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Abstract: This study designs and analyzes an impedance pump utilizing an electromagnetic
actuator. The pump is designed to have three major components, namely a lower glass
substrate patterned with a copper micro-coil, a microchannel, and an upper glass cover plate
attached a magnetic PDMS diaphragm. When a current is passed through the micro-coil, an
electromagnetic force is established between the coil and the magnetic diaphragm. The
resulting deflection of the PDMS diaphragm creates an acoustic impedance mismatch within
the microchannel, which results in a net flow. In performing the analysis, simulated models
of the magnetic field, the diaphragm displacement and the flow rate are developed using
Ansoft/Maxwell3D, ANSYS FEA and FLUENT 6.3 CFD software, respectively. Overall,
the simulated results reveal that a net flow rate of 52.8 uL/min can be obtained using a
diaphragm displacement of 31.5 um induced by a micro-coil input current of 0.5 A. The
impedance pump proposed in this study provides a valuable contribution to the ongoing
development of Lab-on-Chips (LoCs) systems.
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1. Introduction

In recent decades, rapid advances in micro-electro-mechanical systems (MEMS) have enabled the
development of a wide variety of microfluidic devices for chemical control, mixing and analysis.
Typically, the devices are designed to perform specific function such as cell sorting and counting,
sample injection, specific mixing and so forth. As MEMS techniques have matured, the applications
have been combined and implemented on a single chip, resulting in the emergence of LoCs systems. In
realizing such systems, micropumps play an essential role in transporting precise volumes of sample
fluid through the various components of the micro chips.

Micropumps can broadly be classified as either static, piezoelectric, or electromagnetic, depending
upon their mode of actuation [1-13]. Zhu et al. [1] utilized a sol-gel method to fabricate thin
piezoelectric films for the actuation of micro-cantilever arrays in hard disk devices. Meanwhile, Xu et al.
[2] proposed a piezoelectric actuator based on a monolithic Pb(ZrTi)O; layer for high-precision
positioning applications. Alternatively, electromagnetic actuators represent an ideal solution for many
modern MEMS-based applications with their simple driving mode, low actuation frequencies, large
displacements and planar structures. Liu et al. [4] developed an active MEMS-based fluid control
system incorporating surface micromachined magnetic actuators, and showed that the actuators were
capable of achieving a large deflection (100 pm) under the application of a magnetic force with a
magnetic flux density of 1.76 kGauss at 2.5 A current input. Lagorce et al. [5S] presented a micro
actuator based on a polymer magnet, and demonstrated that a good agreement existed between its
theoretical and experimental response. However, the use of the device was limited with its maximum
deflection of just 20 um as a pumping component for practical microfluidic systems. In 2005,
Hickerson et al. [6] proposed a valveless impedance pump in which a net flow was induced by
periodically pinching a flexible section asymmetrically from its ends. In their design, the optimized
lengths of elastic and inelastic sections are 1.91 and 15.2 cm, respectively. Their experimental results
showed the flow rates are sensitive to duty cycle and pinching frequency. In their study, the pump was
also simulated and showed the wave speed traveling on the tube did not necessarily have the same
velocity, nor must be in phase with the flow rate. The flow exiting the impedance pump is typically

pulsatile and the net flow rate (—10.9~9.0 mL/min) has a non-linear relationship to the frequency of

activation with characteristic peaks and flow reversals. The same authors also constructed a
one-dimensional wave model which predicted many of the characteristics exhibited by the experiments
of impedance pumping [7]. Yeo et al. [8] presented an impedance pump utilizing a PZT cantilever
beam with a high frequency actuation. Their microchannel had the dimensions of 15 x 3 x 0.4 mm®,
and a flow rate of 36 uL/s. Recently, Chang et al. [9] designed and analyzed a valveless impedance
pump in which the actuation mechanism comprised a permanent magnet mounted on a flexible PDMS
diaphragm positioned above a copper plated micro-coil at a height of 630 pum, corresponding to the
position of the maximum electromagnetic force on the magnet. The valveless impedance pumping
effect (Liebau Phenomenon) was first reported by Gerhart Liebau in 1954 and numerically examined
by Bozi and Propst [14]. Based on partially elastic rigid walls, the impedance pump was operated by
the interaction between traveling waves emitted from the compression and reflected waves at the
impedance-mismatched positions, it exhibits a non-linear response to the actuating compression

