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Abstract: Hydrogels have found wide application in biosensors due to their versatile 

nature. This family of materials is applied in biosensing either to increase the loading 

capacity compared to two-dimensional surfaces, or to support biospecific hydrogel 

swelling occurring subsequent to specific recognition of an analyte. This review focuses on 

various principles underpinning the design of biospecific hydrogels acting through various 

molecular mechanisms in transducing the recognition event of label-free analytes. Towards 

this end, we describe several promising hydrogel systems that when combined with the 

appropriate readout platform and quantitative approach could lead to future  

real-life applications.  
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1. Introduction  

Hydrogel materials have found widespread biomedical applications in regenerative medicine and 

drug delivery. There is also an increasing interest in hydrogels within biosensing. While biosensing in 

general takes advantage of various readout platforms based on electrochemical, mechanical or optical 
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detection principles (e.g., amperometric, surface plasmons, fluorescence, dual polarization 

interferometry and others), hydrogel specific properties appear to be less exploited in biosensing 

applications. A biosensor can be viewed as a combination of a selective detection/recognition unit, a 

transducing unit and a readout part. The detection unit is designed to react in the presence of the 

desired analyte. The function of the transducing part of the biosensor is to convert the presence of the 

relevant analyte into an output that can readily be measured by the actual output system. These 

functionalities need to be optimized in a holistic design, i.e., not all combinations of primary detection 

units and readout technologies will perform equally well. Within the field of biosensors, hydrogels 

have been applied for two main purposes: increase the loading capacity of an analyte by transforming 

a conventional 2D immobilization scheme into a 3D meshwork or to take advantage of hydrogel 

specific properties (swelling, phase transitions and properties that derive from them). In the latter, the 

design of the matrix design supports signal transduction by altering the degree of hydrogel swelling 

associated with the specific recognition/detection of the analyte.  

The plethora of responsive characteristics displayed by various hydrogels includes changes of 

equilibrium swelling volume due to changes in e.g., parameters such as solvent pH [1,2] 

temperature [3,4], ionic strength [5,6], electric fields [7], and surfactants [8], among others. Such types 

of responses are usually not sufficiently specific for the hydrogel materials to be applied as specific 

signal transduction materials within biosensors. The implementation of a biospecific hydrogel 

response can be designed to utilize different molecular mechanisms, and thus different parameters in 

the Flory-Rehner-Donnan theory of hydrogel swelling, as herein indicated. The theory is based on  

random-mixing lattice model, assumes Gaussian distribution of the polymer chains and neglects the 

electrostatic interaction between charges present in the network. Even though there are several reviews 

within bioresponsive hydrogels [9-13], a linkage between molecular mechanisms governing the 

response and the hydrogel swelling theory appear not to be widely explored. Briefly, in a first 

approximation, the equilibrium state of a polyelectrolyte hydrogel is described by total zero osmotic 

pressure () of the gel. The osmotic pressure of an ionic hydrogel is in the simplest form of the theory, 

assumed to consist of three additive contributions arising from different molecular mechanisms: first, 

the free energy contribution arising from the mixing of the polymer with the solvent, mix; second, the 

elastic retractive force associated with deformation of the polymer chains, el; and third, the difference 

in mobile ions concentration inside and outside of the gel, ion (if the polymer chains are charged). 

The total osmotic pressure can then be written as [6,14-17]: 
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In Equation 1, subscript 1 and 2 of the volume fractions φ denote the solvent and polymer phase 

respectively. V1 is the molar volume of the solvent, υ is the molar number of elastic active polymer 

chains in the gel at the reference volume fraction φ2,0, V0 is the gel volume for the reference state, R is 
the molar gas constant, T is the absolute temperature, and c the Flory-Huggins interaction parameter 

taking into account the energy of interdispersing polymer and solvent molecules. The role of the  

Flory-Huggins parameter in the hydrogel swelling has been addressed in more detail elsewhere [13] 

and as the swelling mechanism involving changes of the parameter was utilized rather in the frame of 
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thermo- than selectively bioresponsive hydrogels, it is not the focus here. The total difference in molar 

concentration of mobile ions between the gel and the surrounding aqueous solution, Ctot, is given by 

the Donnan equilibrium and theoretical expression including molecular parameters of the network and 

the valence of the electrolytes are described [6].  

Within this framework, an understanding of the mechanism explaining how responsive gels adopt a 

new equilibrium swelling volume, 1/2, can be identified by considering the effect of the various 

parameters in Equation 1. For instance, bioresponsive hydrogels built by incorporation of an  

antigen-antibody pair as a physical crosslink that dissociate in the presence of its specific 

antigen/antibody, yields a swelling response that mainly originates from changes in the crosslink 

density, parameter υ in Equation 1. Alternatively, a bioresponsive hydrogel designed by 

immobilization of an enzyme that catalyzes the transformation of a substrate from its non-ionic form to 

its ionic form (e.g., glucose oxidase) will be primarily mediated by changes in the Ctot term in 

Equation 1.  

Traditionally, the determination of hydrogel-swelling characteristics has been performed either 

optically, i.e., by imaging a piece of gel using a light microscope, or by weighing following blotting 

off excess water. More accurate detection methods have been realized by incorporating the hydrogels 

into sensors such as conductimetric [18], liquid column length [19], or optical sensing [20-23]. 

Additionally, determination of changes in swelling using dynamic light scattering methods has been 

reported when the size of microgel particles was appropriate [24,25]. The precision of the detection of 

changes in hydrogel swelling volume limits the applicability of responsive gels within biosensors and 

as a fundamental tool for understanding of functional properties of responsive polymer materials. 

While biospecific recognition and signal transduction exploiting hydrogel properties may be 

beneficial, their introduction in a polymer network can inversely affect diffusion properties of the 

target analyte, thus offsetting the pre-cited advantages.  

Within this framework, we will review the present status of hydrogel materials applications in 

biosensing. The scene is set by first performing some calculations based on further development of 

Equation 1 to allude to the effects of analyte induced changes in equilibrium swelling based on various 

mechanisms. Section 3 includes an overview of reported strategies followed by readout platforms 

needed to design a functional biosensor (Section 4) before the concluding remarks. We limit ourselves 

to label-free detection schemes [26,27], i.e., that can be applied without prior labeling of the analyte. 

Such label-free detection schemes have the advantage to potentially support direct detection within 

bodily fluids.  

