the identification of the offsets and misalignments forms a major part of the accuracy assessment done 
by the end-user of the data. Therefore, fast and reliable methods for the adjustment of aerial laser strips 
are of particular interest for both the data providers and the end-users. 

The error budget of airborne laser scanning has been a subject of extensive research [3-9]. In 
general, the errors originate from three main sources: (i) individual sensors (scanner, INS, GNSS) and 
their integration; (ii) properties of the target surface (geometry, reflectance); and (iii) post-processing 
(filtering, interpolation). Among these, the first source has a major impact on the accuracy of raw 
height data. The conventional approach to assessing the accuracy of laser strips is based on comparing 
the height on a number of tie points (corresponding points in two overlapping laser strips) or control 
points (ground truth measurements). Kilian et al. [6], Crombaghs et al. [10], and Hodgson and 
Bresnahan [7] describe the use of tie and control points for the accuracy assessment of airborne laser 
scanner data. The identification of point features in laser scanner data is however difficult, due to the 
discrete nature of the data and the limited spatial resolution. To allow the accurate measurement of 
control points, Csanyi and Toth [11] designed ground targets of a specific shape suitable for 
measurement in laser altimetry data. As another source of external measurements, Bretar et al. [12] 
used a photogrammetrically derived Digital Surface Model (DSM) to perform an adjustment of 
airborne laser strips.  

An alternative approach to assessing the relative accuracy of laser altimetry data is the comparison 
of corresponding features in overlapping strips. Vosselman [13,14] estimated planimetric offsets 
between the strips using linear features such as ditches and roof ridge lines. The planimetric accuracy 
of laser altimetry data is generally lower than the altimetric accuracy [5], but is equally important, 
particularly in applications where mapping object boundaries is concerned. The use of corresponding 
linear features for the accuracy assessment has also been reported in a number of recent works [15-17]. 
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Other previous works have demonstrated the use of corresponding surfaces for the evaluation of the 
errors in laser altimetry data. Ressl [18] presented a non-linear model for accuracy assessment of strip 
adjustment based on five parameters. Latypov [19] derived a generalized relative accuracy measure by 
comparing corresponding surfaces in the overlapping strips. Corresponding planar surfaces have been 
used for the estimation of vertical offsets between the strips [20], as well as the system calibration 
parameters [21,22]. Maas [23] estimated shift parameters between two overlapping or crossing strips 
by minimizing the distances between points in one strip and a triangulated mesh (TIN) of the other 
strip. Habib et al. [9,24] also minimized point-to-TIN distances iteratively, but estimated biases in the 
laser scanner system components. The drawback of the TIN-based methods is that the triangular 
patches do not necessarily always represent actual surfaces. 

This paper proposes a new approach to strip adjustment and accuracy assessment of airborne laser 
scanner data by using planar features. The choice of planar features is particularly appropriate for the 
accuracy assessment of AHN-2 data over the Netherlands, because buildings with gable roof planes are 
present almost in all parts of the country, and also the high point density of the AHN-2 data is a 
determining factor in the increased reliability of the extracted planes. The basis of the proposed 
approach is that by evaluating the adjustment between the corresponding planes in two overlapping 
strips an estimation of the systematic and random errors in the data can be obtained. In the strip 
adjustment, a transformation is estimated between the strips by minimizing the distances between 
points in one strip and their corresponding planes in the other. The advantage of such an estimation 
model is twofold. First, incorporating a large number of reliable point-to-plane distance observations in 
a least-squares estimation model improves the precision of the estimated transformation parameters. 
Second, if two strips cannot be adjusted by only a 3D offset, an affine transformation can be estimated 
from which possible rotations between the strips can be derived. In addition, the estimation model is 
linear, which makes it independent of an initial approximation of the transformation parameters. 

