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Abstract: Motion perception is the process through which one gathers information on the
dynamic visual world, in terms of the speed and movement direction of its elements. Motion
sensation takes place from the retinal light sensitive elements, through the visual thalamus,
the primary and higher visual cortices. In the present review we aim to focus on the
extrageniculo-extrastriate cortical and subcortical visual structures of the feline and
macaque brain and discuss their functional role in visual motion perception. Special
attention is paid to the ascending tectofugal system that may serve for detection of the
visual environment during self-motion.

Keywords: dorsal stream; ventral stream; ascending tectofugal system; caudate nucleus;
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1. Introduction

Visual motion perception is the process through which humans and other animals orient themselves
to their own movements and those of the objects comprising their environment, via light-transmitted
signals processed by their visual system.
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Motion perception is one of the most important capabilities of the visual system. Changes in the
environment usually provide important information for the animal. Irrespectively of whether it is a
predator or a prey, such information is crucial for survival. Beside the detection of light and dark,
perception of motion seems to be the oldest and most important feature of the visual system. Despite
the fact that a wide range of visual animals lack binocular or color vision, the visual perception of
motion seems to be a general property that can be difficult to substitute [1].

The three-dimensional dynamic world is projected on the surface of the retina as a two-dimensional
spatio-temporal pattern of light intensity. From this picture the visual system has to reconstruct the
changes in the visual field, and it also has to make a distinction between ground and figure, shape, form
and extent, that is the whole three-dimensional structure [2]. For this reconstruction the detected
motion is crucial as well. Furthermore, the visually detected motion is important for the monitoring of
self-motion [3].

From the beginning of the research into vision, where and how these procedures happen in the brain
was a key question [4,5]. In the striate visual system, only some aspects of the motion information are
processed [1,6-9], but it is more and more obvious that without the extrastriate cortical and subcortical
structures the whole processing cannot be accomplished [10-12]. During recent years, as more and
more information has come to light concerning vision, the role and characteristics of these extrastriate
structures have become a focus of the attention of neuroscientists.

It is established that there are different parallel loops, which consist of the extrastriate cortices
(cortical regions surrounding the suprasylvian sulcus in the feline brain, the middle temporal area (MT),
the medial superior temporal area (MST), the superior temporal polysensory area (STP) in the primate
brain) and subcortical structures (pretectum, accessory optic system, basal ganglia, thalamus).
According to the classical theory, these extrastriate structures play subservient and complementary roles
in motion sensation. The two-stage motion processing theory is a generally accepted hypothesis [13-16].
It assumes that at the first stage the analysis of the object features as one-dimensional components
occurs in early visual areas, depending on orientation-selective mechanisms sensitive to the motion of
individual component contours. The second stage elements are regarded as pattern motion detectors,
and these are possibly higher extrastriate cortical areas integrating the output of the first stage analyzers
to construct the actual direction of the coherent pattern. However, more and more evidence is found to
raise the suspicion that the two-stage theory might be incomplete for modeling the visual motion
analysis [10,11,17]. Rather, the extrastriate structures have equal and coordinate functions in receiving
direct input from the lower, primary stages of the visual stream, not only through indirect connections
from the primary visual cortical areas.

The aim of the present review is to give a detailed description of the extrastriate visual structures of
the feline and the macaque brain and discuss their functional role in visual motion perception. Special
attention was paid in the second part of this review to the ascending tectofugal system in the feline brain
that may serve the perception of self-motion.

2. Retino-Geniculo-Cortical Visual Pathways in Primates

In the visual pathways of vertebrates, motion perception spreads from retinal cells to higher cortical
areas (Figure 1).
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Figure 1. Schematic representation of the primate visual pathways. The left half of the
figure represents the ventral (“what”) stream, while the right side shows the hierarchical
organization of the dorsal (“where”) stream. Abbreviations: LGN—Lateral geniculate
nucleus, V1, V2, V3, V4—Primary (first), second, third, fourth visual cortices, respectively,
TEO—Posterior inferior temporal cortex, TE—Anterior inferior temporal cortex,
V5/MT—Middle temporal area (fifth visual cortex), MST—Medial superior temporal area,
LIP—Lateral intraparietal area, VIP—Ventral intraparietal area, STP—Superior temporal
polysensory area, 7a—Visual area 7a in the parietal cortex (Brodmann’s terminology).
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The first stage is the retina, comprising of three functional layers: rods and cones, bipolar cells, and
ganglion cells. The horizontal cells between rods and cones and the amacrine cells between ganglion
cells establish lateral connections. Morphologically, 10 layers may be distinguished, the description of
which, however, we set aside as being outside the scope of the present study. The first integrative stage
in the processing of an image is the layer of ganglion cells. To our present knowledge, Three major
types of ganglion cells might be distinguished, although at least 17 types are known altogether [18].
Two of the major types are quite well characterized; these are the magnocellular-projecting (M) and
parvocellular-projecting (P) cells. The third type, the koniocellular-projecting (K) cells [19], only
relatively lately became a focus of attention and their function is as yet poorly understood. The studies
of Kuffler [20] pointed out that retinal ganglion cells depict the visual space in a concentric ‘on’ and
‘oft” manner. Although these studies were not carried out in primates, since then it has been established
that the same principle stands for primates as well [21]. An ‘on’ zone is defined as the part of the
receptive field, which upon stimulation with a suddenly appearing light stimulus, evokes an excitatory
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response (spike train) in the given cell. An ‘off” zone evokes the same response upon the disappearance
of that stimulus. The direction- and motion-sensitivity of retinal cells were first described by Barlow and
Levick [22] registering the electrical activity of ganglion cells extracellularly.

