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Abstract: In this paper, a new method of classification and localization of reflectors, using 

the time-of-flight (TOF) data obtained from ultrasonic transducers, is presented. The 

method of classification and localization is based on Generalized Principal Component 

Analysis (GPCA) applied to the TOF values obtained from a sensor that contains four 

ultrasound emitters and 16 receivers. Since PCA works with vectorized representations of 

TOF, it does not take into account the spatial locality of receivers. The GPCA works with 

two-dimensional representations of TOF, taking into account information on the spatial 

position of the receivers. This report includes a detailed description of the method of 

classification and localization and the results of achieved tests with three types of reflectors 

in 3-D environments: planes, edges, and corners. The results in terms of processing time, 

classification and localization were very satisfactory for the reflectors located in the range 

of 50–350 cm.  

Keywords: principal component analysis (PCA); generalized principal component analysis 

(GPCA); reflector classification; times-of-flight (TOFs); ultrasonic sensors 
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1. Introduction 

 

The classification and localization of reflectors constitutes a fundamental task in the field of mobile 

robotics, since this information contributes in a decisive way to other higher level tasks, such as the 

generation of environment maps and the robot’s localization. With respect to the process of reflector 

classification, the techniques more broadly used are based on geometric considerations obtained from 

the TOFs for every reflector type [1,2]. An important inconvenience of the systems based on geometric 

considerations is their high dependence on the precision with which the measurements of the TOFs are 

carried out, and consequently, the classification results are strongly influenced by noise. 

Principal Component Analysis (PCA) has been used to reduce the dimension of data sets and object 

recognition in different works related to image processing [3-6]. The classification and localization 

technique for 3-D reflectors based on PCA using an ultrasonic sensor is explicitly discussed in [7], in 

which it is applied to 18 TOF values originated from a sensor that contains two emitter/receiver 

transducers and 12 receivers, (see Figure 1). The pulses emitted by E0/R0 are processed by itself 

(E0/R0) and by transducers E1/R1, R2, R3, R4, R5, R6, R7, and R8. The pulses emitted by E1/R1 are 

processed by transducers E1/R1, E0/R0, R5, R7, R9, R10, R11, R12, and R13. In [7-11] to reduce the number 

of transducers, the simultaneous emission of complementary sequences by two or more emitters  

is proposed. 

Figure 1. View of sensor structure proposed in [7]. 

 

 

The PCA is applicable only for data in vectorized representation. Therefore, the data obtained from 

a matrix sensor must have been previously converted to a vector form. A typical way to do this is the 

so-called “matrix to vector alignment", which consists of concatenating all the rows in the matrix 

together to get a single vector. Figure 1 shows two matrix sensors of nine transducers. The TOFs t0_2, 

t0_6, t0_3, t0_8, t0_0, t0_5, t0_4, t0_7, t0_1 obtained from reception of sequence emitted by E0/R0 and the TOFs 

t1_0, t1_5, t1_7, t1_9, t1_10, t1_11, t1_12, t1_13 obtained from reception of sequence emitted by E1/R1 are aligned 

to get a single vector (1). Receiver R2 and R8 are neighbours in the sensor, while they are far away 

from each other in the vectorized representation. The same observations hold for positions R0  
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and R6, etc. Due to the vector alignment the spatial information is missed. Also it can be remarked that 

the original 3 × 3 matrixes are converted to an 18 × 18 scatter matrix in PCA, which leads to higher 

time and memory space costs: 

In [8], the sensorial structure is formed by four transducers which can simultaneously obtain 16 

TOF values at every scanning process. These 16 TOF values are aligned in a vector that is used in the 

classification algorithm based on PCA.  

In [12] the generalized PCA (GPCA) algorithm is used for image compression. The GPCA 

algorithm deals with the data in its original matrix representation and considers the projection onto a 

space, which is the tensor product of two vector spaces. In this paper, we use the GPCA for recognition 

and localization of ultrasound reflectors which aim to overcome the drawbacks in the traditional PCA. 

We used a matrix of 16 transducers (using four of the centre sensors as emitters/receivers and the  

other 12 as receivers). Thus, we can obtain up to four 4 × 4 matrices, each of which performs a 

classification procedure independently. The results of the four classification processes merge to give 

the final result. 

