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Abstract: A wireless camera sensor network is useful for surveillance and monitoring for
its visibility and easy deployment. However, it suffers from the limited capacity of wireless
communication and a network is easily overflown with a considerable amount of video traffic.
In this paper, we propose an autonomous video coding rate control mechanism where each
camera sensor node can autonomously determine its coding rate in accordance with the
location and velocity of target objects. For this purpose, we adopted a biological model,
i.e., reaction-diffusion model, inspired by the similarity of biological spatial patterns and the
spatial distribution of video coding rate. Through simulation and practical experiments, we
verify the effectiveness of our proposal.
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1. Introduction

By distributing a large number of sensor nodes with wireless communication capability and
organizing a wireless sensor network (WSN), we can obtain detailed information about surroundings,
remote region, and objects [1]. Sensor nodes are equipped with a variety of sensors depending on
applications. In particular, a camera sensor network, which is composed of sensor nodes equipped with
a camera, are useful in applications such as remote surveillance and monitoring [2] and thus it is one
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of key technologies for the safe and secure living environment. For example, by placing camera sensor
nodes along streets, we can monitor the traffic condition, children on the way to and from a school, or
track suspicious people.

Generally, control mechanisms for sensor networks must be scalable, adaptive, and robust, because of
a large number of sensor nodes, random or unplanned deployment, and dynamic topology changes due
to addition, movement, and removal of sensor nodes. In addition, due to difficulty in managing a large
number of nodes in a centralized manner for the limited bandwidth insufficient to periodically collect the
up-to-date information from nodes, mechanisms must be fully distributed and self-organizing. Camera
sensor networks place additional challenging issues as summarized in [3]. In particular, compared to
typical scalar and even analog sensor data such as humidity, temperature, and acceleration, the volume
of video data generated by cameras are considerably large, ranging from a few hundred Kbps to several
hundred Mbps. The capacity of wireless sensor networks is limited to accommodate such huge video
traffic. For example, the communication rate of ZigBee with IEEE 802.15.4 [4], a standard protocol for
WSN, is only 250 Kbps. Even when we adopt IEEE 802.11b with the capacity of 11 Mbps, theoretical
analysis indicates that the throughput available to each node is in the order of O( 1√

n
), where n is the

number of nodes in the multi-hop wireless network [5]. Therefore, only a few nodes can join the network,
even when each node transmits video data coded at only a few Mbps using IEEE 802.11b. Many studies,
such as bandwidth allocation, retransmission control [6], FEC (Forward Error Correction) [7], and other
error concealment techniques [8] have been made for QoS control for video transmission in wireless
networks. They are useful and effective to maintain the quality of video data when a wireless network is
lightly loaded and moderately congested, but they do not help much when the volume of video traffic is,
for example, twice as much as the capacity of the network.

Therefore in large scale camera sensor networks, in addition to these QoS control mechanisms,
application-level control to reduce the amount of video traffic without impairing the application is
required. When we consider surveillance and monitoring applications, not all video data from cameras
are equally important. Users are interested in video images that capture targets or certain phenomena.
Therefore, the quality of video data from nodes detecting targets should be as high as possible without
overwhelming the wireless network capacity, whereas those nodes far from the targets can suppress the
video coding rate to avoid wasting the wireless network capacity in the transmission of irrelevant and
redundant video data. For this purpose, we need a mechanism for camera sensor nodes to adjust the
video coding rate in accordance with the location and velocity of targets. To the best of our knowledge,
such application-level control has not been addressed well and we can only find a few [9][10]. In [9], a
content-aware control system assigning higher rate to cameras capturing important images is proposed.
However, they mainly consider bandwidth allocation among cameras on a node, not among camera
nodes. In [10], the authors propose dynamic allocation of wireless communication bandwidth to camera
nodes based on the rate-distortion model and the activity of captured video. However, the bandwidth
allocation is performed in a centralized manner, where a central location has the complete information
about the status of wireless network and characteristics of video data at all cameras.

Only if we know the complete and up-to-date information about the location and status of camera
sensor nodes and the location and velocity of targets, we can optimally assign the wireless network
capacity to those nodes and set the video coding rate to avoid congestion of the network while keeping
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the application-level QoS. However, maintenance of such global and up-to-date information involves
much communication overhead and the battery power of nodes. Therefore, an autonomous, distributed,
and self-organizing mechanism is required for each node to appropriately determine the video coding
rate based on local information obtained by exchanging messages, e.g., general HELLO messages, with
neighboring nodes, while avoiding local network congestion.