The paper proceeds with an overview of laser altimetry over the Netherlands and the status of the 
AHN-2 project in Section 2. Section 3 describes the proposed approach to strip adjustment, including 
the segmentation method for extracting planar segments, the robust plane fitting and the mathematical 
model for the estimation of strip adjustment parameters. The results of the accuracy assessment of the 
AHN-2 data over Zeeland province are presented in Section 4. The paper concludes with some 
remarks in Section 5.  

2. Airborne Laser Altimetry over the Netherlands: The AHN-2 Project 

The Actual Height model of the Netherlands (AHN) part 2 is a joint program between the ministry 
of water management (Rijkswaterstaat) and the 26 water boards conducted in the period from 2007  
to 2012. Water boards are the oldest legislative bodies in the Netherlands responsible for monitoring 
dykes and managing water quantity and quality. The importance of a country-wide height model for 
these organisations is evident, as the Netherlands is a delta partly below the sea level. During the first 
phase of the AHN project between 1997 and 2003 the entire Netherlands was laser scanned to make a 
height model with an altimetric accuracy of 16 cm and a point density varying from 1 point per 16 m2 
to 1 point per 32 m2. For the AHN-2 the requirements were tightened to achieve a higher accuracy and 
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an increased point density. Figure 1 shows the first height model of the Netherlands, and the 
acquisition plan of the AHN-2. 

Figure 1. The AHN project. (a) the height model acquired during the first phase of the 
AHN project; (b) the acquisition plan of AHN-2. 

 
(a)        (b) 

 
While the AHN-2 is coordinated by the Waterschapshuis (the executive body of the Dutch water 

boards in the area of information and communication technology) the acquisition and quality control of 
the data are done by private companies. The first acquisition was done by Fugro over Zeeland province 
in the winter of 2007 using the FLI-MAP 400 laser scanner system mounted on a helicopter [25]. The 
FLI-MAP 400 system uses the Multiple Pulse in Air (MPiA) technique, which is the state of the art in 
airborne laser scanning technology. The MPiA technique allows the laser scanner to operate at a higher 
pulse frequency (375 KHz in the case of FLI-MAP 400) by emitting a second pulse before the 
reflection of the first one is received [26]. The result is a substantial increase in the maximum flying 
height and the coverage of each laser strip, but also an increased point density on the ground for a 
given flying height.  

The planned specifications of the AHN-2 data include an average density of 10 points per m2  
with 5 cm systematic error in height and 5 cm standard deviation. With such point density an object  
of 2 m by 2 m size can be correctly identified with a maximum planimetric error of 50 cm. The quality 
control procedures have been drafted by the Waterschapshuis, and executed by the companies NEO 
and Geodelta. The quality control consists of more than 40 procedures, including the point density 
check, the filtering of vegetation, the point distribution and the quality of the strip adjustment. 

The quality control procedures are partly revised and modified every year. In 2008 the quality 
measures were derived by comparing corresponding elements in strip overlaps, but expressed for the 
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entire coverage area. Since 2009 the quality measures are estimated and expressed per individual strip 
overlaps. The quality control procedures are not based on a standard methodology, and in fact there is 
a lack of reliable and commonly accepted methods for the quality control of laser altimetry data  
in practice. 

3. Strip Adjustment Using Planar Features 

The airborne laser scanner data are normally acquired strip-wise, with across-track overlap, as 
shown in Figure 2. In an ideal dataset that is completely free of systematic errors corresponding planar 
features in the overlapping area should match perfectly. In practice, this is often not the case, and the 
distances between the planar features in the two strips can be used to evaluate the systematic and 
random errors in the data. The following sections describe the procedure for extracting planar features 
from laser data and the least-squares model for the estimation of the strip adjustment parameters. 

Figure 2. Overlapping strips. The overlap area between the blue strip and the red strip is 
represented as the yellow hatched area. 