The rest of this paper is organized as follows. Section 2 illustrates the proposed sensor structure. 

Section 3 describes the GPCA algorithm. Experimental results are presented in Section 4. And, 

conclusions are offered in Section 5. 

 

2. Sensor Structure 

 

The sensor structure used to extract information in a 3-D environment and to subsequently classify 

and locate ultrasonic reflectors with the obtained data (TOF sets) from echoes is shown in Figure 2.  

Figure 2. Sensor structure proposed in this paper.  
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The physical structure of the ultrasonic sensor consists of 16 transducers, four of them working as 

emitters and receivers (E1/R6 , E4/R7 , E3/R10 and E2/R11) and the others only working as receivers. All 

the transducers are located in a plane (plane xz), with the axial axis in the y-direction. Furthermore, the 

separation between transducers is determined by the distance a (a = 0.17 m). 

With the proposed sensor structure it is possible to obtain up to 64 TOFs at every emission/scanning 

process. To do this, it is necessary to assign a different macrosequence to every transducer to encode 

their emissions. These macrosequences, obtained from complementary sets of sequences, allow 

simultaneous emission and reception to be carried out with all the transducers for the same scanned 

environment [8,11].  

 

3. GPCA Algorithm. 

 

In this paper, the usage of GPCA is proposed to carry out the reflector classification using the 

measurements of 16, 32 and 64 TOFs provided by the ultrasonic sensors. This method maintains the 

spatial distribution of sensor data, which is represented by the TOFs in a matrix format (2): 

In (2), t1… t16 are the TOFs associated to each receiver and 
cr

e

 IRτ  is the TOF matrix 

obtained for each emitter (r and c are the number of rows and columns of the sensor, respectively). 

Therefore, in our case we can obtain up to four matrices ( 4321  and,, E

e
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e

E

e

E

e ττττ for the emitters E1, E2, 

E3 and E4).  

In GPCA we compute an optimal (l1, l2)-dimensional space, such that the projections of the data 

points (subtracted by the mean) onto this axis system have the maximum variance among all possible 

(l1, l2)-dimensional axes systems. Unlike PCA, the projections of the data points onto the  

(l1, l2)-dimensional axis system in GPCA are matrices, instead of vectors.  

Let consider S = {τ0, τ1, τ2, …τn-1} be a training set of n samples of TOF matrix. The mean TOF 

matrix of the set is defined by:  

Matrices with mean zero are represented as:  
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where ||  ||F is the Frobenius norm and L   1IR
lr

 and R   2IR
lc

 are two matrices with orthonormal 

columns, such that the variance var(L,R) is maximum. The maximum value of (5) cannot be found in 

closed form and thus an iterative approach is needed: 

 For a given R, the optimal matrix L consists of the l1 eigenvectors of the matrix ML which 

correspond to the largest l1 eigenvalues, where: 

 In the same way, given L, the matrix R consists of the l2 eigenvectors of the matrix MR, 

corresponding to the largest l2 eigenvalues, where: 

In the realized experiments we used l1 = l2 = 2 (
24IR L  and 24IR R ) and l1 = l2 = 1  

(L   IR
4×1

 and R   IR
4×1

). 

To calculate the L and R matrices that maximize Equation 5, it is necessary to initially fix one of 

them. Fixing L, we can calculate R by computing the eigenvectors of the matrix MR, and then, with 

the calculated R we can then update L by computing the eigenvectors of the matrix ML. It is necessary 

to repeat the procedure until the result converges. The solution depends on the initial choice of L (L0). 

As it is recommended in [12], we use L0 = (I, 0)
T
, where I is the identity matrix. To measure the 

convergence of the GPCA procedure we use the root mean square error (ζ), defined as follows: 

In the realized experiments for ζ = 10
−8

 the procedure converges within five iterations. 

Once the transformation matrices L and R are determined and given a new TOF matrix τi to be 

classified, its zero-mean version Φi is transformed into the feature space as:  

Then we can reconstruct Φi as: 

The reconstruction error (εR) for iΦ̂ can be computed as: 

 

3.1. Offline Generation of the Classes 

 

The objective of this work is to classify one of the three reflector types (plane, corner, and edge) 

and its approximate direction (azimuth angle γ, elevation angle θ) and distance (r) with respect to the 

frontal space of the sensor. Before beginning the classification process, it is necessary to create 

different classes, depending on the reflector type and its spatial location. Every class has two 
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transformation matrices L, R associated to it. These matrices are referred as L
P
 and R

P
 for the plane, 

L
C
 and R

C
 for the corner, and L

E
 and R

E
 for the edge.  