Pathways originating in retinal ganglion cells project on the lateral geniculate nucleus (LGN) of the
diencephalon, traditionally considered to be part of the thalamus, while applying more strict anatomical
criteria it is part of the metathalamus [23]. As discussed later, in connection with tectal pathways, retinal
ganglion cells also project upon the superficial layers of the superior colliculus (SC, optic tectum in
lower vertebrates) as monosynaptic afferents. The lateral geniculate body of primates consists of six
layers. The concentric on/off receptive field arrangement is to be found here as well. That these cells
should be directionally sensitive is quite unlikely, however, they may serve as input to higher order cells
exhibiting that sort of sensitivity. Which LGN cells have a role in movement detection remains an open
question. The four dorsal layers comprise the neurons of the parvocellular system. These neurons are
color-sensitive, while they exhibit no special sensitivity to luminance modulation, that is, their
contrast-sensitivity is low. The remaining two layers belong to the magnocellular system. Cells here
respond to a wide spectrum of light, and they exhibit no color opponency. Cells receiving
wide-spectrum chromatic input are highly contrast sensitive [24]. Isoluminant chromatic stimuli have
but little effect on motion sensation [25], which does not support the role of the parvocellular layers in
motion perception. Figure/background segmentation in these layers is poor too [26]. Therefore, the
magnocellular cells of LGN layers 5 and 6 are more likely candidates. These cells primarily respond to
transient stimuli.

In primates, LGN projects upon V1, the primary visual cortex. Parvocellular and magnocellular
systems bifurcate in V1, where (in primates) directional sensitivity first appears, in the cells of cortical
layer 4C [27]. From here, motion information is transmitted toward the dorsal stream, via layers 4B
and 6. Directionally sensitive cells have been described in layer 3 as well. These cells have a small
receptive field, and they exhibit strong end-inhibitory capability, which makes them optimal candidates
for multiple visual functions. Livingstone and Hubel [28] considered the directionally selective cells of
V1 to be the basic units of motion perception. V1 layers 4B and 6 project directly upon the temporal
cortex in a monosynaptic manner [29,30]. On the other hand, V1 layer 4B also projects to the temporal
cortex indirectly, via cortical area V3 [31,32]. Allman and Kaas [33] were the first to describe this
rather small, cytoarchitectonically distinct, myelin-rich projection area at the dorsal bank of the superior
temporal sulcus of the northern owl monkey (Aotus trivirgatus). This extrastriate area representing the
contralateral visual hemifield based on single-unit registrations was named middle temporal area (MT).

Zeki [34] described an analogous area in the macaque brain, which was given the name V5 (V5 and
MT, therefore, are used interchangeably to refer to this area.) MT receives its major projections from
the striate cortex (V1) and V2. It gives out an efferentation of thick myelinated fibers, which refers to
rapid visual processing [35]. Zeki was the first to describe that V5 neurons are especially sensitive to
motion. Many cells responded vividly to stimuli (bright spots or dark/bright lines) moving in a given
direction, while they failed to respond to movement in the opposite direction. The shape of the stimulus
did not seem to matter, until the direction was optimal. Other cells required that the stimuli should move
with a certain orientation in a given direction. These cells were like V1 complex cells, however, they
had significantly larger receptive field and they were directionally selective. V5 cells of identical
directional selectivity exhibited a tendency of columnary organization. Only a few V5 cells showed
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wavelength-sensitivity [36-39]. Behavioral experiments following cortical lesions corroborated that MT
IS an area participating in motion perception. Newsome et al. [40] found specific oculomotor deficits
related to the matching of pursuit movements to the speed of the target after minor cortical lesion. This
corroborates the hypothesis that pursuit movements require speed information [41], which is
transmitted by MT. This is further supported by MT efferents to cerebellar vermis via the pontine
dorsolateral nuclei. Both areas play a role in the organization of pursuit movements, and their cell
discharge rates are modulated by target speed and the speed of eye movements [42,43]. Movshon and
colleagues [44] showed that responding to a grating complex; MT cells are sensitive to the real
direction of movement, not to the movement direction of the individual spatial Fourier-components.
There are also MT-cells which are maximally sensitive to speed, regardless of spatial and temporal
frequency [40]. Andersen et al. have also demonstrated that the area MT plays a fundamental role in the
structure-from-motion perception, which means the perception of three-dimensional shape from motion
cues. This mechanism is needed for the three-dimensional vision and provides the third dimension, depth,
from two-dimensional cues, to the flat image developing on the retina [45,46].