To accomplish the above mentioned goal, we adopt a reaction-diffusion model in this paper.
A reaction-diffusion model was first proposed by Dr. Alan Turing as a mathematical model for
pattern generation on the surface of body of fishes and mammals [11] . In a reaction-diffusion
model, through local interactions among molecules of neighboring cells, a variety of spatial patterns,
i.e., heterogeneous distribution of morphogen concentrations emerge in a self-organizing manner.
Autonomously generated patterns can be used for routing, clustering, scheduling, and topology control
on sensor networks [12–15]. In smart sensor networks for a forest fire application, a stripe pattern is
organized from a robot load point to a fire control point through local and mutual interactions among
distributed sensor nodes and mobile robots walk along the stripe to fight a fire [12]. RDMAC [13] is a
reaction-diffusion based MAC protocol, where they noticed the similarity among a scheduling pattern of
spatial TDMA and a spot pattern of leopards. A node inhibits packet emission of neighboring nodes in its
range of radio signals while encouraging nodes out of the range to send packets for better spatial use of
a wireless channel. For camera sensor networks, a cooperative control model for a surveillance system
which consists of plural Pan-Tilt-Zoom cameras and having no central control unit is proposed [15].
Each camera adjusts their observation area to decrease blind spots in the whole surveillance area by
control algorithms based on a reaction-diffusion model. Our early work on a reaction-diffusion based
control mechanisms for a sensor network [14] verified the practicality of reaction-diffusion based pattern
formation on a wireless sensor network under the influence of collisions through experiments and two
acceleration schemes for faster pattern generation were proposed.

In this paper, we propose an autonomous mechanism based on a reaction-diffusion model for coding
rate control in camera sensor networks for remote surveillance and tracking applications. Specifically,
we generate spot patterns of concentrations of virtual morphogens so that the morphogen concentrations
have a peak at a camera detecting a target in its observation area. In addition, to prepare cameras in
the direction of a moving target for future detection, their video coding rates, in other words, their
morphogen concentrations are made slightly higher than others. As a result, we see a pattern of
concentric circles for a stationary target and an elliptic pattern for a moving target (see Figure 3).
Furthermore, we also propose a mechanism to keep the total of coding rate low for closely located targets
considering the limited capacity of a wireless network. First, through simulation experiments, we verified
the effectiveness of our proposed mechanism. Then we implemented our proposed mechanism on a
wireless sensor network composed of PCs with cameras and conducted practical experiments. Through
practical experiments, we verified that the video coding rate was appropriately adjusted in accordance
with the location and velocity of a moving target. We also evaluated the effectiveness of the mechanism
in avoidance of congestion and the perceived quality of received video data.

The rest of the paper is organized as follows. In Section 2, we introduce a pattern generation
mechanism of a reaction-diffusion model that our paper is based on. Next in Section 3, we describe
our reaction-diffusion based control mechanism for camera sensor networks. In Section 4, we then show
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and discuss results of simulation experiments. In Section 5, we describe our implementation of the
mechanism and show and discuss results of practical experiments. Finally, we conclude the paper in
Section 6.

2. Pattern Formation by Reaction-Diffusion Model

In a reaction-diffusion model, by mutual interaction among neighbor cells through chemical reaction
and diffusion of two morphogens, spatially heterogeneous distribution of concentration of morphogens
appears. Depending on the form of reaction-diffusion equations and their parameters, a variety of
patterns can be generated as illustrated in Figure 1.

Figure 1. Example of patterns generated by reaction-diffusion model.

(a) spots (b) stripes (c) maze

Generally, a reaction-diffusion model is formulated by a pair of partial differential equations as follow.
∂u

∂t
= F (u, v) + Du∇2u

∂v

∂t
= G(u, v) + Dv∇2v,

(1)

where u and v are the concentrations of activator and inhibitor, respectively. Du and Dv are the diffusion
rate of activator and inhibitor respectively. F and G are functions for reactions.∇2 is the Laplacian
operator. The first term of the right-hand side is called a reaction term and the second term is called
a diffusion term. In the reaction-diffusion model, the following two conditions must be satisfied to
generate patterns. First, the activator activates itself and the inhibitor, whereas the inhibitor restrains
itself and the activator. Second, the inhibitor diffuses faster than the activator (Dv > Du).

A mechanism of pattern generation can be explained as follows. In Figure 2, those hypothetical
chemicals are arranged in a line on the horizontal axis. The vertical axis corresponds to the
concentrations of activator and inhibitor. Now consider that the concentration of activator has the peak at
the point x illustrated in Figure 2, by a slight perturbation. The concentrations of activator and inhibitor
are increased around the point x by being activated by the activator. The generated inhibitor diffuses
faster than the activator and restrains generation of activator at further regions. On the other hand, at the
point x, because of the different rate of diffusion, the activator stays and the concentration of activator is
kept higher than that of inhibitor. Consequently, the diversity in the concentration of activator emerges
and a pattern appears. For example, when we color points where the concentration of activator exceeds a
certain threshold with white and others with black, we can see a black-while-black pattern shown at the
bottom of Figure 2.
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Figure 2. Concentration distribution of activator and inhibitor.

In this paper, since we want to generate spot patterns where spots correspond to targets, we introduce
the stimulus which is an increment of activator and apply the following reaction-diffusion equation.

∂u

∂t
= F (u, v) + Du∇2u − du + E(t)

∂v

∂t
= G(u, v) + Dv∇2v − gv,

(2)

and  F (u, v) = max
{
0, min

{
au − bv − c,M

}}
G(u, v) = max

{
0, min

{
eu − hv − f, N

}}
,

(3)

where d and g are parameters for decomposition or decrease of morphogens per unit time. E(t) is the
amount of stimulus. Intentionally placed activator, i.e., E(t), increases the activator concentration at the
point and a spot centered at the point would emerge. a and e correspond to the rate of activation and b

and h are for inhibition. c and f are parameters for decrease of morphogens per unit time. M and N are
constants of limit.