As it is stated in [7,8], we assume that the frontal space of the sensorial structure is formed by Q 

directions defined by (γq, θq), with q   {1, 2,…, Q}. Along every direction q, there are D discrete 

distances referred to as rd, with d  {1, 2,..., D}. To generate the transformation matrices associated to 

every direction class and every reflector type, the reflectors {P,C,E} have been located at every 

direction q and for all the d distances, obtaining the TOF vectors. In GPCA, to generate the 

transformation matrices associated with every direction and every reflector type (
P

qL , 
P

qR , 
C

qL , 
C

qR , 

E

qL , 
E

qR ), the reflectors {P, C, E} have been located at every direction q and for all the D distances.  

When more than one transducer is emitting, we use a matrix of TOF for each emitter, i.e.: 

4321  and,, E

e

E

e

E

e

E

e ττττ  for the emitters E1, E2, E3 and E 4. Therefore, it is necessary to compute the 

transformation matrices associated to every direction and every reflector type (
P

qL , 
P

qR , 
C

qL , 
C

qR , 
E

qL , 

E

qR ) for each emitter. 

 

3.2. Classification and Position Estimation of the Reflector 

 

The strategy proposed in this paper to carry out the online classification process is to first classify 

the type and approximate direction in which the reflector is located and then to estimate its distance 

with respect to the frontal space of the sensor. 

To classify the type and approximate direction of the reflector, we calculate the square 

reconstruction error (ε), using the transformation matrices associated to every direction q and every 

reflector type:  

The reflector is classified as a plane if 
C

q min >
P

qmin <
E

qmin , it is classified as an edge if 

C

qmin >
E

qmin <
P

qmin and it is classified as a corner if 
E

q

C

q

P

q minminmin   . The value of q, which 

corresponds to the minimum value of q  determines the approximate direction of the reflector. When 

more than one emitter is being used, we determine the minimum value of reconstruction error in each 

direction for each emitter, and added to all these minimum values. The minimum values are taken with 

the same angle for all transmitter, otherwise the results will not classify correctly. For four emitters 

that is: 
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Once the type of reflector and the direction in which it is positioned are known, the approximate 

distance with respect to the sensor structure can be determined. The Frobenius norm in the transformed 

space between the feature vector τe for the object to be classified , and every feature vector of the 

training samples of the class to which this reflector belongs, are calculated. For example, if the object 

was classified as a plane in the direction q, the TOF vector set used offline to generate the 

transformation matrix will have been  P

qD

P

q

P

q

P

q ττττ ,...,,, 321 . Therefore, it is only necessary to 

compute the Frobenius norm in the transformed space among the feature vector corresponding to the 

TOF vector τe, and the feature vectors corresponding to the training samples, as is shown in: 

 

P

q

P

qdd ττΦ  , d = 1, 2,…, D. 

The value corresponding to d, that provides the minimum εd, will be the approximate reflector 

distance, in the direction q. 

It has been proven empirically that the relationship among the distances of the reflectors to the 

sensor structure, and the Frobenius norm of their feature vectors in the transformed space, is 

approximately linear. In this way, considering the distance interval, where the reflector is, and the 

Frobenius norm in the transformed space, a correct estimation can be obtained by means of a linear 

interpolation of the distance at which the reflector is positioned. 

 

3.3. Processing Time Using PCA and GPCA. 

 

To compare the processing time of the GPCA classification method with the PCA method, we 

analyze the number of multiplication operations required to classify the type of the reflector from the 

reconstruction error. To do this, we consider a generic sensor as proposed in Figure 2 with r rows and c 

columns. With TOF’s obtained a r × c matrix and a vector of dimension r.c are built for GPCA and 

PCA methods respectively. It’s also considered that a number l of eigenvectors are selected and that 

the sensor has m emitters. 