 

3.1. Extraction of Planar Features from Aerial Laser Data 

Extracting planar features from laser altimetry data is usually done over urban areas where many 
buildings with planar roofs are available. There are many methods in the literature for detecting 
buildings and identifying roof planes in aerial laser data, e.g., [27-32]. In this study, a region growing 
segmentation method is used to extract planar features from gabled roofs or dike slopes. The points 
that belong to each strip in the overlapping area are interpolated into a raster format with a resolution 
of 50 centimeters using an Inverse Distance Interpolation algorithm based on the weighted average 
method [33]. Slope and aspect orientation that best define the terrain in the vicinity of each point are 
derived. Homogenous regions are created by using a segmentation algorithm performed with the slope 
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and aspect data. The size of the created regions is dependent on a scale parameter, which defines the 
maximum allowed heterogeneity within the resulting regions. The region-growing segmentation starts 
with single data points as initial regions, and repeatedly merges them into larger regions as long as a 
homogeneity criterion holds. The homogeneity criterion is controlled by the scale parameter: larger 
scale parameters result in larger regions, and smaller parameters in smaller regions [34,35]. To avoid 
overgrown regions, a suitable scale parameter is found experimentally. The segmentation is performed 
with different scale parameters on a subset of data, and the segmentation results are visually examined. 
The best scale parameter is selected as one that provides the largest regions which do not overgrow 
beyond the boundaries of the roofs or dike slopes. 

Planar surfaces that represent gabled roofs and dike slopes are selected from the resulting regions 
by constraining the regions to a minimum area of 6 m2 and a slope between 15 and 70 degrees. The 
boundaries of the corresponding regions in the two strips are combined and intersected. These 
intersected regions are buffered inwards with 25 cm (half the raster pixel size) to make sure that the 
points that are within the intersection area are part of the plane. These points are selected for the 
estimation of the plane parameters. As the segmentation is performed on gridded data, the selection 
criteria are not applied on the points directly. Therefore outliers in the selected point cloud might still 
be present after the segmentation process. 

3.2. Robust Plane Fitting Using RANSAC 

The plane parameters are obtained by applying the Principal Component Analysis (PCA) to the 
selected points [36]. The principal components are the axes of maximum variation of the data. For a set 
of points that lie on a plane the last principal component is the axis of minimum variation, which is 
normal to the plane. The principal components are found by the Singular Value Decomposition (SVD) 
of the mean-centered points. The eigenvector corresponding to the smallest eigenvalue is the last 
principal component that is the plane normal. The distance of the plane to the origin of the coordinate 
system is taken as the median of the dot product of the normal vector and the vector of each  
individual point.  

The segmentation procedure does not necessarily always provide regions of points that are perfectly 
coplanar. In practice the regions might contain outliers, e.g., points on the walls, trees or the ground 
surface. To deal with the outlying points a robust plane fitting has to be applied to the points in both 
strips. Then only those points that are identified by the robust fitting algorithm as inliers are used to 
obtain the point-to-plane distances. The robust plane fitting is performed using the RANSAC 
algorithm [37]. Considering that each random sample should contain three points (minimum to define 
a plane), and assuming that 50% of the points are outliers, 35 random samples are needed to ensure, 
with a probability of 99%, that at least one sample is outlier-free [38]. The relatively small number of 
the required random samples indicates that the computational cost of the robust plane fitting is easily 
affordable. Figure 3 demonstrates the robust plane fitting using RANSAC.  
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Figure 3. Robust plane fitting to points on a roof segment. Points marked in red are inliers 
identified by RANSAC. 

  
(a) 3D view         (b) side view 

3.3. Estimation of Strip Adjustment Parameters 

The output of the previous step is a set of planes in one strip and their corresponding points in the 
other strip. The parameters of a transformation between the two overlapping strips are estimated by 
minimizing the distances between points and their corresponding planes. Let the transformation of a 
set of points P by a transformation H be expressed by matrix multiplication H P. The condition that 
the transformed points lie on a plane Л is expressed as [38,39]: 