Theoretically speaking, these parameters must satisfy the following conditions to generate a pattern
centered at a point where stimulus E(t) > 0 exists [16].

a − d

b

f

e
− c

b
≤ 0 and

a − d

b

M

d
− c

b
< min

{ e

h + g
(
M

d
− f

e
),

N

g

}
(4)

or
a − d > h + g and

a − d

b

M

d
− c

b
< min

{ e

h + g
(
M

d
− f

e
),

N

g

}
(5)

As can be seen, the parameter setting does not depend on system conditions such as the size of region.

3. Reaction-Diffusion Based Coding Rate Control Mechanism

Figure 3 illustrates a surveillance or monitoring system that we consider in this paper. Each square
corresponds to the observation area of a camera sensor node. The darker the square is, the higher the
video coding rate is. We assume that nodes are arranged in a grid topology, considering town or room
monitoring as an application of the mechanism. For example in a town, we can consider such a scenario
where camera sensor nodes are placed at intersections. A node can communicate with four neighbors
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in up, right, down, and left directions. Nodes at a corner of the monitoring region have two neighbors
and nodes at an edge have three neighbors. The assumption on node layout can be relaxed by further
discretization ∇2X(X = u, v) as follow.

∇2X =
∑
j ̸=i

κi,j(Xj − Xi) (6)

κi,j =

{
d−2

i,j , di,j ≤ R,

0, otherwise
(7)

where, Xi and Xj are the concentration of morphogens in node i and j, and di,j is the distance between
the two nodes. R is the maximum transmission range.

Each node has a camera and a wireless communication device. A camera or a node has the capability
of object recognition and motion detection with which the existence, speed, and direction of a target in
its observation area are recognized.

Figure 3. Camera sensor network.

3.1. Basic Behavior

Basically, at regular control intervals of T seconds, each node calculates the reaction-diffusion
equation by using the information it received in the preceding control interval, adjusts its video
coding rate in accordance with morphogen concentrations, and then broadcasts a message containing
information about its morphogen concentrations, stimulus E, attenuation coefficient A, and NIP
(Notification of Inhibitor Peak) notification to its neighbors. Message emission is done once per control
interval and the message can be combined with a general HELLO message. We call the duration between
the t-th control timing and the t + 1-th control timing as the t-th control interval. We should note here
that nodes behave in an asynchronous manner, although the control interval is identical among nodes. It
means that timing of reaction-diffusion calculation and message emission is different among nodes.

The reaction-diffusion equation is identical among nodes. Since nodes are arranged in a grid layout
and messages are exchanged at regular intervals, we spatially and temporally discretize Equations (2)
and (3) as follows.
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

ut = ut−1 + ∆t

{
F (ut−1, vt−1) − dut−1 + E(t − 1)

+Du

(uu
t−1 + ud

t−1 + ul
t−1 + ur

t−1 − 4ut−1)

∆h2

}
vt = vt−1 + ∆t

{
G(ut−1, vt−1) − gvt−1

+Dv

(vu
t−1 + vd

t−1 + vl
t−1 + vr

t−1 − 4vt−1)

∆h2

}
,

(8)

and  F (ut−1,vt−1)=max
{
0,min

{
aut−1 − bvt−1 − c,M

}}
G(ut−1,vt−1)=max

{
0,min

{
eut−1 − hvt−1 − f ,N

}}
.

(9)

At the t-th control timing, a node calculates the above reaction-diffusion equation to derive its
morphogen concentrations ut and vt. A set of uu

t−1, ur
t−1, ud

t−1, and ul
t−1 and a set of vu

t−1, vr
t−1, vd

t−1,
and vl

t−1 correspond to concentrations of activator and inhibitor of neighboring nodes in up, right, down,
and left directions. These values are obtained from messages that a node received in the t− 1-th control
interval. If a node did not receive a message from a neighboring node in the t− 1-th control interval, the
latest value obtained in the preceding intervals is used instead. ∆h and ∆t correspond to the distance
between nodes and the discrete step interval of time, respectively. There is the theoretical range of ∆t

for the equation reaches convergence and a stable pattern is formed.

0 < ∆t < min
{ 2

d + 4Du(∆x−2 + ∆y−2)
,

2

g + 4Dv(∆x−2 + ∆y−2)

}
. (10)

If the degree of temporal discretization is not within this range, a pattern does not converge. E(t− 1) in
Equation (8) is the amount of stimulus which is determined at the t-th control timing, based on messages
it received in the t− 1-th control interval and the condition of a target if exists. The stimulus controls the
distribution of morphogen concentrations, that is, a pattern. Usually, the amount of stimulus is zero. A
node which detects a target in the t−1-th control interval appropriately sets E and A in accordance with
the speed and direction of the target, so that a spot pattern centered at the node is generated. The stimulus
diffuses to nodes in the direction of target movement so that they prepare for the future appearance of
the target in their observation area as shown in Figure 3. The attenuation coefficient A is used for
this purpose. Details of stimulus determination and diffusion will be explained in Section 3.2. NIP
notification is used to regulate the amount of stimulus when two or more targets are closely located.
Details of NIP will be given in Section 3.3.