In PCA, the reconstruction error is given by the following expression: 

where L is the transformation matrix and  is the measurements column vector with mean zero. The 

dimensions of the vector  and matrix L are r·c·m (  
(r.c.m)

) and (r·c·m) × l (L  
(r.c.m)×l

) 

respectively. We can obtain the number of multiplication operations required broking expression (13) 

down in different terms (14) and (15): 

L
T
 = E      (14) 

LE = F      (15)  
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Therefore, taking the dimensions of vector  and matrix L into account, to calculate the terms  

E = L
T
 and F = LE l.(r.c.m) multiplications are needed. To obtain the Euclidean distance, r.c.m 

multiplications are needed. So, the total number of multiplications required to classify the type of the 

reflector using PCA is: 

In GPCA the reconstruction error is given by:  

22

F

T

F
ΦRLΦ 

      
(17) 

where L and R are transformation matrices and  is the measurements matrix with mean zero. In this 

case, the dimensions of matrices , L and R are r × c (  
r×c

), r × l1 (L  1lr
 ) and c × l2  

(R  2lr
 respectively. Following the same method that in PCA, we obtain the number of 

multiplications broking expression (17) down in terms: 

mlcr
tionsmultiplican

).( 2
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 ΦRH                                  (18) 

mlrl
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).( 21

ºT   HLG                                (19) 

mll
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F
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º2
G                                          (20) 

mcr
tionsmultiplican

F
  )(

º2

                                          (21)
 

Then, the total number of multiplications required to classify the type of the reflector using  

GPCA is: 

The number of multiplications for both methods particularized for r = 3, c = 3 and using different 

numbers of emitters (m) and eigenvalues (l, l1, l2) are shown in Table 1. One can see that the total 

number of multiplications using GPCA is slightly lower than using PCA. However, its main advantage 

is that because the classification is performed independently with the TOFS obtained for each emitter 

and added to the obtained values, it is possible to make a parallelization of the calculations when using 

a multiprocessor system. That is, for two emitters (m = 2) using a dual processor system, the 

processing time can be reduced by more than half using GPCA (160 using PCA and 68 using GPCA). 

)()()()(tionsmultiplican mcrmcrlmcrlPCA   (16)  

 mcrlllrllcrGPCA .)()()..()()(tionsmultiplican 21212   (22)  
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Table 1. Number of multiplications for PCA and GPCA, using different numbers of 

emitters and eigenvalues. 

PCA GPCA
 

 

ΦLLΦ
T  

22

F

T

F
ΦRLΦ   Reconstruction error. 

 mcr Φ  

  lmcr L  

cr
Φ  

1lr
L  

2lc
R  

Dimensions of matrices. 

 mcrl  +   lmcr  + 

 mcr   

  212 lrllcr  

 mcrll  21  

Number of multiplication operations. 

 

64 + 64 +32 = 160 32 +16 + 4 + 16 = 68 × 2 Number of multiplication operations 

for l = l1 = l2 = 2 and m = 2. 

128 + 128 + 64 = 320 32 +16 + 4 + 16 = 68 × 4 Number of multiplication operations 

for l = l1 = l2 = 2 and m = 4. 

32 + 32 + 32 = 96 16 + 4 + 1 +16 = 37 × 2 Number of multiplication operations 

for l = l1 = l2 = 1 and m = 2. 

64 + 64 + 64 = 182 16 + 4 + 1 +16 = 37 × 4 Number of multiplication operations 

for l = l1 = l2 = 1 and m = 4. 

 

4. Simulation Results 

 

A simulator has been used in order to carry out the simulations; this allows TOFs to be obtained in 

three-dimensional environments, based on the sensor model proposed by Barshan and Kuc [13] and 

using the rays technique [14]. The system employs a frequency of 50 Khz. To this frequency we can 

suppose a specular model. This simulator is the same as that used in [7] and it is validated with real 

measurements. The measures used to compare the two methods of classification, PCA and GPCA, 

have been obtained under the same conditions. 

To evaluate and compare the GPCA classification method with the PCA method, we generate TOFs 

simulating the sensor structure of Figure 2. To obtain the transformation matrices, the reflectors have 

been located at distances from 50 to 350 cm, with 30-cm intervals. The azimuth and elevation angles 

were from –12º to +12º, with intervals of 2º. 