=TЛ HP 0  (1)

where Л = (n1, n2, n3, −d)T represents a plane with normal n = (n1, n2, n3)T and distance d to the origin, 
P = (x, y, z, 1)T denotes the homogenous representation of a point in 3D space. In practice, H can be a 
homogenous similarity transformation: 
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0
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in which R is a 3D rotation matrix, t = (tx, ty, tz)T is a translation vector and a scale factor is neglected 
since laser strips are normally assumed to have identical scales. However, to make the estimation 
model linear, we ignore the orthogonality of R and assume that H is an affine transformation. To 
estimate the transformation Equation (1) is rewritten as:  
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where r1
T, r2

T, r3
T are the three rows of R, and p = (x, y, z)T is the Euclidian notation of a point in 3D 

space. For one point on one plane Equation (3) reduces to: 
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( ) ( ) ( )1 1 2 2 3 3
T T T

x y zn t n t n t d+ + + + + =r p r p r p  (4)

Equation (4) is the essential observation equation that basically expresses the condition that the 
transformed points in one strip rest on their corresponding plane in the other strip. For m points 
corresponding to k planes we will have a system of equations as follows: 
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where superscripts denote the point and plane numbers. The system of Equation (5) is of the form  
AX = L for which the least-squares solution that minimizes the norm of the squared distances between 
the transformed points and their corresponding planes, i.e., ||AX − L||, is given in Equation (6): 

= T -1 TX  (A WA) A WL  (6)

where W is a weight matrix. In this paper, the same weight is applied to each observable based on the 
assumption that all observables have the same precision.  

A special case of the strip adjustment model as described above occurs when we expect the 
transformation between the strips to be only a translation vector. In such a case, the estimation model 
given in Equation (4) reduces to: 

( ) ( ) ( )1 2 3x y zn x t n y t n z t d+ + + + + =  (7)

which basically expresses that the translated points lie on the plane. The system of equations with m 
points and k planes becomes: 

1 1 1 1 1 1 1 1 1 1
1 2 3 1 2 3

1 2 3 1 2 3

x

y
k k k k k m k m k m

z

n n n t d n x n y n z
t

n n n t d n x n y n z

⎡ ⎤ ⎡ ⎤− − −⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ − − −⎣ ⎦⎣ ⎦ ⎣ ⎦

 (8)

for which a solution that minimizes the distances between the translated points and their corresponding 
planes can be obtained similar to the general case as given in Equation (6). 

It is worth noting that to obtain a solution for the estimation models derived above the design 
matrices in Equations (5) and (8) have to be of full rank. This requires a minimum of 12 points  
and 3 non-parallel planes to estimate the affine transformation in Equation (5), and a minimum  
of 3 points and 3 non-parallel planes to estimate the translation vector in Equation (8). In practice, this 
is not an issue since usually a large number of point-to-plane distances are available. 

The precision of the observables as well as the estimated transformation parameters are derived 
from the residual vector v that actually contains the remaining point-to-plane distances after the 
adjustment: 

= −v AX L  (9)
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The reference variance obtained from the residual vector v is an indication of the precision of the 
observables, or the random error of individual points: 

2
0 m u

σ =
−

Tv W v  (10)

where u is the number of unknown parameters in the adjustment. The precision of the estimated 
transformation parameters is then obtained by: 

2
0σ= T -1

xxΣ (A WA)  (11)

4. Results of Accuracy Assessment of AHN-2 Data 

4.1. Description of Dataset 

The strip adjustment method as described above was employed to assess the accuracy of the pilot 
AHN-2 dataset acquired by Fugro-Inpark over Zeeland province in 2007. The area consists of a crop 
land with large farm buildings and several urban areas, of which the city of Flushing is the largest. The 
data were acquired by the helicopter-mounted FLI-MAP 400 laser scanner from an altitude  
of 375 meters. The data consists of the forward-, nadir- and backward-looking scan lines. From this 
dataset, 15 strips were selected, resulting in 13 overlaps, as shown in Figure 4. Table 1 lists the 
overlaps and their corresponding strips, number of points and width of each overlap. The overlap areas 
are of different sizes. Within each overlap also the numbers of points belonging to each strip are 
slightly different, which is due to the difference in the scanning geometry, the topography and the type 
of objects present in the overlap area. 