Once morphogen concentrations are derived, a node translates the concentrations to the video coding
rate that it uses during the t-th control interval. As explained in Section 2, a spatial pattern generated by a
reaction-diffusion model comes from the spatial heterogeneity in concentration of activator. However, an
approach to directly map the concentration of activator to the video coding rate fails when two or more
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targets are close together. In Figure 4(a), we illustrate the distribution of concentrations of morphogens.
As can be seen, the region between two peaks of the concentration of activator has the slightly high
concentration of activator, because the region is activated by diffused activator while it is also inhibited
by diffused inhibitor. If we set the video coding rate in proportional to the concentration of activator
for example, regions in between closely located targets generate unnecessarily high-quality video data.
Therefore, in our mechanism, by focusing on a phenomenon that the concentration of inhibitor is also
high in the region as shown in Figure 4(a), a node determines the video coding rate based on u/

√
v,

whose distribution is illustrated in Figure 4(b). If v < 1, then we set u/
√

v = 0, in order to avoid the
divergence of u/

√
v. In the paper, we determine the video coding rate based on the value u/

√
v.

Figure 4. Distribution of u, v, and u/
√

v with closely located targets.
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3.2. Stimuli Arrangement

In the reaction-diffusion equation, stimuli decide the position, shape, and size of spot patterns. When
we set the stimulus high at a certain node, the concentration of activator becomes high at the node and a
spot centered at the node emerges. To keep monitoring a moving target, cameras in the region to which
the target is expected to move should use the sufficiently high coding rate for the future appearance
(Figure 3). Therefore, in our mechanism, a node detecting a moving target diffuses the stimulus to nodes
in the moving direction while the stimulus decreases as the distance to the target increases.

If a node has a target in its observation area at the control timing, it sets the amount of stimulus
E, the attenuation coefficient A, and the direction of diffusion. The node calculates the morphogen
concentrations, set the video coding rate, and broadcasts a message containing this information. A node
receiving a message first sees whether it is in the direction of the target movement. If not, it ignores the
information. If the node should be prepared for the target, it first calculates the amount of stimulus E ′

from the informed E and A as E ′ = A × E. This stimulus is used as E(t − 1) at the t-th control timing
in calculating the morphogen concentrations. After the calculation, the information about the stimulus,
including E ′, A, and the direction is further diffused to neighbor nodes by being embedded in a broadcast
message. When a node receives multiple messages containing stimuli from neighbor nodes, it uses the
sum of E ′ as E(t − 1).

The amount of stimulus E and the attenuation coefficient A are determined in accordance with the
movement of target and the capacity of wireless channel. In Figure 5, the relationship among E, A, and
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the volume of a generated pattern is shown for the case with a single target. The volume of a pattern is
defined as,

v(E, A) =
∑
(i,j)

u(i, j)/
√

v(i, j). (11)

u(i, j) and v(i, j) are the concentrations of activator and inhibitor at node (i, j) on a converged stable
pattern, respectively. Since a node chooses the video coding rate depending on u(t)/

√
v(t), the volume

corresponds to the total amount of traffic generated by nodes in a spot. As shown in the figure, the
volume v(E,A) is almost in proportional to the stimulus E. As the attenuation coefficient A increases,
the volume v(E,A) increases for the same stimulus E. Since the attenuation coefficient A determines the
range of stimulus diffusion, a node detecting a target first sets the attenuation coefficient A in accordance
with the speed V of target. Then, the node determines the stimulus E to keep the total traffic at a certain
volume from v(E,A). For example, when the capacity of local wireless network is 2,000 in volume and
A is 0.4, E is set at 1,010. The mapping from the speed to the attenuation coefficient depends on the
system conditions and application requirements. When the distance between adjacent nodes is large, the
attenuation coefficient should be large not to spread a spot pattern too broadly and thus not to exceed
the capacity of local wireless network. Regarding mapping from the network capacity to the volume,
we suggest to use 2,000 for any capacity as far as actual video coding rate is adjusted accordingly. In
our experiments we use MPEG-2 as a coding algorithm and the coding rate ranges from 0.75 Mbps
to 2 Mbps for an IEEE 802.11g network. In case of IEEE 802.11b for example, the maximum coding
rate should be kept as low as 400 kbps while using the same parameters as our IEEE 802.11g network,
e.g., local network capacity of 2,000 in volume.

Figure 5. Relationship among A, E, volume of pattern.
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3.3. Stimuli Adjustment

With the mechanisms we explained so far in the paper, a desired spot pattern appears and each node
generates video data with the appropriate quality in accordance with the location, speed, and direction of
a moving target without knowing the complete information about the whole system. However, when two
or more targets are located close together, the total amount of video traffic would exceed the network
capacity in that area. As a consequence, the perceived video quality considerably deteriorates for loss and
delay of video data. To tackle the problem, we additionally propose the stimuli adjustment mechanism.
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A basic idea is as follows. When two or more targets are close together, spots centered at them overlap
with each other. If a node can detect the overlap and inform to the nodes setting the stimuli, the amount
of stimuli can be adjusted so that spots become small and apart from each other. As shown in Figure 4(a),
when two targets are closely located, both of concentrations of activator and inhibitor become high at
the in between region. Especially, the concentration of inhibitor has a peak at the center. By using this
phenomena, a node at the overlapping point detects the overlap.