frequency and flow reversal with actuating frequencies at certain ranges. In their study, the theoretical
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results showed that a diaphragm deflection of 15 pm could be obtained by passing a current of
0.6-0.7 A through the micro-coil in order to produce a compression force of 11 puN. The design of the
micropump was easily fabricated and was readily integrated with existing microfluidic chips due to its
planar structure.

In 2008, Lee et al. [10] experimentally realized the design presented in [9] which resulted in an
ideal solution with relatively low values of the excitation frequency and voltage for microfluidic
systems in which relatively high pumping rates (i.e., 7 mL/min) were required. The same research
group [11] also presented a micro electromagnetic actuator with the maximum diaphragm deflection of
150 um at an applied current of 0.6 A through a micro coil with a line width of 100 um. Recently, for
enhancing the performance of the micro impedance pump, Chang et al. [12] designed, analyzed and
optimized the micro impedance pump and found a target diaphragm deflection of 20 pm could be
obtained using a compression force of 12 uN developed by a micro-coil input current of 0.8 A.

However, despite the detailed analyses and optimized results of electromagnetic actuators and
experimental ones of impedance pumps presented in the previous studies, the problem of numerically
analyzing impedance pumps for enhancing their performance has attracted relatively little attention in
the literature. Accordingly, the present study designs and analyzes an impedance pump utilizing a
micro electromagnetic actuator featuring a magnetic PDMS diaphragm and a glass substrate patterned
with a copper micro coil. The electrical current through the micro coil induces a magnetic force
between the coil and the magnet electroplated on the PDMS diaphragm which causes the diaphragm to
deflect, thereby creating an actuation effect. The periodic volume caused by the actuation effect
produces a large stroke volume resulting in a flow in the channel due to the impedance effect. A series
of analyzed trials are performed to investigate the pumping performance with various geometry
parameters. The relationships between the coil current and the membrane displacement are then
systematically examined. Finally, the analyzed results confirm that a net flow rate of 52.8 pulL/min can
be obtained using a diaphragm displacement of 31.5 pm induced by a micro-coil input current of 0.5 A.

2. Designs

As shown in Figure 1(a), the impedance pump comprises three basic plates, namely a bottom coil
plate containing a planar micro-coil, a channel plate and a cover actuator plate with a PDMS
diaphragm electroplated a magnetic layer on its upper surface. The pump body has overall dimensions
of 26 mm X 15 mm x 2.5 mm (length x width x height), while the microchannel measures
11.35 mm x 4 mm X 50 um (length x width % height). The present study designed three different
micro-coils for evaluation purposes. In each case, the coil contained 10 turns and had a thickness and
inner radius of 20 um and 2,000 pum, respectively. Meanwhile, the widths, spacing, and outer radii of
the three coils were specified as follows: (a) 125 pm / 150 um / 9,500 um; (b) 100 pm / 125 pm /
8,500 um; and (¢) 75 um /90 um / 7,500 um [13].

When a sinusoidal electrical current is passed through the micro-coil, a magnetic induction field is
generated, which creates an electromagnetic force between the coil and the electroplated magnetic
layer on the upper surface of the PDMS diaphragm. As a result, the diaphragm deflects bi-directionally,
causing a periodic volume change of the channel with a frequency equivalent to that of the applied
voltage. In the impedance pump, due to the interaction between traveling waves emitted from the
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compression and reflected waves at the impedance-mismatched positions, it not only has a non-linear
response to the actuating compression frequency, but also shows reversal of flow direction under
certain frequency ranges [14]. Ideally, the flow rate can be increased by increasing the stroke volume
of the diaphragm. However, in designing the electromagnetic actuator, the volume change consistent
with the required flow rate and its excitation frequency can not exceed the elastic limits of the PDMS
diaphragm and the fundamental frequency of the actuator structure, respectively [9,13].