The fact that V5 receives direct input from the highly directionally sensitive V1 4B [29] and the
cytochrome-oxidase rich areas of V2 [47] throws light on the origins of the directional sensitivity of
VV5—s0 pronounced that V5 is often referred to as ‘movement area’. V5 is assumed to be responsible
for visual motion perception and smooth pursuit movements. V5 lesions in humans and in the macaque
monkey impair the ability of the animal to discriminate the movement direction of a random noise
pattern. However, a few weeks after the lesion this function reappears, possibly meaning that other
areas are capable of taking it over [48].

Perge and colleagues [49] described a center/surround organization of MT receptive fields. This
makes MT especially sensitive to contrasts both in space and time. Recently appeared multivoxel studies,
fMRI activation of MT corresponds to the motion perception of the observer, while this is not true for
the rest of the visual areas [50]. However, a study of Zeki et al. [51] seems to contradict the concept of
MT as a perceptive area. In that study, volunteers were shown dot patterns. The dot patterns were
moved either in different directions, or in the same direction in front of the two eyes. As long as the dot
patterns were moved in just the opposite directions, they knocked each other out perceptually, in spite
of the fact that real movement occurred in front of the eyes. Activity registered over MT was
characteristic of the physical movement itself, not its perception. Finally, in several areas of the monkey
brain, e.g., in areas V4 and MT it was found that single unit activity depended on where within the
receptive field the animal was focusing its attention [52-55].

The spatio-temporal selectivity of neurons in the MT was discovered by Lui et al. [56]. They
recorded the neuronal responses in marmoset monkeys to high-contrast sine-wave grating stimulation,
which revealed that the majority of neurons had band-pass spatial and temporal frequency tuning, and
that the selectivity for these parameters was largely separable. Inseparable spatio-temporal tuning
properties could only be detected in approximately one third of the neurons, in the typical form of an
increased optimal temporal frequency as a function of increasing grating spatial frequency. However,
most of these interactions have been found to be weak and only 10% of neurons exhibited spatial
frequency-invariant representation of speed. Cells with an inseparable spatio-temporal tuning were most
commonly located in the infragranular layers, raising the possibility that they form part of the feedback
pathway from the MT to the caudal visual areas. Spatial frequency tuning curves were approximately
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scale-invariant on a logarithmic scale, however, temporal frequency tuning curves covering different
parts of the spectrum demonstrated significant and systematic changes. According to these data, MT
neurons can be regarded as similarly built spatial frequency filters, each covering a different dynamic
range. The small proportion of speed-tuned neurons, together with the laminar position of these units,
complies with the hypothesis that an explicit neural representation of speed emerges from computations
performed in the MT.

The role of areas beyond MT in motion perception is not clear. MT/V5 sends especially strong
projections to the medial superior temporal area, which supports the role of the latter area in motion
perception [57,58]. Eifuku and Wurtz [59] pointed out that the medial superior temporal area in
macaque monkey consists of a dorsomedial (MSTd) and a lateroventral (MSTI) part. According to the
authors, MSTd processes optic flow information [60] as in, information on the own motion of the
observer, while MSTI is specialized for external motion. Therefore, this area is capable of providing
information on self-movement, the surrounding space and the shape of objects. Likewise, cells in the
superior temporal sulcus (STS) process self-motion information. Cells at the upper bank specialize in
dynamic information concerning the ongoing action, while cells at the lower bank are sensitive to static
information related to posture. In humans and primates STS may be responsible for the recognition of
complex visual stimuli, such as facial-, hand-, and body-movements. Beyond that, STS may have some
role in multimodal sensory integration.