At the control timing, a node compares the concentration of inhibitor of itself with those of
neighboring nodes. If the inhibitor concentration is the highest at the node and it does not have a target
in its observation area, it sets the NIP notification in a message it broadcasts. Now, a node receives a
message. If u/

√
v of the node is higher than that of a node from which it received NIP, the node has

the stimulus, or any neighboring node of the node has a target, it sets NIP in a broadcast message. As a
consequence, NIP follows the gradient of u/

√
v and diffused stimuli toward nodes having a target.

When a node having a target receives a message with NIP, it reduces the stimulus
E as E × α (0< α <1). When the targets move apart from each other and the overlap disappears, the
stimulus has to be increased. Therefore, a node having a target increases the stimulus as E = E + ∆e,
if it does not receive any NIP in the preceding control interval. The stimulus must be large enough to
generate a pattern and smaller than the maximum to keep the volume. The range is determined from
v(E, A). For example, with A = 0.4, the range is from 440 to 1,010.

4. Simulation Experiments

In this section, we show results of simulation experiments to verify the effectiveness of our
mechanism. One hundred nodes are arranged in a 10× 10 grid with separation of 100 meters. Parameter
setting for the reaction-diffusion equation is summarized in Table 1. These parameters are chosen to
satisfy the Turing condition of Equation (4). For the stimuli adjustment, α = 0.999 and ∆e = 1 are used.
We determine the relationship v(E, A) from Figure 5, which is obtained by preliminary experiments with
one stationary target. Assuming that the capacity of wireless network is 2,000 in volume, the mapping
from the speed V to the attenuation coefficient A and the range of the stimulus E are summarized in
Table 2. These values are determined from v(E, A) shown in Figure 5, so that the area of high coding
rate spreads toward the direction of a moving target while keeping the total volume of a generated
pattern does not exceed the capacity of a wireless network as will be verified in Section 4.2. Initially, the
morphogen concentrations are set at zero.

4.1. Stationary Target

First, we consider a scenario where there is one stationary target (V = 0) at the location of (5, 5) in
the monitoring region (0 ≤ x ≤ 9, 0 ≤ y ≤ 9). Figure 6 illustrates the distribution of u/

√
v when a

pattern converges. In the figure, each square corresponds to a node or its monitoring area. The darker the
square is, the higher the video coding rate and u/

√
v are. A triangle indicates the location and direction

of a node. As shown in the figure, a spot pattern centered at the target is self-organized. Figure 7 shows
the distribution of morphogen concentrations and u/

√
v on a horizontal line y = 5. As shown in the
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figure, the concentration of activator and u/
√

v, that is, the video coding rate is the highest at the node
having the target.

Table 1. Parameter settings for reaction-diffusion equation.

parameter value parameter value
a 0.08 h 0.05
b 0.2 Du 0.004
c 0.2 Dv 0.1
d 0.03 M 0.2
e 0.1 N 0.5
f 0.14 ∆t 0.1
g 0.06 ∆h 1.0

Table 2. Mapping from V to A and range of E.

V (km/h) A Upper limit of E Lower limit of E

V = 0 0.0 1,960 830
0 < V ≤ 2 0.2 1,370 700
2 < V ≤ 4 0.4 1,010 440
4 < V ≤ 6 0.6 620 390

6 < V 0.8 360 260

In a reaction-diffusion model, a pattern does not appear at once. Since calculation and communication
require energy and time and adjustment of video coding rate must be performed in time to monitor
a moving target, we have to consider the time required for pattern generation. Figure 8(a) shows the
transition of the total volume against the number of calculations to show how fast a stable pattern
emerges. For a pattern to converge, nodes have to calculate the reaction-diffusion equation and exchange
messages about 2,800 times as a line labeled as “normal” shows. To accelerate pattern generation,
we introduce an acceleration method using a larger discrete step interval ∆t [14]. A line labeled as
“acceleration” in Figure 8(a) shows the result of acceleration by setting ∆t at 2.0, which is within the
limit of ∆t = 2.32 derived from Equation (10). By the acceleration, the number of calculations is
greatly reduced to 140. Now, assume that a target is moving at the speed of 4 km/h. A target passes
across the observation area of 100 m × 100 m in 90 seconds. Since the control interval should be in
an order of several seconds at least, the 140-times calculation is still too large to generate a pattern in
time. However, it is not necessarily required for the whole pattern to converge from a practical point
of view as far as a camera having a target generates the high-quality video data. Figure 8(b) shows the
transition of u/

√
v at a node detecting a target. For u/

√
v to converge, the node needs to calculate the

reaction-diffusion equation 85 times, but the concentration drastically increases to the sufficiently high
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value in about 30-times calculations. As nodes exchange messages and calculate the reaction-diffusion
equation, further nodes eventually adjust the video coding rate as shown in Figure 8(b). A pattern is
gradually generated from the center.

Figure 6. Distribution of morphogen concentrations with one stationary target.