Figure 1. (a) Schematic illustration of valveless impedance pump. (b) Details of (a) [13].
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3. Analysis
3.1. Magnetic Analysis

In the electromagnetic actuation mechanism, the magnet is electroplated on the PDMS diaphragm
which is positioned such that its center coincides with the vertical centerline of the micro coil. When
an electrical current is passed through the coil, the resulting electromagnetic force acting on the
diaphragm is given by equation (1) [15]:

z+h
"« OH, oH,
FZ:Br-ISm- -dz=B, -V, - (1)

oz " ooz

where H, is the vertical magnetic field produced by the coil, B, is the retentivity of the magnet, and
S,,» h, and V_ are the surface area, thickness and volume of the magnet, respectively. From Figure 1,
it can be inferred that H, is symmetrical about both the x- and the y-axes. Equation (1) indicates that

the magnitude of the magnetic force varies with the rate of change of the magnetic field in the vertical
direction. To maximize the diaphragm deflection, the magnetic diaphragm should be positioned such

that it coincides with the point in the magnetic field at which the gradient attains its maximum value.
In the current study, this position is identified by evaluating the magnetic field, H,, and the gradient of

the magnetic field, 6H, / 0z , numerically using the Ansoft/Maxwell 3D FEA software [10].

3.2. Actuator Displacement Analysis

In the current study, PDMS was specifically chosen as the diaphragm material since it has good
flexibility characteristics, excellent biological compatibility and a high yield strength (elastic modulus
E = 750 kPa, Poisson’s ratiov = 0.5 and yield strength o, =20 kPa) [16]. Therefore, the diaphragm
ensures a safe yet efficient pumping operation even under resonance conditions. In Figure 1, the
maximum deflection takes place in the center of the diaphragm. Since the load imposed by the magnet
is uniformly distributed, the diaphragm experiences a deflection over the circular area corresponding
to the position of the magnet (Figure 2). The analysis commenced by considering the general case in
which the load is uniformly distributed over a circle of radius b (0 < b < a). From
Figure 2, the displacement field of the diaphragm is given respectively by (2) [9, 10, 12, 17]:

, P 2 Ry B 2 2y ﬁ 2 _y?
wl—%-(—(r +0%) I+ (17 =)+ (14 )+ (@" - )j, (2)

where P is the total load applied over the circle; a is the radius of the diaphragm; and
D =Eh’/12(1-v?) is the flexural rigidity of the diaphragm, in which E, v and h are the elastic
modulus, Poisson’s ratio and thickness of the diaphragm, respectively.
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Figure 2. Fixed-edge circular diaphragm with a uniform load distributed over a central
circular area with radius 0 <r <a([9,10,12,17].
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The diaphragm displacement field induced by a uniform load ¢ acting over the central circular area
of radius a can be obtained by substituting P = 2zbqdb into Equation (2) and then integrating from 0

to a with respect to b. The displacement field of the diaphragm is therefore given by (3) [9,10,12,17]:

w = 9 (_r_aj, )
8D 4 8

The maximum deflection of the loaded region of the diaphragm at radius 0 can be obtained by
setting the radius parameter r equal to 0 in Equation (3), i.e.:

—-Fa’
W0 = )
167D

where F is the electromagnetic force generated between the electroplated magnet and the micro coil

(4)

and can be calculated either from Equation (1) or by using the Ansoft/Maxwell3D software.
3.3. Pumping Analysis

The physical model of the impedance pump developed in the present study utilizes a
two-dimensional model [ 18] with the Navier-Stokes equations, which are written as:

a—V+V~(VV)=—le+szv+pg )
ot 0

V-v=0 (6)

In the equations above, v is the flow velocity in X-y plane, p is the pressure. In the simulation, the
actuation displacement is given as by (7) [17]:

(%, Y,t)=w,sin2z f)(1- (VXI-_:y)Z)Z within the magnetic film (7)

=0 outside the film
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The actuation amplitude, Wy, was calculated in equation (4) at various applied electrical current.
Non-uniform meshes are generated over the pumping chamber, the buffers and channels for the
simulation, which are illustrated in Figure 3. In order to capture the detailed flow fields, the meshes are
refined in the junctions between the chamber and the channels, and the junctions between the buffers
and the channel ends. A mesh independent analysis was conducted to ensure reasonable results. The
simulations were carried out by using the FLUENT 6.3 CFD software. The pressure at the pump inlet
and outlet were set to be equal, and the pumping flow rates were calculated by averaging the periodic
flow rates over one period.

Figure 3. Meshes used for CFD simulation.
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4. Results and Discussion

The magnet considered in the study is a CoNiMnP electroplated magnet [13] with a magnetic
coercivity of 47.7 kA/m and a magnetic remanence of 0.2 Tesla [19]. When a current is applied to the
micro-coil located beneath the central axis of the magnetic diaphragm, the direction of the magnetic
field generated by the coil coincides with the direction of the magnet alignment and an attractive force
can be produced. On the contrary, a repelling force is produced as the direction of the magnetic field of
the coil is reversed.

In the current study, the radius of the PDMS diaphragm is 4,000 um and its thickness is designed to
be 30, 80 and 200 pum, respectively. Meanwhile, the electroplated magnet should be designed to
possess the largest remanence and appropriate dimensions to obtain a sufficient magnetic force and to
avoid influencing the safe operation of the diaphragm with a low stiffness. Therefore, the magnet
thickness is specified to be 60, 110 and 170 um, respectively.

In the characterization tests, the coils were supplied with input currents of 0.2, 0.4, and 0.6 A and
the variation of the resulting flux density was simulated in the vertical direction along the central axis
of the coil using the Ansoft/Maxwell3D FEA software. Figure 4 shows the simulation results obtained
for the three micro-coil designs. It can be seen that the intensity of the magnetic field increases as the
input current increases in every case. Furthermore, it can be observed that the intensity of the magnetic
flux increases as the coil width decreases due to the corresponding enhancement of the concentration
of the magnetic flux. Figure 5 illustrates the variation in the rate of change in the magnetic flux density
along the vertical centerline of the micro-coils as a function of the input current. It can be found the
performance of the electromagnetic actuator can be enhanced as the magnetic PDMS diaphragm is
positioned at a height corresponding to the maximum rate of change of the magnetic flux. From an
inspection of Figure 5, it is therefore concluded that the magnetic diaphragm should be positioned at a
height of 500 um above the planar surface of the micro-coils [13].
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Figure 4. Variation of flux density with distance as function of input current for micro-

coils with different widths: (a) 125 pm, (b) 100 um and (c) 75 um.
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Figure 5. Variations of magnetic field gradient with distance as function of input current
for micro-coils with different widths: (a) 125 um, (b) 100 pm and (c) 75 pm.

= -0.00025 //*
= E
o =
=B
2 & —~—0.2A
gﬂ % -0.0005 v o 04A
g g ——0.6A

%0 _0.00075 \/

-0.001 :
0 500 1000 1500 2000
Distance (um)
(a)
0

= E.000025

o

o = \ —=0.2A

.2 2 -0.0005 - (4A

° g

et - (.0A

< <

Z £-000075 7

-0.001
0 500 1000 1500 2000
Distance (um)
(b)
0

= E -0.00025 |
o =
= —=0.2A
2 E 20,0005 -
° < 0.4A
55 —+(.6A
S S
= B 0.00075

: \/

-0.001 :
0 500 1000 1500 2000
Distance (pm)
(c)