2. Biospecific Response of Hydrogels – What Can Be Achieved? 

Bioresponsive hydrogels can be realized where the changes in the equilibrium swelling is designed 

to primarily act by changing the cross-link density, the charge density of elastic chains of the network 

or pH of the aqueous phase of the network (see below). How large a change one can expect based on 

these various mechanisms will be alluded to by performing some calculations based on elaborations of 

Equation 1. To include the effect of finite extensibility of elastically active chains, the expression of 

el was modified using the inverse Langevin function L -1 [14]: 
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where max, is the maximum linear extension ratio of the polymer chain. The actual extension is related 

to the swelling ratio through the relation  = (2,0/2)
1/3 for three-dimensional isotropic swelling. 

Effects of analyte binding working through altered charge density of the elastic active chains are 

developed through the ionic term of Equation 1. The difference in electrolyte concentration inside and 

outside the gel is given by:  

)()( ''
  CCCCCtot  (3) 

where C+ and C- are the concentrations of positive and negative ions inside the gel, respectively, 

and the primed parameters the equivalent outside the gel. The ion concentration inside the gel can be 

calculated assuming that the relation for the Donnan equilibrium holds [14]. Electroneutrality and 

equality of chemical potential across the gel/solvent boundary for every ionic species are the two 

requirements needed to be fulfilled in this approach. Therefore, for anionic polymers in 1:1, 1:2  

and 2:1 electrolytes, the Donnan equilibrium can be described by the following set of equations [28]: 
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where z+ and z- are the absolute values of the valences of the mobile ions, 2 are the square of the 

mean activity coefficient of the salt inside and outside the gel, respectively, Zp is the effective number 

of counterions per polymer repeating unit, and Cp is the molar concentration of the polymer repeating 

unit. The term ZpCp represents the additional counterions required to neutralize the fixed charge on the 

polymer network. In a biospecific responsive material acting according to such a mechanism, Zp will 

vary depending on the amount of specifically bound analyte, and may also be a function of the pH. 

Parameter Cp is dependent on the swelling ratio of the gel. The term ZpCp in Equation 4 is therefore 

expressed as [6]: 

Z C Mp p  2 2  (5) 

where  is the mass density of the dry polymer network and M2 is the molar mass of polymer per unit 

charge. Figures 1 and 2 depict examples of numerical calculations obtained using Equations 1–5, and 

parameter values as described in the legends. The algorithm implemented had previously been used to 

fit the parameters of the swelling theory to experimental swelling data for polysaccharide hydrogels of 

various charge densities in an aqueous solution at different ionic strengths [29]. Figure 1 depicts an 

example showing the effect of changes in crosslink density on the equilibrium swelling of a weakly 

charged and uncharged 10% w/v hydrogel in an aqueous salt solution. The smaller the crosslinking 

density of a gel, the larger the relative change in the hydrogel swelling volume (Figure 1b) gets. At the 

ionic strength selected for the calculation of the swelling of the weakly charged network, the 

equilibrium swelling is predicted to closely resemble that of the uncharged network, and both types of 

network increases in swelling volume the lower the cross-link density. This indicates that the design of 
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the most sensitive hydrogel materials to specific biological signals working mainly through altered 

crosslink density is achieved at the smaller crosslink density (as expected). Hydrogel designs working 

mainly through altered crosslink density can be evaluated using the total crosslink density υ consisting 

of a covalent part and biospecific part (υ = υcov + υbiospecific, by molar ratio). However, in numerous 

practical applications, the material’s mechanical integrity as well as other material dependent 

properties (e.g., reflectivity, optical density) also needs to be taken into account. 

The calculations of the equilibrium swelling volume versus the charge density (1/M2) (Figure 2) 

illustrate the interplay between the swelling sensitivity, the polymer chain charge density and the 

solution’s ionic strength. For most conditions, the lower ionic strength in the analyte bath fosters a 

more sensitive change in the equilibrium swelling volume, but the relative difference between the 

charge density induced swelling sensitivity decreases with increasing charge density (i.e., with 

decreasing M2 parameter).  

Figure 1. Example of simulation results showing the calculated equilibrium swelling ratio 

versus crosslink density (a) using Equation 2–5 for a 10% w/v hydrogel with charge 

density parameter equivalent molecular weight per charge (M2) of 2,500 g/mol e- 

(continuous line) and uncharged polymer chains (broken line), Flory-Huggins interaction  
parameter c = 0.46, maximum elastic chain stretching ratio max = 15, and ionic strength 

of 0.1 M monovalent type salt added to the aqueous solution (only for the charged network 

case) and at a temperature of 25 ºC. The network parameters are derived for a 

polyacrylamide based hydrogel and the crosslinker concentration is provided both in 

absolute numbers and mol% relative to the monomer of the polymer assuming a bis 

crosslinker. Additionally, an estimate of the shear storage modulus, G, over the range of 

hydrogel crosslinker densities are depicted (upper scale, Figure 1a). Figure 1b depicts the 

relative change in swelling volume versus crosslink density for the simulation depicted in 

Figure 1a. The arrows (Figure 1a,b) depict the crosslink density used in the calculations in 

Figure 2. 
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Figure 2. Example of simulation results showing the calculated equilibrium swelling ratio 

versus equivalent molecular weight per charge (M2) of the polymer network chains  

(a) using Equation 2-5 for a 10% w/v hydrogel with crosslinker concentration 1 × 1024 m-3, 
Flory Huggins interaction parameter c = 0.46, maximum stretching ratio max = 15, and 

ionic strength of 0.01 M and 0.1 M monovalent type salt added to the aqueous solution at a 

temperature of 25 ºC. The crosslink concentration of 1 × 1024 m-3 correspond  

to 0.118 mol% of the crosslinker assuming the 10% w/v hydrogel is a polyacrylamide 

based hydrogel crosslinked with bis-acrylamide. Figure 2b depicts the relative change in 

swelling volume versus the equivalent molecular weight per charge of the polymer 

network chains for the simulation depicted in Figure 2a. The arrows (Figure 2a,b) depict 

the charge density (1/M2) used in the calculations in Figure 1. 

  
 

This first approach does not include effects due to loose-ends; elastic chain length heterogeneities 

are not addressed either. Furthermore, hydrogels for biosensors application may also need to be 

immobilized to a surface that, in view of the proper modeling, would represent swelling under a 

constrained condition. Nevertheless, this first result seems to indicate that a more explicit application 

of main trends appears feasible for optimizing design conditions for bioresponsive hydrogels. 

3. Biospecific Response of Hydrogels – How Can It Be Achieved in Practice?  

Whether one should aim at designing a hydrogel-based transducer working mainly through the 

charge density or the crosslink density mechanism depends on the properties of the analyte, and how 

the recognition element is integrated into the network topology. In the following section, practical 

aspects related to the Flory-Rhener-Donnan theory in biosensing using hydrogels are addressed. The 

sensitivity of hydrogels to such biological molecules as DNA, antigens, proteins, and small molecules 

of high biological importance is exemplified. 