Figure 7. Simulation results of one stationary target.
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Figure 8. Transition of volume and video coding rate against number of calculations.
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4.2. Moving Target

Next we make a node located at (2,5) move at the speed of 1, 3, 5 and 7 km/h, which corresponds to
the attenuation coefficient A of 0.2, 0.4, 0.6 and 0.8, respectively. Figure 9 illustrates generated patterns.
Figure 10(a) shows the distribution of u/

√
v for the different attenuation coefficient on y = 5. As can be

seen, as A, i.e., the speed of moving target, increases, the resultant pattern spreads wider and the height
of peak becomes lower. As shown in Figure 10(b), the total volume is kept constant at the given capacity
even when the speed changes with our stimulus setting.

Figure 9. Generated patterns for a moving target.

(a) A = 0.0 (b) A = 0.2 (c) A = 0.4 (d) A = 0.6 (e) A = 0.8

Figure 10. Simulation results of one moving target.
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4.3. Two Stationary Targets

To verify the effectiveness of our stimuli adjustment for closely located targets, we conduct simulation
experiments with two stationary targets. Figure 11(a) shows the relationship among the distance between
targets and the total volume of converged pattern. Two dashed lines correspond to the volume for the
case of one stationary target (lower line) and its doubled amount (upper line), respectively. The distance
of zero corresponds to the case of one stationary target. As shown in the figure, the total volume is
suppressed when the distance between two targets is small. In cases of the distance of one and two,
intermediate nodes detect the overlap, NIP is sent to the nodes detecting targets, and the stimuli are
decreased. Once the stimuli become small enough, the two nodes begin to increase the stimuli again
for not receiving NIP. As a result, the stimuli fluctuate as shown in Figure 11(b), where the transition of
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stimulus at one of nodes having a target is depicted for the case of distance of two. It should be noted
that the acceleration method also contributes to suppression of the oscillation. We see the same effect
in the total volume as shown in Figure 11(c). In the case of distance of three or more, spots centered at
targets do not overlap with each other and NIP is not used.

Figure 11. Simulation results of two stationary targets.
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4.4. Multiple Moving Targets

We consider a scenario with multiple moving targets. Initially, targets which move to the random
direction at the random speed from 0 to 8 km/h are located at randomly chosen nodes. At every control
timing, a target changes the speed and direction with the probability of 0.005. The control interval is
set at 2 seconds. At every 180/V control intervals, a moving target migrates to a neighboring node in
the moving direction. Here, 180/V is the time required for a target moving at the speed of V km/h
travels 100 meters. The discrete step ∆t is set at 2.0.

Figure 12(a) depicts the transition of the total volume of the whole region with three moving targets.
Depending on the distance among targets and their speed and direction, the total volume dynamically
changes. One reason that the total volume exceeds 6,000, i.e., the triple of the volume of a single target, is
that the high concentration of activator sometimes remains behind a fast moving target. The other reason
is that suppression of stimulus E is too slow for closely located targets moving at the speed of more
than 6 km/h. We need to accelerate pattern adaptation, but it is one of future work.

Figures 12(b) and 12(c) show the relationship among the number of targets and the average and
maximum volume of generated patterns, respectively. The dashed lines stand for the product of the
number of nodes and the value for one target. As shown in the figures, our mechanism suppresses the
traffic volume much lower by reaction-diffusion based control.

Although results are not shown, we also conducted simulation experiments on a large-size network,
where 2,500 nodes are arranged in a 50×50 grid with separation of 100 meters. We verified that every
node appropriately adjusts the video coding rate to monitor moving targets.
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Figure 12. Simulation results of multiple moving targets.
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4.5. Influence of Parameter Setting

To see the influence of parameter setting on generated patterns, we conducted experiments on a
network of 10×10 grid layout where a moving target is located at (3, 5) with the speed of 5 km/h heading
to the right direction.

When we change a in Equation (3), the distribution of u/
√

v on y = 5 does not change much as shown
in Figure 13(a). Although not shown in figures, pattern generation is insensitive to setting of b, c, e, h, and
f . On the contrary, d, g, Du, and Dv in Equation (2) affect generated pattern very much. Figure 13(b)
shows that a larger d decreases the height of u/

√
v, by decomposing the activator at the higher rate.

Parameter g has the same effect. The larger diffusion rates Du also decreases the activator concentration
by diffusing the activator mode to neighbor nodes as shown in Figure 13(c). Since u/

√
v corresponds to

the coding rate and further to the local channel capacity, these parameters should be carefully chosen in
accordance with the targeted coding rate through preliminary numerical experiments.

Figure 13. Simulation results of one moving target for different parameter values.
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These results also imply that we can control the shape and volume of pattern by dynamically changing
parameters, i.e., d, g, Du, and Dv, in accordance with the available wireless capacity and the velocity
of a target. However, for this purpose all nodes have to use the same parameters and thus adaptation of
parameters introduces considerable communication overhead in disseminating a new set of parameters.
On the contrary, as discussed in Section 3, the amount E of stimulus and the attenuation coefficient
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A affects the shape and volume of pattern as well. Since adaptation of these parameters, i.e., E and
A to dynamically changing operational conditions can be achieved at a node independently from the
others, we plan to regulate parameters E and A, while using the same and fixed set of reaction-diffusion
parameters listed in Table 1 on all nodes. It further relaxes the sensitivity of pattern generation to
parameter setting, although it requires preliminary experiments to obtain Table 2. We need an algorithm
to dynamically adjust Table 2 to fit to the actual operational environment, but it remains one of
future work.