Figure 4. AHN-2 laser altimetry dataset of Zeeland consisting of 15 strips. 

Flushing

Amsterdam
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Table 1. Specifications of the 13 strip overlaps. 

Overlap ID 
Strip Number of points in the strip overlap Overlap 

Width (m) 1st 2nd 1st 2nd 
o1 s3 s4 21,731,922 27,885,585 200 
o2 s4 s5 23,114,236 28,984,667 175 
o3 s5 s6 28,984,667 51,271,482 240 
o4 s7 s8 24,693,624 24,953,061 175 
o5 s9 s8 24,534,357 22,834,121 175 
o6 s9 s10 35,156,934 22,427,804 240 
o7 s10 s11 10,303,345 7,590,510 200 
o8 s12 s13 24,771,459 19,671,036 240 
o9 s14 s13 3,267,309 4,177,717 525 

o10 s15 s13 22,910,115 14,855,334 240 
o11 s2 s1 4,618,326 5,251,392 485 
o12 s2 s3 4,618,326 6,164,108 485 
o13 s1 s3 65,247,718 77,060,363 320 

4.2. Evaluation of Segmentation 

To evaluate the performance of the segmentation procedure strip overlap o12 was segmented with 
different scale parameters. The resulting roof regions were examined and compared with building 
boundaries from an existing large scale base map and with aerial images of the area. The result is 
shown in Figure 5. Scale parameters 10 and 15 provide the most reliable roof segments. Scale 
parameter 15 provides more segments that are also larger in size; therefore, it is chosen as the optimal 
scale parameter.  

Figure 5. Performance of the segmentation method with different scale parameters. 
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Figure 6 shows an example of roof segments created by using three different scale parameters. The 

segments are shown in yellow outlines. The building on the left has a dormer on the right roof side. It 
can be seen that by using scale parameter 20 one of the created segments is overgrown and contains 
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points on the dormer. In contrast, scale parameter 15 provides homogeneous segments within the roof 
boundaries. The irregularity in the shape of the segments is due to the intersection of the segments in 
the two strips and the applied inwards buffering. 

Figure 6. Roof segments created by using different scale parameters in the segmentation procedure. 

 
(a) Aerial image (b) Interpolated raster (c) height points (grey is ground 

level, pink to brown show 
increasing elevations) 

 
(d) Scale Parameter 10 (e) Scale Parameter 15 (f) Scale Parameter 20 

4.3. Accuracy Assessment Results 

The point-to-plane distances were derived for each strip overlap from the segmentation results. For 
every region in one strip plane parameters were computed using the robust plane fitting method. Then, 
distances between this plane and the inlying points in the corresponding region in the other strip were 
obtained and entered as observables in the estimation model. Two transformations were estimated for 
each pair of overlapping strips: a 3D translation only and a full affine transformation. 

The mean and standard deviation of the point-to-plane distances before and after the adjustment 
were computed. Assuming that the data are not contaminated by gross errors (outliers), the mean 
before the adjustment indicates systematic error in the data. After the adjustment, the mean is expected 
to be very small, and the standard deviation indicates the random error of the observables and the 
precision of the estimated parameters. Figure 7 shows the mean of the point-to-plane distances before 
and after the adjustment. Before the adjustment the mean ranges from −3 cm to 2 cm. Adjustment with 
only a translation reduces the mean in all overlaps, except for overlap o2 (although here the mean is 
only −1 cm). Adjustment with a full transformation further reduces the mean to values below ±5 mm. 
Figure 8 shows the standard deviation of the point-to-plane distances before and after the adjustment. 
Before the adjustment the standard deviations range from 3 cm to 11 cm. These become smaller after 
the translation (2 cm to 8 cm), and are the smallest after the full transformation where the largest 
standard deviation is 5 cm.  
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Figure 7. Mean of point-to-plane distances before and after the strip adjustment. 
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Figure 8. Standard deviation of point-to-plane distances before and after the strip adjustment. 