3.1. Osmotically Induced Hydrogel Response 

Bioresponsive hydrogel swelling based on the ionic contribution to the osmotic pressure can be 

achieved in two different ways. Direct binding of a charged analyte molecule to the hydrogel network 

mediated by a specific recognition group yields a direct change in the M2 parameter that subsequently 
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leads to an altered osmotic pressure or equilibrium hydrogel swelling. Alternatively, an uncharged 

analyte can be converted by a moiety (e.g., enzyme) covalently coupled to the hydrogel matrix thus 

generating ionic species within the aqueous phase of the hydrogel. 

In 1991 Tanaka and coworkers proved the concept of a hydrogel swelling due to the specific 

binding of charged molecules to the modified network [30]. Concanavalin A (ConA) is a lectin protein 

well known for its affinity to saccharides [31,32]. The lectin affinity depends on the type of saccharide. 

The authors physically entrapped ConA inside a poly-N-isopropylacrylamide network. Adding the 

anionic polysaccharide dextran sulfate resulted in gel swelling due to the affinity binding of dextran 

sulphate to ConA and a “charge entrapment” in the hydrogel (Figure 3a). Subsequent addition of 

nonionic saccharide a-methyl-D-mannopyranoside yielded a gel collapse due to its stronger affinity 

toward ConA than dextran sulphate. Due to the competitive binding of the neutral saccharide, the 

charged dextran was released and the osmotic pressure reduced so the polymer network shrunk to the 

relaxed state following diffusion of the released dextran.  

The biological importance of glucose has motivated a large number of sensor developments. Direct 

binding of glucose to a polymer network does not induce swelling mediated by an ionic effect. 

However, Holtz and Asher [33-35] took advantage of the specific catalytic activity of an enzyme in a 

polymer hydrogel sensing principle for glucose, based on glucose oxidase conjugated to the gel. 

Glucose oxidase (GOx) oxidises b-D-glucose into D-glucono-1,5-lactone, which then hydrolyzes to 

gluconic acid. After glucose oxidation the enzyme is converted to the reduced anionic form 

(Equation 6). In the second stage GOx (red) is reoxid ized by molecular oxygen to its active form 

(Equation 7) [36]. 

GOx (ox) + glucose → GOx - (red) + gluconic acid +H+ (6) 

GOx - (red) + H+ +O2 → H2O2 + GOx (ox) (7)

According to Holtz and Asher [33-35] the enzymatic action couples to the hydrogel swelling as 

follows. The formation of the reduced anionic species caused the glucose sensor swelling mediated by 

a change in the Donnan term (see Figure 3b). In the presence of oxygen the enzyme was regenerated. 

The gel remained swollen as long as glucose was present. However, in the deoxygenated solution, the 

hydrogel swelled and did not shrink over time. Under such anaerobic conditions the presence of 

glucose at the concentration of picomoles was detectable. The crystalline colloidal array polymerized 

within hydrogel and used as a readout platform (described in the next section) appears to support 

concentration detection in this range.  

The above described oxidation mechanism accompanied with pH sensitivity of the hydrogel 

polymer was used by Ishihara et al. and Guiseppi-Elie et al. [37,38] to design a glucose responsive, 

insulin semipermeable material. The hydrogel polymer contained polyamines that became protonated 

at low pH. Enzymatic glucose oxidation to gluconic acid decreased the microenvironmental pH which 

resulted in amine protonation and hydrogel swelling (Figure 3c) and thus, enhanced the insulin 

permeability. Introduction of macroporosity into the glucose-sensitive and insulin-releasing hydrogel 

resulted in increased swelling degree and increased insulin permeability [39]. 

Hydrogel-based glucose sensing was also realized using phenylboronic acid as the primary 

recognition site [40]. Phenylboronic acid can form complexes with vicinal cis diols including 
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carbohydrates. The dissociation constant of the acid decreased upon saccharide binding which resulted 

in the deprotonation of the molecule that subsequently affects the hydrogel swelling. However, the 

material also displayed altered swelling in the presence of other saccharides due to the primary 

recognition mechanism.  

Figure 3. Schematic representation of osmotically-induced hydrogel swelling mechanisms: 

(a) binding of charged analyte molecules to the hydrogel binding sites [30], (b) generation 

of ionic species on the recognition element [33-35], (c) generation of ionic species on the 

sensitive polymer network [37-41]. 

 
 

The pH-sensitive polymer motif was also applied to assay creatinine in bodily fluids. Creatinine is a 

product of creatine metabolism. The metabolite is filtered out of the blood by the kidneys. Creatinine 

level in a blood serum is an indicator of renal dysfunction [42]. To detect that level using hydrogel 

crystalline colloidal array, an enzyme (creatinine deiminase, CD) was used as the molecular 

recognition element [41]. The enzyme hydrolyzed creatinine to N-methylhydantoin with release of 

hydroxide anion (Equation 8) [43,44]. 
 -

4
CD

2 OH  NH ntoin Methylhyda-N   OH  Creatinine    (8) 

Following this scheme, the presence of creatinine caused an increase of pH inside the hydrogel. In 

addition to CD, 2-nitrophenol molecules were covalently attached to the network as pH sensors. The 

pH increase caused deprotonation of the phenol groups, which in turn gives rise to the hydrogel 

swelling. The hydrogel sensor was tested at pH~7.4 and ionic strength ~150 mM, both conditions close 

to those of bodily fluids. The response was reversible and reproducible in the range of creatinine 

concentrations 40-120 M characteristic for human blood and plasma. At a concentration of creatinine 

of 300 M the sensor required about 30 minutes to reach equilibrium.  
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3.2. Changes in Hydrogel Swelling Volume by Biospecific Changes in Crosslink Density 

DNA sensitive hydrogels can be designed based on either a DNA supported increase or decrease in 

crosslink density, or changes in the equilibrium length of elastically active network chains. Recent 

technologies allow for the preparation of easily copolymerizable DNA strands into e.g., acrylamide 

based materials [45-47]. Oligonucleotide supported crosslink; either alone or in combination with  

bis-acrylamide, can be built with one or more oligonucleotides with capability for highly specific base-

pair complementarity to neighboring strands. These crosslinks can be dissociated either by a change in 

temperature or by adding oligonucleotide with longer matching sequences through competitive 

replacement [48]. Moreover the length and the stability of the crosslinks can be engineered through the 

choice of the number of base pairs and base sequences [49], thus supporting a large number of 

different sequence recognition possibilities. Several network topologies including oligonucleotides can 

be implemented for preparation of analyte oliginucleotide sensitive hydrogel materials (e.g., Figure 4).  