5. Practical Experiments

To verify our proposal in an actual environment, we implemented the mechanism and conducted
practical experiments. In this section, we give an overview of our implemented system and show results
of experiments.

5.1. Video Coding Rate Control

For the purpose of local logging of experimental data at each node, we used laptop PCs equipped
with an IEEE 1394 camera and IEEE 802.11g wireless interface for a camera sensor node. Figure 14
shows how messages and video data are processed in a node. A node maintains information including
the morphogen concentrations and stimuli on neighbor nodes and itself. At regular intervals, a node
first checks whether it has a target in the observation area or not. If a target exists, a node determines
the corresponding stimulus information, i.e., E and A, in accordance with the velocity of the target
as in Table 2. Initially, the stimulus E is set at its maximum limit. Next, a node calculates the
reaction-diffusion Equation (8) based on the morphogen concentrations of itself and neighbors and the
stimuli. The computational complexity is not high where Equation (8) is simple floating point arithmetic
and can even be transformed to integer arithmetic. Then, it determines the coding rate based on the
value u/

√
v as in Table 3. Finally, it broadcasts a message containing its morphogen concentrations,

the stimuli information, and NIP, by using UDP/IP broadcasting. The payload size is 1,649 bytes
containing logging information. Since the communication and computational overhead at a node are
not too high, our proposal can be implemented on low-cost visual sensor nodes with the capability of
wireless communication, arithmetic computation, and video rate control.

By using the latest coding rate, a node generates MPEG-2 video data from raw video frames fed by a
camera in YUV422 format. As an encoder, we used a software encoder called mpeg2vidcodec v12

developed by MSSG (MPEG Software Simulation Group) [17] and modified it so that the coding rate
could be dynamically changed during coding a MPEG-2 stream. Video data are sent to a base station by
using UDP/IP unicast communication. The payload of one video data packet amounts to 1,092 bytes.
Although we adopt MPEG-2 in our experiments for the purpose of proof of concept, other video coding
algorithms such as MPEG-4 and other rate control mechanisms [18] such as frame dropping or temporal
resolution adaptation can be applied to our proposal and we do not limit to our experimental setting. By
choosing more sophisticated algorithms and mechanisms together with error concealment techniques in
the deployment phase, a video surveillance system with the higher video quality and the higher tolerance
to bit errors can be realized.



Sensors 2010, 10 7667

Figure 14. Flow of information and data in a node.

Table 3. Mapping from concentrations of morphogens to coding rate.

u/
√

v coding rate
0 < u/

√
v ≥ 5, 000 0.75 Mbps

5, 000 < u/
√

v ≥ 10, 000 1 Mbps
10, 000 < u/

√
v 2 Mbps

5.2. Object Detection

Although some commercially available cameras are capable of object and motion detection, in our
implementation, we used a simple mechanism for the purpose of preliminary experiments and easier
control. The accuracy and effectiveness of object detection are out of scope of our research.

A node detects the existence and movement of an object by comparing the difference in luminance
between two successive video frames. The luminance difference is derived for each pixel (i, j) by
subtracting the luminance f(i, j) in the current frame from the luminance F (i, j) in the preceding frame.
If the number of pixels whose absolute value of luminance difference is above the threshold x exceeds the
threshold y, a node considers that there is a moving object in the observation area. The moving direction
of the target is estimated by comparing the average coordinates of changed pixels in the successive
several frames. Since estimation of the moving speed requires the complicated image processing such as
estimation of the object size and its distance, we did not implement the speed detection mechanism and
used the fixed value.

5.3. Experimental Setting

In simulation experiments, we verified that each node could adjust their coding rate properly and the
total amount of video traffic was suppressed by applying our proposal even for cases of multiple targets.
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However, due to time and facility limitation, the experiments in this paper were with only one target and
four camera sensor nodes.

We arranged four camera sensor nodes 5 m apart in a line as illustrated in Figure 15. A base station
was located between nodes B and C and apart from the line. They were connected by IEEE 802.11 IBSS
(Independent Basic Service Set) mode. All nodes belonged to the same IP subnet by having the same
network address. Although all nodes were within the range of wireless communication, we manually
configured them so that a camera sensor node could exchange messages only with a base station and its
adjacent neighbors by ignoring messages from distant nodes. The control interval was set at 0.25 second.
Thus, a node consumes 53 Kbps for control messages. All nodes operated asynchronously, where they
broadcast messages, calculated the reaction-diffusion equation, and adjusted the coding rate at different
timing. Other parameters used for the experiments are summarized in Table 1.

Figure 15. Node layout in experimental system.

5.4. Evaluation Measures

We use packet loss rate and PSNR (Peak Signal to Noise Ratio) as measures of evaluation. The
packet loss rate is defined as the ratio of the number of video data packets which are not received at a
base station to the number of video data packets sent from camera sensor nodes. The PSNR is derived
by the following equation.

PSNR = 20 log 10(
255√
MSE

) (12)

MSE represents the mean square error. MSE of an image of m × n pixels is calculated the by
following equation.

MSE =

∑
(f(i, j) − F (i, j))2

mn
(13)

where F (i, j) and f(i, j) are the luminance at the pixel (i, j) of an original image and that of a
comparison image, respectively.