o1 o2 o3 o4 o5 o6 o7 o8 o9 o10 o11 o12 o13
0

0.02

0.04

0.06

0.08

0.1

0.12

Overlap ID

S
ta

nd
ar

d 
de

vi
at

io
n 

(m
)

 

 Before adjustment
After translation only
After full transformation

 
 
Figure 9 and Figure 10 show the estimated horizontal offsets respectively in x and y direction 

together with their precision for all strip overlaps. These values are compared to those obtained by a 
line-based method [40], which provides only 2D translation parameters. The precision of the estimated 
parameters is remarkably better in all overlaps when point-to-plane distances are used. Both Tx and Ty 
are estimated with a precision better than 1 mm. In most of the overlaps, the estimated horizontal 
offsets are in agreement with those obtained by the line-based method. The discrepancies are in 
overlaps o6 (Tx), o7 (Ty) and o9 (both Tx and Ty), where differences from 10 cm to 20 cm can be 
observed. In the case of overlap o9, the precision of both Tx and Ty estimated from the line 
correspondences is very low, whereas the offsets estimated from the point-to-plane distances using 
both adjustment models are more precise and very close in magnitude. In fact, both Tx and Ty 
estimated from point-to-plane distances are within the range of uncertainty of the offsets estimated by 
the line-based method. In overlap o6 also the Tx values estimated by the plane-based method using 
both adjustment models are very close and more precise than that estimated by the line-based method. 
The disagreement in Ty corresponding to overlap o7 may be due to the presence of a small rotation 



Sensors 2010, 10              
 

 

8210

between the strips. Note that the mean and standard deviation of the point-to-plane distances after the 
adjustment with a translation only and those after the full affine transformation have the largest 
discrepancy in overlap o7 (see Figure 7 and Figure 8).  

Figure 11 shows the vertical offsets Tz estimated from the point-to-plane distances for all overlaps. 
Here the bars representing the precision of the offsets are magnified by a factor of 10. It can be seen 
that the vertical offsets resulting from the two transformation models are very close. A difference of 
about 1 cm can be observed in overlap o7, which again might imply the presence of a small rotation 
between the strips. The precision of the estimated vertical offsets is better than 2 mm. 

Figure 9. Estimated x-offsets and their associated precision (vertical bars) compared to 
those estimated from line correspondences. 
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Figure 10. Estimated y-offsets and their associated precision (vertical bars) compared to 
those estimated from line correspondences. 
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Figure 11. Vertical offsets and their associated precision (vertical bars) estimated from 
point-to-plane distances. 
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5. Conclusions 

We have presented a method for the adjustment and accuracy assessment of airborne laser altimetry 
strips using planar features. The choice of planar features is particularly appropriate for the accuracy 
assessment of AHN-2 data over the Netherlands, because buildings with gable roof planes are present 
almost in all parts of the country, and also the high point density of the AHN-2 data is a determining 
factor in the increased reliability of the extracted planes. The method is based on estimating a 
transformation between two overlapping strips by minimizing the distances between points in one strip 
and their corresponding planes in the other. The accuracy assessment of the AHN-2 laser dataset over 
Zeeland, the Netherlands, was carried out using the proposed plane-based method, and the results were 
compared with those of a previously-used line-based method. The results show vertical offsets of up  
to 4 cm between the overlapping strips, and horizontal offsets ranging from 2 cm to 34 cm. 

In comparison with the line-based methods, the use of planar features in strip adjustment leads to a 
more precise estimation of the transformation parameters. The performance of the plane-based 
methods is, however, dependent on the reliability of the extracted planes. Despite careful selection of 
the segmentation parameters we found many segments that contained outliers. The robust plane fitting 
using RANSAC proved very effective in removing these outlying points. In conclusion, for the  
plane-based strip adjustment method to be used in practice for the quality control of laser altimetry 
data robust and reliable plane extraction algorithms are of great importance. 
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