Figure 4. Schematics of DNA-crosslink designs and hydrogel swelling/shrinking 

mechanisms: (a) ssDNA with both ends anchored in the hydrogel network—shortening of 

the crosslinks upon binding of a complementary ssDNA probe [50], (b) ssDNA with 

intramolecular stem-loop base pairing with both ends anchored in the hydrogel  

network—elongation of the crosslinks upon binding of a complementary ssDNA  

probe [50], (c) two [51] and (d) three [49,52,53] partially complementary  

ssDNA—dissociation of the crosslinks upon complementary displacement in the presence 

of complementary ssDNA probe.  

 
 

It has been reported that in the acrylamide hydrogels including two copolymerized oligonucleotides 

a third one, at least partially complementary to those copolymerized, supports a crosslink (Figure 4d). 

In such gel designs, the gel-sol transition can be induced either by a change of the temperature or by 

the addition of ssDNA with the proper base pair complementarity to the immobilized ones [49,52,53]. 

For the hydrogels with mixed hybridized DNA and covalent, non-dissociative crosslinks, swelling or 

shrinking of the hydrogel can be observed instead of sol-gel transition. 

Murakami and Maeda reported on swelling and shrinking DNA responsive mechanisms for design 

(a) and (b) presented in Figure 4 [50]. Their acrylamide hydrogels contained either ssDNA or ssDNA 

with intramolecular loops base pairing as a cross-linker in addition to bis-acrylamide. They observed 
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changes in hydrogel volume when exposed to complementary, single base-pair mismatch and 

uncomplementary ssDNA probes. They found that hydrogels containing ssDNA as elastic chains 

shrank in the presence of their complementary probes. Larger shrinkage and faster response was 

observed for long complementary sequences. Only slight shrinkage was observed for the 

uncomplementary probes due to the introduction of charged DNA molecules to the outer solution and 

the associated reduction of osmotic pressure. Even though hybridization leads to an increase of the 

charge density in the network which should manifest itself with the swelling of the gel, the dominant 

factor was the complementary base pairs crosslinking leading to shrinking of the gel. The reduced 

equilibrium swelling volume was mediated by reduction of base pair rise along the chain associated 

with the specific hybridization. Hydrogel designs with ssDNA loop structures, on the other hand, 

swelled when exposed to complementary probes. The effect was faster and more significant for the 

longest base pairs overlap. Non-complementary oligonucleotides did not induce such a swelling, and 

the response was also sensitive to single base pair mismatch.  

Results comparable to those reported by Murakami and Maeda were obtained with a design 

incorporating two, at least partially hybridized, oligonucleotides into a hydrogel network as 

crosslinking junctions (Figure 4c) [51]. These hybrid hydrogels swelled when exposed to 

oligonucleotide probes with the number of base pair match exceeding that in the initial junction. The 

authors were able to detect the presence of an oligonucleotide probe at a concentration of 500 

nanomoles. However, by extrapolating the curve optical path length change versus oligonucleotide 

concentration to the resolution of the fiber optic readout platform (2 nm), we estimated a sensitivity 

below 10 nanomolar [23,51]. The response rate increased with the probe concentration and the number 

of base pairs complementary to the junction oligonucleotide. Even though, the probe hybridization 

increased the network charge density, the major factor appeared to be related to the decrease of 

crosslinks density due to the competitive displacement of junction oligonucleotides. It was suggested 

that neither displacement hybridization kinetics nor diffusion rates of oligonucleotides were limiting 

steps but rather steric constraints within the hydrogel network. 

The mechanism involving shortening of the crosslinks upon analyte binding was also used in the 

work of Yuan et al. [54]. Their hybrid hydrogels contained adenylate kinase3 (AK) involved in the 

crosslinks formation. AK is an enzyme which undergoes conformational changes following the 

binding of ATP molecule. In such modified hydrogel, the conformational changes of AK enzyme in 

the presence of ATP, were transformed into macroscopic hydrogel volume changes. The gel shrunk in 

the presence of ATP. 

Miayata and coworkers have utilized semi-interpenetrating networks to design reversible antigen-

responsive hydrogels [55-57]. Antigen-antibody mediated crosslinks between interpenetrating 

networks were realized by grafting rabbit IgG (AG) and goat anti-rabbit IgG (AB) as the antigen and 

the antibody, respectively. The crosslinks dissociated in the presence of a free native rabbit IgG, 

resulting in hydrogel swelling (Figure 5a). The phenomenon was explained in terms of differences in 

the binding constants of the native and the polymerized antigen. The crosslinks being intact in the 

presence of goat IgG indicated the high specificity of the hydrogel response. Swelling in the system 

was reversible in response to the changes in the antigen concentration. However, the reversibility was 

lost in case of antigen-antibody hydrogel without semi-interpenetrating structures.  
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The same authors applied the concept of biomolecular imprinting to the dynamic recognition of 

tumor-specific marker glycoprotein by lectin and antibody ligands [58]. Lectin-concanavalin A  

(Con A) was used as a ligand binding motif to the saccharide chain of -fetoprotein (glycoprotein) and 

a polyclonal antibody was bound to the peptide unit. Both ligands were conjugated to the  

semi-interpenetrating hydrogel networks in the presence of the template glycoprotein so that the 

ligands formed a complex. After synthesis, the template glycoprotein was removed. This enabled 

formation of glycoprotein recognition sites based on the molecular imprinting principles. The response 

of imprinted and non-imprinted gels to target -fetoprotein was different and showed the following 

features. While a slight swelling was observed for the non-imprinted gel, the imprinted gel shrunk. The 

shrinkage was due to the formation of a complex between bioconjugated Con A, antibody and the 

target glycoprotein (Figure 5b), thus yielding an increased cross-link density. Selectivity test 

employing ovalbumin, which has a saccharide chain similar to -fetoprotein but different peptide 

units, showed no hydrogel shrinkage, thus indicating a highly selective material towards the tumor 

marker glycoprotein. 

Figure 5. Schematic representations of swelling or shrinking mechanisms for the antigen 

sensitive hydrogels (a) antigen-antibody crosslinks dissociating in the presence of free 

antigen [55-57], (b) lectin-glycoprotein-antibody crosslinks formation in the presence of 

glycoprotein [58]. 