5.5. Results and Discussion

We first evaluated the performance of our implemented system and found that, to accomplish the
detection, calculation, broadcasting, and coding in a real-time fashion, the spatial resolution and the
frame rate should be kept as low as 320 × 240 pixels and 8 frames/sec, respectively. This results in the
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video rate of 1 Mbps at maximum and cannot cause congestion in the wireless network of only four
nodes. Therefore, in the following, we use dummy traffic equivalent to video data of 720 × 480 pixels
and 30 frames/sec in size. On the base station, loss of video data packets was monitored and
recorded, from which received video data were generated by using the video coding rate determined
in experiments.

Figure 16 illustrates the time variation in the number of packets emitted by the camera sensor nodes
per second when our proposal was applied. As the target walked at the speed of about 1.8 km/h from
the left (node A) to the right (node D), it moved from the observation area of one node to another in
about 10 seconds. This corresponds to the time variation in the video traffic shown in Figure 16, where
the duration that a node sent video data packets at the rate of about 250 packets/sec, i.e., 2 Mbps is
about 10 seconds. A node in the direction of the target movement first raised its coding rate from 0.75
Mbps to 1 Mbps, and then set it at 2 Mbps on having the target in its observation area, and finally returned
to its normal rate of 0.75 Mbps when the target disappeared from the observation area.

Figure 16. The number of emitted packets with our proposal.

Next, in Figure 17, we compare three alternatives focusing on the node C, which was located near the
base station and thus affected by other traffic. As we do not see any visible gap between the number
of packets sent by the node C and the number of packets received at the base station for the node
C in Figure 17(a), the packet loss rate was only 0.01% for the node C during the whole experiment.
Figure 17(b) shows the case of adopting the lowest coding rate, i.e., 0.75 Mbps, hesitating to generate
the high quality video and introduce much video traffic into the network. In this case, the packet loss
rate was the lowest and 0%. Finally, the packet loss rate of the case where all nodes aggressively used
the highest coding rate is shown in Figure 17(c). As shown in the figure, the considerable number of
packets were lost and the loss rate was about 36.7% for overloading the wireless network.

Figure 18 shows how the whole network was loaded. The figure illustrates the time variation in
the total number of packets sent by all sensor nodes and the total number of packets the base station
received. The number of received packets in Figure 18(c) indicates the capacity of the wireless network.
It is approximately 4.65 Mbps on average. It is almost equivalent to the total video traffic when one node
uses the coding rate 2 Mbps, another node does that of 1 Mbps, and the other two nodes keep the lowest
at 0.75 Mbps. In our proposal, the camera sensor nodes autonomously choose the optimal coding rate
allocation in accordance with the location of the target by adopting the reaction-diffusion model. The
average transmission rate of video data per node is about 1.03 Mbps with our proposal. The resultant
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packet loss rates are 0.24%, 0.02%, and 42.5% in Figures 18(a), 18(b), and 18(c), respectively. The
packet loss rates for nodes having the target in observation area are 0.03%, 0%, and 38.8%, respectively.

Figure 17. The number of sent and received packets (Node C).

(a) proposal (b) lowest coding rate (c) highest coding rate

Figure 18. The total number of sent and received packets.

(a) proposal (b) lowest coding rate (c) highest coding rate

The high packet loss rate severely affects the perceived video quality. Figure 19 shows the time
variation in the PSNR value for video data sent by the node C and that received at the base station for
the node C. The PSNR is derived against original video frames captured by a camera. Since the packet
loss rate was too high to decode the received video data when the highest coding rate was always used,
the PSNR values are only shown for the other two cases. In the case that our proposal was adopted, the
node C adjusted the video coding rate in accordance with the target movement, as we see the increase
in the PSNR to 40.0 dB at about 31 second. The reason for the instantaneous decrease of PSNR at
about 29 second was for loss of packets containing the header information. This can be recovered by
using FEC or we can avoid loss of header information by prioritizing important packets to the others. On
the contrary, although such spike-like variation does not appear in Figure 19(b), the PSNR was around
only 36.7 dB. Especially when the node C had the target in its observation area, the PSNR slightly
decreased to 35.5 dB for the complexity and activity of captured images. Figure 20 compares the
perceived video images from the node C at 40 second for the cases of our proposal and lowest coding
rate. Although the difference is not obvious, we see a finer image with our proposal.
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In conclusion, with our mechanism, camera sensor nodes autonomously adjusted video coding rate
to avoid congestion of the wireless network in order to satisfy application requirements on the perceived
video, where a user could monitor a target at the high quality description on a display.

Figure 19. PSNR of sent and received video data (Node C).

(a) proposal (b) lowest coding rate (c) highest coding rate

Figure 20. Perceived video image sent from node C at 40 second.

(a) proposal (b) lowest coding rate

6. Conclusions

In this paper, we proposed a reaction-diffusion based autonomous control mechanism for camera
sensor networks. In our mechanism, nodes periodically exchange information about the morphogen
concentrations, calculate the reaction-diffusion equation, and adjust the video coding rate. By setting the
stimulus at a node detecting a target and diffusing the stimulus, the video coding rate becomes high at
a node with a target and nodes in the moving direction. Through simulation and practical experiments,
we verified the effectiveness of our proposal. We showed that network congestion was avoided and the
quality of video data from a camera having target was high.
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