The ANSYS FEA software was used to model the deflection at the center of the magnetic
diaphragm and it was found the deflection ranged from 1.8 to 31.5 um in the current range of 0.2-0.5
A. Figure 6 presents the simulation results for the three micro-coil fabricated in the current study. A
maximum displacement of 31.5 um is obtained using a coil current of 0.5 A. It is also observed that for
a constant coil current, the displacement increases as the coil width decreases due to the greater
concentration of the magnetic flux. Figure 7 shows the variation of the maximum diaphragm
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displacement with the input current as a function of the PDMS diaphragm thickness. It can be seen that
for a constant coil current, the diaphragm displacement increases with a reducing PDMS diaphragm
thickness due to the corresponding reduction in the stiffness of the diaphragm. Figure 8 shows the
correlation between the maximum diaphragm displacement and the magnetic layer thickness. For a
constant coil current, it is observed that the diaphragm displacement increases with a reducing

magnetic layer thickness.

Figure 6. Variation of maximum diaphragm deflection with input current as function of

coil width without driving liquid.
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Figure 7. Variation of maximum diaphragm deflection with input current as function of
PDMS diaphragm thickness without driving liquid.
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Figure 8. Variation of maximum diaphragm deflection with input current as function of
magnetic layer thickness without driving liquid.
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Overall, Figures 7 and 8 confirm that the thickness dimensions of the PDMS diaphragm and the
electroplated magnetic layer have a critical effect on the diaphragm displacement and therefore play a
crucial role in determining the overall performance of the impedance pump. Though the magnetic
force is proportional to the magnetic layer thickness [Equation (1)], the diaphragm displacement is
inversely proportional to the cube of the magnetic layer thickness [12]. It is apparent that the thinner
the magnetic layer is, the bigger the diaphragm displacement is. In the study, the optimal thickness of
the magnetic layer is 30 pum because the magnetic property is poor as the thickness of the electroplated
magnetic layer is less than 30 um.

Figure 9 shows the relationship between the flow rate and the input current for a constant excitation
frequency of 240 Hz and various magnetic layer thicknesses. The results show that the flow rate
increases approximately linearly as the input current increase. Furthermore, the flow rate increases
with a decreasing magnetic layer thickness due to the corresponding improvement in the change of
traveling wave amplitude induced within the microchannel of the impedance pump.

Figure 9. Variation of flow rate with input current as function of magnetic layer thickness
at constant actuation frequency of 240 Hz.
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Figure 10 illustrates the variation in the flow rate with the input power for a constant magnetic layer
thickness of 60 um and three different PDMS diaphragm thicknesses in the range of 30-200 um. In
accordance with general thin plate theory, the diaphragm stiffness reduces with a reducing diaphragm
thickness. Thus, as shown in Figure 10, the flow rate increases as the PDMS diaphragm thickness
reduces. From inspection, a maximum flow rate of 52.8 puL/min is obtained at an input current of 0.5 A
and a PDMS diaphragm thickness of 30 um. In Ref [13], the experimental result of corresponding flow
rate is 1.5 pL/s at the same input current and PDMS diaphragm thickness. Both the simulated and
experimental results show high correspondence for periodic flow conditions.
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Figure 10. Variation of maximum diaphragm deflection with input current as function of
PDMS diaphragm thickness at constant actuation frequency of 240 Hz.
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5. Conclusions

This study had designed and analyzed an impedance pump incorporating an electromagnetic
actuator comprising a magnetic PDMS diaphragm and a planar micro-coil. The theoretical design
models have been numerically validated using the Ansoft/Maxwell3D, ANSYS and FLUENT 6.3 CFD
simulation softwares. The numerical results have shown that the actuator provides a large diaphragm
deflection, allow the flow rate to be flexibly controlled, and can be excited using a low electrical
current and a low frequency. In addition, it has been shown that the maximum flow rate is 52.8 pL/min
and is obtained using an actuating current of 0.5 A and a frequency of 240 Hz. The micropump can
easily be fabricated using MEMS techniques and has a planar structure which therefore can be readily
integrated with other microfluidic devices to realize LoCs systems.
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