 
 

Hu et al. reported on combining molecular imprinting with photonic crystal readout platform within 

hydrogels. Their imprinted natural amino acid L-3,4-dihydroksyfenyloalanina (L-dopa) [59] within 

methacrylic acid hydrogel also supported chiral selectivity. L-dopa is able to form reversible complex 

with methacrylic acid by noncovalent interactions. The imprinted gel was found to be sensitive  

to L-dopa, but did not respond to its enantiomer, D-dopa. The observed shrinkage in the presence of a 

single enantiomer, within a concentration range of 10 nM to 10 mM, was suggested to arise from the 

formation of crosslinks. 

The crosslink mechanism comparable to that used for glycoprotein recognition was applied to an 

antibiotic-sensing for the trigger-inducible release of human vascular endothelial growth factor [60]. 

The authors coupled genetically engineered bacterial gyrase subunit B (GyrB) to polyacrylamide 

polymer. GyrB was dimerized by the addition of the aminocoumarin antibiotic coumermycin. This 

resulted in the hydrogel formation. Subsequent addition of novobiocin (Albamycin) caused 

dissociation of the GyrB crosslinkages, resulting in gel-sol transition and liberation of the entrapped 

protein pharmaceutical 

Much attention has been paid in the literature to glucose sensitive hydrogels. In addition to design 

strategies involving glucose oxidase enzyme and readout based on the osmotic pressure, as described 

above, hydrogels presenting glucose sensitive crosslink density have been demonstrated.  
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Lectin protein—concanavalin A and phenylboronic acid supported glucose sensitive crosslinks 

incorporated into hydrogels are two viable routes.  

The work by Brownlee et al. [32,61] and Kim et al. [62-64] on glucose-controlled insulin delivery 

systems based on ConA and glycosylated insulin have opened new research areas also within 

responsive hydrogels. Park et al. synthesized vinylpyrrolidinone-allylglucose and acrylamide-

allylglucose copolymers and studied glucose-sensitive sol-gel transition in the systems containing 

ConA [65,66]. The formation of the hydrogel was due to the specific interaction between lectin 

receptor sites and glucose pendant groups of the polymeric chain. In the presence of free glucose, the 

opposite process: the peptization of a hydrogel, occurred. The concentration of the glucose at which 

gel-sol transition took place was about four times higher than the concentration of the monomers 

containing glucose. The gel could be recovered by glucose dialysis. The authors also studied insulin 

and lysozyme diffusion through a glucose-sensitive membrane containing ConA [67]. The release rate 

was dependent upon free glucose concentration. 

Miyata et al. have copolymerized 2-glucosyloxyethyl methacrylate in the presence of a traditional 

crosslinker and ConA to obtain glucose-sensitive hydrogels [68]. Their observations revealed a direct 

correlation between the concentration of entrapped ConA and the crosslinking density, and an inverse 

correlation between the concentration of entrapped ConA and the swelling ratio of the hydrogel. The 

results suggest that Con A acted as an additional crosslinking point. The swelling ratio of the hydrogel 

increased in response to the presence of free glucose. Selectivity to glucose was not demonstrated in 

this system either; the swelling ratio was even higher for mannose, but the gel remained unchanged in 

the presence of galactose.  

For sugar sensing, the osmotic mechanism applies only at low ionic strength, whereas changes in 

the crosslink density is operational at high ionic strength. Phenylboronic acid has been used for 

saccharides sensing in the frame of both mechanisms. Asher et al. synthesized acrylamide copolymers 

containing phenylboronic acid [69]. At low glucose concentrations, the glucose molecule cross-linked 

two boronate groups thus inducing gel shrinking. However, higher amounts of glucose saturated the 

boronate sites and induced breakage of the crosslinks, thus swelling of the gel. The degree of swelling 

was dependent upon glucose concentration. The hydrogel sensor was operational in physiologically 

relevant conditions. The method was found to be selective to glucose over other saccharides. Further 

modifications in the gel composition and sensing procedures allowed development of high glucose 

concentration responsive hydrogels [70,71], fast responsive hydrogels [72], materials for noninvasive 

monitoring of glucose level in tear fluids [73] and continuous monitoring in blood [74,75].  

4. Principles of Readout Platforms Supporting Bioresponsive Hydrogels in Biosensing 

Transduction schemes in biosensing can be divided in three separate categories: electrochemical, 

optical, and mechanical [76]. In this part, we will give an overview of the different strategies that use 

hydrogel for the label free sensing of bioanalytes within these three categories. 
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4.1. Electrochemical Transduction 

Electrochemical sensors represent a very important category of biosensors, in particular for 

commercial sensors, coming from the Clark electrode. However, for the most part, hydrogels have 

only had a limited impact in this category. Their potential has been felt as supports for biomolecules 

(enzymes, antigen, DNA) to increase the loading capacity close to the electrode (basically going from 

a 2D to a 3D sensor [77,78]). This stems from the fact that they combine many advantages compared 

to other materials: they are soft and biocompatible (mostly because they are composed for the largest 

part of water, 95% in most cases), they can be loaded with bioactive material (drug, biomolecules, 

enzyme, cells) and they have been shown to stabilize the embedded bioactive material [79,80]. Thus 

hydrogels have been used extensively when the stability of the active part of the sensor, such as in the 

case of enzymes (glucose oxidase, lactate oxidase, and alcohol oxidase), is critical for the functioning 

of the sensor [81]. Some of these characteristics (low inflammatory response because of its mechanical 

properties or because of its low non specific binding of blood plasma, or through the elution of an 

embedded drug) make hydrogels particularly attractive for in vivo applications [82-84]. 

More recently, the focus of electrochemical transduction involving hydrogels has been towards the 

miniaturization of conductimetric sensors using interdigitated electrodes to probe the conductivity of 

pH sensitive hydrogels [85], the use of blends of conducting polymer and redox hydrogels for more 

rugged glucose biosensors [86], and the fabrication of hydrogel coated ISFETs (ion sensitive field 

effect transistors) for the sensing of nucleotides, or monosacharides [87,88], and the formation of 

arrays of electrochemical sensors to probe multiple analytes using small biological samples [89,90]. 

Also, Guiseppi-Elie and coworkers recently pursued the use of a commercial micro-disc electrode 

arrays (ABTECH Scientific, Inc.) to probe hydrogels; their goal was to optimize the design parameters 

(geometry of the electrodes, thickness, composition of the hydrogel, and enzyme loading) to optimize 

the signal of an implantable amperometric biosensor [91,92]. The reader is referred to a recent review 

on electroconductive hydrogels to get in depth information on the subject [93]. Electrochemical 

transduction, because of its long standing reputation, is a favorite in industrial biosensors. The wealth 

of information already available on electrochemical techniques and the ease of interfacing with ever 

more complex monitoring systems has led to commercial success especially in the glucose sensor 

business (e.g., Medtronic MiniMed).  