In the simulations carried out, we analyze the percentage of successful classifications, using 

different values for the number of emitters (m) and different values of the number of used eigenvectors 

(l = l1 = l2) corresponding to the largest eigenvalues. In all the cases, the results are obtained adding to 

the TOFs a zero mean, independent and identically distributed (i.i.d.) Gaussian noise with typical 

deviation of 15 µs. The distance for plane, edge, and corner-type reflectors placed at distances from 50 

to 350 cm, with intervals of 20 cm, and an azimuth angle of 7.5º. For each type of reflector at each 

distance 500 tests were conducted. We also performed simulations for different azimuth and elevation 

angles and the results are similar to the ones showed in this section.  
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In Figure 3 the classification percentage for l = 2 and m = 2, using PCA and GPCA methods, is 

shown. In this figure we can observe that the percentage of successful classifications using the PCA 

algorithm is greater than using the GPCA for distances greater than 200 cm. This is due to, the GPCA 

algorithm need a amount of input data greater than PCA for a appropriate classification. In both cases 

we obtained a 100% success rate for distances below 200 cm. 

Figure 3. Percentage of successful classifications using GPCA and PCA, for l = l1 = l2 = 2 

and m = 2. 

 

If we maintain the same number of emitters and use only the eigenvector corresponding to the 

largest eigenvalue, the percentage of success is greater than 95% up to 300 cm and then decreases very 

sharply, as shown in Figure 4.  

Figure 4. Percentage of successful classifications using GPCA and PCA, for l = l1 = l2 = 1 

and m = 2. 
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The simulations carry out with other values of noise and a single eigenvector have shown that, 

using PCA and GPCA the percentages successful classifications of corners and planes fall sharply for 

distances greater than 330 cm. This is due to the loss of dimensionality in the transformed space. 

If one wants to increase the percentage of hits in the classification, we can increase the number of 

emitters. In Figure 5 the results obtained for m = 4 are shown. In this figure we can see that the 

percentage of hits is over 98% up to 350 cm. In this case the processing time for PCA is approximately 

twice that with two transmitters. However, using GPCA we can get a time similar to that obtained for a 

single emitter, if we use parallel processing. 

Figure 5. Percentage of successful classifications using GPCA and PCA, for l = l1 = l2 = 2 

and m = 4. 

 

 

In applications that do not require classifying objects at distances greater than 290 cm, you can use 

a single eigenvector to obtain 100% success. In Figure 6 the results obtained for m = 4 and l = 1 are 

shown. In this figure we can see that the percentage of success is 100% up to 290 cm and then 

decreases very sharply. 

The GPCA approach better organizes the data in the sense of adjacent components in the matrix 

representation correspond to physically adjacent readings in the sensor array. This allows, with smaller 

transformation matrixes to achieve similar results to those obtained with PCA and the computational 

cost is lower. 

The results obtained in estimating the distance are similar using PCA and GPCA methods. 

However, using GPCA has the advantage of a lower computational cost. The computational cost in the 

estimation of distance can be analyzed in the same way as is analyzed in the classification process. 

Although all the results presented come from simulations done with non-correlated noise, tests with 

correlated noise have been carried out. It has been verified that the proposed algorithm is very robust 

against that kind of noise. In these tests, the classification is successful even when the correlated noise 

has higher standard deviations than the non-correlated noise. 
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Figure 6. Percentage of successful classifications using GPCA and PCA, for l = l1 = l2 = 1 

and m = 4.  

 

 

5. Conclusions 

 

In this paper, a classification algorithm based on the GPCA techniques have been proposed, with 

which three types of basic 3-D reflectors can be classified: planes, corners, and edges. The excellent 

behaviour of the GPCA proposed classification algorithm for a wide range of distances between 

reflectors and sensor systems has been demonstrated by means of simulations, under extreme noise 

conditions regarding measurements. Experiments show similar performance between GPCA and PCA, 

in terms of successful classification percentage. However, GPCA uses transformation matrices that are 

much smaller than PCA. This significantly reduces the space to store the transformation matrices and 

reduces the computational time in the classification procedure. Also, as the processing of the data is 

obtained for each emitter it is processed independently and processing time can be significantly 

reduced using parallel processing.  
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