In this review, we focus on more complex systems where the structure of the hydrogel itself is 

affected by its local environment. In so called smart hydrogels, the environment interacts with the 

different components of the polymeric network (covalent, electrostatic, etc.) in a reversible manner or 

not (with the reversible option being extremely valuable as it insures the reliability of the sensor in the 

long term). A stimulus affects the structure of the hydrogel and this change in volume, composition or 

mass, is transduced using different mechanisms that we will explore in the following two sections. 

Thus, the uptake and release of water by the responsive polymer film are accompanied by changes in 

weight, mechanical properties, distribution of mechanical stresses inside the film, and refractive index. 

These changes in the physical properties can be transformed into readable optical or electrical signals. 
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4.2. Optical Transduction (Figure 6) 

One of the most common strategies used to detect a recognition event in a biological sensor is a 

change of fluorescence (absorption or shift in maximum). Fluorescence is the phenomenon of choice 

for biologists because they are familiar with relevant detection techniques, the instruments required for 

fluorescence detection are used widely in research laboratories and even in hospitals because of the 

booming business of immunoassays, and the high sensitivity makes it possible to target low 

concentrations of biomolecules (thus, at least in theory, biological samples can be used directly 

without any purification/concentration step).  

Figure 6. Schematics of the principal optical transduction schemes. : wavelength, R: 

resonance wavelength, I: intensity, R: resonance angle, l: optical path, d: lattice spacing, 

: diffraction angle, f: focal length. 

 
 

Miyata and coworkers [55] were among the first ones to foresee the potential of hydrogels as part of 

fluorescence biosensing schemes. Specifically, they have focused on fluorescence displacement assays 

involving antigen-antibody interactions [55,57]. Displacement assays rely on the displacement of 
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bound fluorescently labeled analytes with free analytes and the subsequent measurement of changes in 

fluorescence absorbance [94]. Such assays are very sensitive, but they also suffer from many 

limitations. First, the tagged analyte must be readily available. Second, the size and position of the dye 

on the analyte must be such that it does not affect the binding to the hydrogel recognition site. If the 

binding constant of the tagged analyte is different from that of the free analyte, the saturation of the 

binding sites by the tagged analyte may become unreliable, thus any further quantification of free 

analyte binding will be affected.  

The protocol used for saturation must be reproducible. Also, displacement assays are very time 

consuming, often requiring many hours of equilibration. Finally, when the fluorescently labeled 

analyte is exhausted, refilling is needed unless we assume that the sensor will only be used once or for 

a short amount of time. For all these reasons, fluorescent displacement assays will probably remain 

limited to in vitro assaying or at least to short term sensors. 

4.3. Detection of Refractive Index Changes Using Surface Plasmon Resonance (SPR) 

The detection of refractive index changes are less sensitive than fluorescence measurements, and 

have the advantage of being universal. Therefore, there has been a surge recently towards the use of 

surface plasmons as a new scheme to detect small changes in refractive indexes close to metallic 

surfaces. Surface plasmons arise from the confinement of the light at the interface between a thin metal 

film and a dielectric medium. Surface plasmons and their resonance frequency are extremely sensitive 

to minute changes in the structure of thin film, as well as the dielectric properties of the medium 

directly in contact with this film, and this has lead to the great success of SPR in biosensing [95]. By 

changing the type of nanostructures at the surface of the thin metallic film as well as their periodicity, 

one can increase significantly the sensitivity of the device to changes in refractive index. Hydrogels 

are introduced to increase the robustness of the device, render it biocompatible and increase the 

loading capacity of active sites within the decay length of the evanescent wave. As the volume density 

of the hydrogel changes through the binding of the analyte and/or the change in volume of the 

hydrogel, the refractive index at the interface is affected. For example, we will assume that the 

presence of the analyte makes the gel swell, e.g., by such mechanisms presented above. As the 

hydrogel swells, analyte molecules as well as water molecules enter the polymeric network, thus the 

volume density may increase or decrease depending on the relative degree of solvation of the polymer 

in the shrunk state and of the polymer/analyte in the swollen state. Consequently the refractive index 

in the swollen state will differ from that in the shrunk state. SPR enjoys high sensitivity even when a 

liquid is brought in contact with the sensor but a limitation is that the detection limit increases as the 

size of the analyte decreases (small molecules will have a smaller impact on the refractive index than 

bigger ones). A development of SPR with great potential for biosensing applications is imaging SPR 

[96]. Using an imaging detector and varying the wavelength of the incoming laser beam while 

maintaining the angle of incidence constant, wavelength dependent maxima for each pixel can be 

determined that correspond to a local refractive index/analyte concentration. Recently, Bo Liedberg 

and coworkers demonstrated the use of imaging SPR to determine the optimal conditions of the 

hydrogel network so that the sensitivity to a given analyte is maximal [97]. This technique could be of 

great help for future designs of large scale arrays of sensors.  
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Optical wave guide spectroscopy is another kind of spectroscopy that uses the surface plasmon 

resonance phenomenon. A hydrogel film is formed on the thin gold film adsorbed on a LaSFN9 glass 

prism. The crystal is mounted in such a way that it can be rotated around an axis to vary the angle of 

incidence of a transverse magnetic polarized laser beam. Assuming some characteristics of the 

hydrogel film (thickness and refractive index), the hydrogel film can support guided light waves. At a 

given angle, several resonance frequencies are observed using this set up because of interferences 

between the guided light wave and the plasmon resonance. Using this technique, both the thickness 

and the refractive index of the hydrogel film can thus be calculated, contrary to the SPR that only 

allows for the calculation of the refractive index [98]. 

4.4. Optical Transducers Using Light Interference and Diffraction Principles. 

Interference Based Sensors 

Stokke and coworkers developed a new strategy for gel swelling determination based on a Fabry 

Perot cavity on a fiber optic tip. A hemispherical shaped sensitive hydrogel network is grafted to the 

surface of an optical fiber’s tip. The incident light gets reflected at both the fiber-gel interface and the 

gel-surrounding liquid interface. This creates a pattern of interferences whose phase depends on the 

optical path length within the hemispherical hydrogel material. With a change in the degree of 

swelling of the hydrogel, the spacing between the interface gel-fiber and the interface gel-surrounding 

solution varies so that the phase of the interferences produced by the interacting reflected beams is 

affected. The authors have achieved very high resolution (2 nm in displacement; revealing that the 

technique is very sensitive to small changes in analyte concentration) and sampling frequency (1Hz; 

which allows for swelling kinetic measurements) using this technique[23,99]. They have demonstrated 

the use of such strategy to measure glucose concentration [74,75] as well as to detect the concentration 

and sequence of short nucleotides [51]. In order for this strategy to work, a difference in refractive 

index must exist at the gel-surrounding solution interface. Multiplexing involving the use of multiple 

fibers, each with different gel, designs can expand the detectable concentration range of the analyte.  

Bragg Diffraction Based Sensors 

For more than 15 years, Asher and coworkers [33] have been developing a rather unique strategy to 

make hydrogel based sensors. The strategy is based on embedding a crystalline colloidal array within a 

biosensitive (Lead, [35], Glucose [71], creatinine [41] or ammonia [100]) hydrogel matrix. As the 

crystalline colloidal array is formed on a substrate, it adopts a face centered cubic structure that 

diffracts light according to Braggs diffraction law [101]. As the hydrogel shrinks/swells according to 

the concentration of the analyte, the spacing/arrangement between the colloids changes, thus affecting 

light diffraction through the hydrogel film. Shifts in the wavelength of the diffraction maximum are 

recorded and correlated with changes in the concentration of the analyte through the use of a 

calibration. For example, when phenylboronic acid groups are introduced in the hydrogel network, the 

crystalline colloidal crystal becomes sensitive to the concentration of glucose in aqueous solutions. 

Asher demonstrated the capability of this system to diffract light in a narrow wavelength band in the 

visible region. The small half peak width ensures that the sensor is sensitive to small changes in 
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glucose concentration. The fact that the wavelength range is in the visible is critical for this specific 

application because it is well known that the main obstacle to continuous monitoring of glucose levels 

(which has been shown to have a direct impact on the life expectancy of diabetes patients) is the 

compliance of the patient to the routine testing, so the sensor must be simple and pain free to use. 

Asher envisions his photonic crystal as a part of a contact lens because the level of glucose in tear fluid 

is correlated with that in blood sugar. A simple observation of a color change in mirror and 

comparison to a color scale calibrated in blood sugar level would greatly benefit diabetic patients’ 

health [71,73]. 

Several other groups have subsequently developed strategies based on similar crystalline arrays. 

Braun’s group used the polymeric colloidal crystal array as templates. Once formed in a similar 

manner as Asher’s, the colloidal portion is dissolved to form a hollow structure that diffracts light [20]. 

Li and coworkers combined this new strategy with molecular imprinting where an unbound analyte is 

added to the hydrogel before gelation so that upon successive washing of the inverse opal structure, 

voids are formed shaped as the analyte to be targeted by the sensor. They were able to successfully 

achieve chiral recognition of L- and D-Dopa [59] as well as determine cholic acid (gastric acid) [26] 

and performance enhancing drugs [102] using this strategy. 

Collectively, strategies that use polymerized colloidal crystal arrays are very valuable because of 

their high sensitivity and specificity, quick response, and reliable reproducibility. While Asher’s 

crystalline colloidal crystal arrays offer very high sensitivity because the formation of large domains of 

single crystal leads to intense and narrow Bragg diffraction band, the hydrogel system needs to be 

formed without disturbing the already organized array. This limits the variety of analytes that can be 

targeted especially for charged hydrogels. Another disadvantage of Asher’s system is the rather large 

diffusion barrier for analytes to diffuse throughout the crystal; to overcome this limitation high water 

content is favored, but this can inversely affect the mechanical stability of the array. In Braun’s inverse 

opals [20], the removal of the original crystal introduces defects in the crystal structure but the 

technique offers more flexibility in the components (functional groups, charges) that can be introduced 

in the hydrogel system and the interconnection between cavities allow for rapid diffusion of the 

analyte in the network hence increasing the sampling rate of the sensor. Maintaining the mechanical 

integrity of the inverse opals is a crucial issue but recent advances in hydrogels toughening may help 

alleviate this specific issue. 

An interesting application of diffraction in biosensing is the holographic diffraction grating created 

by Lowe and coworkers [103]. Lines of silver nanoparticles regularly spaced out are produced in situ 

within a hydrogel matrix using a photosensitization process. The grating spacing is dependent on the 

swelling of the hydrogel thus acting as a wavelength filter for the light reflected from it. The major 

practical hurdle for the use of this strategy lies on the fabrication of the nanoparticle array itself 

(contrary to the polymerized colloidal crystal arrays) since it requires the use of a frequency-doubled 

Nd-YAG laser. These holographic sensors were applied to fabricate sensors for penicillin and 

urea [104], glucose [105], and recently they formed enzyme inhibition assays [106]. 
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Microlens Sensors 

Recently, hydrogels have been integrated in microlenses designs for biosensor application. In the 

system described by Lyon and coworkers [107,108], microlenses are formed by direct absorbtion of 

microgel on a substrate surface; upon absorption, the microgel adopts a lens shape. Changes in the 

hydrogel swelling affect the shape of the lens and, hence, its focal length. There are three major 

advantages to this technique. First, the quantification of absorption of analyte can be derived from a 

simple observation using a brightfield optical microscope. Second, the sensing scheme is totally 

autonomous (no power supply) and third, the formation of complex arrays of microlenses with 

automatic readout is conceivable. Jiang and coworkers [109] adopted a slightly different lens design 

(with the hydrogel lens encapsulated within a micromachined device and submerged under a film of 

oil) that could potentially be integrated in a larger sensing scheme and further miniaturized. There 

again, the sensing occurs through displacement assays (notoriously slow) so the sampling rate (which 

depends on the diffusion of the analyte, and consequently on the hydrogel volume) is critical. 

The use of optical transducers, no matter how elegant, carries the disadvantage of having to be 

interfaced with a light source and a light detector, which require an electrical circuit, thus increasing 

the footprint of the whole sensor [110]. This is an issue of cost as well as complexity of design; as the 

number of elements is increased, the reliability of the overall sensing scheme may become problematic 

and the number of competencies needed to troubleshoot such a design makes it unpractical for 

mainstream applications. Specifically, this is a concern when looking to make an in vivo sensor; 

continuous monitoring of a biological event in vivo (blood sugar being the best example) is the holy 

grail of the sensing industry and it is unclear whether optical transducer schemes will ever reach the 

degree of integration that MEMS type transducers already have. Indeed, MEMS type devices have 

been produced for many years in different fields; their small size, the reliability of the designs, the low 

power usage, and the ease of their integration in an electrical circuit for the readout platform makes 

them prime choices for in vivo applications. Conversely, optical transducers have found their niche 

market in the fabrication of laboratory based instrumentation. 

4.5. Mechanical Transduction (Figure 7) 

The emergence of mechanical transduction is rather recent compared with the previous two 

categories of transduction. Microfabrication technologies derived from the microelectronics industry 

has played a central role in the miniaturization of biosensors (required for implantation as well as for 

the integration of multianalyte biosensors within the same sensing chip) while keeping the fabrication 

process reliable, and keeping the costs down. 

Pressure Sensors 

Most studies involving environmentally sensitive hydrogels have focused on gels being in an 

equilibrium state at constant pressure. Under such conditions, the hydrogel polymeric network can 

expand freely to accommodate an imbalance in osmotic pressure between the inside and the outside of 

the gel and reach a new equilibrium state. However, if the gel is encapsulated inside a solid structure 

(with a semi-impermeable membrane allowing its interaction with the environment), the polymer 
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network will exert a pressure over its casing. Magda, Solzbacher [111,112] and Van den Berg [113] 

have demonstrated different systems where one of the sides of the casing is a piezoresistive pressure 

sensor. As the hydrogel presses on the membrane of the pressure sensor, the latter bends slightly, thus 

affecting a piezoresistive element based on a Wheatstone bridge and the electrical signal can be 

recorded instantaneously. The increase in volume created during the bending of the pressure sensor 

membrane is extremely small compared with the size of the cavity such that one can consider that the 

sensing event happens at constant volume. Such a sensing scheme has the advantage to be completely 

label free so it can potentially be applied to any number of hydrogels without any further modification. 

Magda and Solzbacher [114] showed the capability to relate the osmotic pressure produced by 

monosaccharide sensitive hydrogel with the concentration of sugars. Van Den Berg [115] used a two 

step system where CO2 vapor is brought in contact with a reservoir electrolyte (through a PDMS 

membrane) which is itself in contact with an enclosed pH sensitive hydrogel (through a 

microfabricated semi-permeable membrane). While the first two authors used a commercially 

available millimeter size pressure sensor, Van den Berg integrated an unpackaged pressure sensor in a 

smaller, more complex design, demonstrating the potential for its commercial application (Figure 8).  

Figure 7. Schematics of the principal mechanical transduction schemes. P: pressure, V: 

potential difference, V: volume change, C: capacitance, fR: resonance frequency, : 

mechanical stress, : angle, m: mass, f: frequency. 
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Figure 8. Microfabricated sensor based on the swelling of a pH sensitive hydrogel and 

used as a carbon dioxide sensor [115]. © 2005 Springer Science+Business Media, Inc. 

Reproduced with the permission from the publisher.  

 
 

4.6. Capacitive Sensors 

Capacitive biosensors are uncommon, and several inherent properties of these sensors may explain 

this. They require multiple process steps for their fabrication which makes them relatively expensive 

compared to some of the other sensors described in this paper. Instruments to measure capacitance 

directly are rather insensitive. They suffer from reliability issues when scaled down below a certain 

size especially in liquids. However, they can be integrated with an inductance to form a LC circuit 

whose resonance frequency can be measured very precisely and wirelessly [116,117]. This is 

especially valuable for the continuous monitoring of blood sugar as demonstrated by Siegel and  

Ziaie [118].  

4.7. Cantilever Based Sensors 

Recently, there has been a considerable amount of research in the modification of silicon 

cantilevers with bio-sensitive layers for sensing applications [119-121]. A hydrogel film is bound to 

the top or bottom of the cantilever [122,123]; as the hydrogel swells/shrink, the lateral stress it exerts 

on the thin silicon beam provokes its bending [124]. The bending can be recorded either by a change in 

position of a laser beam on a four quadrant photosensor after reflecting off the tip of the cantilever (if 

the hydrogel is on top of the beam, a patch needs to be left unfunctionalized) or using a piezoresistive 

element integrated in the cantilever. The amount of deformation of the cantilever beam can be 

correlated to the degree of swelling of the hydrogel film; because this process is completely reversible, 

an empirical calibration curve can easily be determined. Such capability, the ease by which different 

types of hydrogels can be adapted to the same design, and the possibility to functionalize specific 

cantilever within an array using photolithography definitely makes this transduction mechanism very 

promising. 
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4.8. Microgravimetric Sensors  

The simplest type of microgravimetric sensor is the Quartz Crystal Microbalance (QCM). In a 

QCM, a piezoelectric element is driven using an alternating current such that it vibrates at a defined 

frequency, then the frequency is scanned while recording the amplitude of oscillations to find the 

resonance frequency. QCM resonators are sensitive to two distinct parameters. First, the weight of the 

material (so that smaller molecules will have a higher detection limit than bigger ones), which 

manifests itself as a shift in the resonance frequency, is the energy storage term. Second, the 

viscoelasticity of the hydrogel thin film, which affects the rate of decay of the oscillations, is the 

energy dissipation term [125]. The advantages are similar to those for SPR: impedance measurements 

are universal and frequency can be measured in a very precise manner. The hydrogel provides the 

system with binding specificity and increased capacity with respect to a layer of binding sites on the 

piezoelectric device. QCM has been applied to fabricate sensors for cell detection [126], DNA [127], 

sepsis-related biomarkers [128], proteases [129], and glucose [130]. However, QCM can be difficult to 

implement in real time and with low volume sensor systems. 

5. Conclusions  

While it has been clearly demonstrated that hydrogels can play a role in increasing functionality 

within biosensing, either by enhancing loading capacity compared to that accessible to surfaces or by 

including topological designs that transform biospecific recognition events into signals that can be 

readily processed, only limited quantitative optimization of the hydrogel systems designed has been 

realized. Attempts of quantification have been made especially for the hydrogel matrices of the colloid 

crystalline arrays [71]. However, a recent report on the effect of the size of the integrated colloids on 

the mechanical properties [131] indicates that such quantitative description requires a calibration 

between the theoretical parameters and the experimental data. Nevertheless, further research is needed 

to better understand the quantitative relationship between the hydrogel parameters selected and the 

output signal of specific readout platforms. Future research in this field should also consider relevant 

properties such as response time, analyte transport, and optimization of the material in view of 

practical applications. 

An additional challenge that still largely remains to be tackled is the development of more efficient 

techniques to transduce changes in volume or mass of a hydrogel system into a real life sensing device. 

Such integration requires the collaboration of scientists and engineers across multiple fields of 

research. Most certainly, academics are better positioned to do this than industrial researchers. Such 

issues as reliability, robustness, ease of fabrication, and overall cost compared with other established 

technologies will have to be addressed to the same extent as pure performance of the sensors before 

hydrogel sensors can make it to market. 
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