Cells in the parietal lobe are sensitive to motion too, though these cells seem to foster movement
regulation, rather than perception [61-63]. The caudal part of the parietal lobe is responsible for the
synchronized processing of somatic and visual information, therefore primarily serving the purpose of
visually controlled action. In the intraparietal sulcus, five visual areas have been described, based on
morphological and physiological criteria. These are: ventral intraparietal (VIP), medial intraparietal
(MIP), posterior intraparietal (PIP), anterior intraparietal (AIP), and lateral intraparietal (LIP). Area 7a
is located in the lateral parietal surface, areas 7 and V6A in the medial parietal wall. Single unit
recordings have yielded both somatosensory and visual responses. It seems that VIP represents the
perioral areas, while MIP the extrapersonal space. According to Sakata et al. [64,65], AIP is
responsible for the visual guidance of hand movements and grabbing. LIP is basically the parietal eye
field. It has been shown through single unit recordings that this area may be linked to both changes in
gaze direction and the sensory stimulus inducing those changes. Motter and Mountcastle [66] described
cells in 7a that were sensitive to radial changes of visual stimuli, like the ’shrinking’ of an image. This
obviously means that this area is sensitive to changes in spatial proximity.

The three main cell types of the retina, the magnocellular-projecting, the parvocellular-projecting and
the koniocellular-projecting retinal ganglion cells, and the pathways starting out from them may act as
multiple movement sensitive systems working in parallel. Despite that little information is available
about the function of the koniocellular system, it is suggested that all three systems may play a role in
motion perception to different extent. Nassi and Callaway [32] provided evidence for the existence of a
direct connection between the intermediate (koniocellular) layers of the LGN and the area MT/V5,
based on which we can conclude that the koniocellular pathway may have a specific role in motion
perception. Functionally speaking, visual systems of the brain serve multiple, more or less dissociable
ends. For instance, for image segmentation or figure/background discrimination necessitates high level
retinotopic organization, while the control of eye movements does not require such high resolution, as
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the system sums up visual information from the entire visual field [67]. Such distinctions support the
possibility of a double motion perceptive system assumed to exist in the mammalian brain [68].
According to that theory, a cortical system is responsible for the analysis of movements occurring at
particular points in the visual field, while an accessory system originating in the brain stem analyzes
motion in the visual field as a whole. Though these systems are separate, there is interaction between
them, and they also occur at different times during the ontogenesis [69,70]. Accessory systems of brain
stem origin possibly play but little role in motion perception. However, beside eye movement control,
ascending pathways originating in the tectum (in mammals the SC) might participate in providing
feedback about head and body movements, thus, in the control of those movements.

Thomas Albright and his colleagues hypothesized that the system for motion perception combines
image elements in space and time [71,72]. For instance, it is the system’s task to determine in what
direction our hand moves, and it has to be able to tell that what moves is a hand. Based on positron
emission tomography (PET) studies these tasks can be linked to the ventral and dorsal visual streams,
which have been originally hypothesized to exist by Ungerleider and Mishkin [5]. The key idea is that
beyond the primary visual cortex dissociated pathways serve the purposes of identification and
localization. During the PET examinations the occipital cortex was activated in both ‘where’ and ‘what’
tasks, while, for example, the identification of faces selectively activated occipitotemporal areas, and
spatial localization tasks selectively activated occipitoparietal ones.

Figure 2. Location of the cortical visual areas in the primate. Open arrowheads indicate
feedback projections, closed arrowheads indicate feedforward projections. Occipital areas:
V1, V2, V3, V4—Primary (first), second, third, fourth visual cortices respectively,
Temporal areas: TEO—Posterior inferior temporal cortex, TE—Anterior inferior temporal
cortex, MT—Middle temporal area (fifth visual cortex), MST—Medial superior temporal
area, FST—Fundus of the superior temporal area, Parietal areas: LIP—Lateral intraparietal
area, VIP—Ventral intraparietal area, @ PIP—Posterior intraparietal area,
PO—parieto-occipital sulcus, 7a—Visual area 7a in the parictal cortex (Brodmann’s
terminology), Frontal area: FEF—Frontal eye field. According to the figure of
Ungerleider et al. [73].
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3. The Ascending Tectofugal System in the Feline Brain

The existence of separate geniculate and extrageniculate visual systems in the feline brain has been
proved in both morphological and physiological studies. Beside the lateral geniculate nucleus, altogether
nine subcortical structures have been found that receive afferents directly from the retina [74]. Of these
structures, the SC and the tectal pathway have attracted the most research interest during the
past 25 years. In this chapter, we summarize the morphological and physiological properties of an
ascending tectofugal pathway in the mammalian brain that seems to function exclusively via a tectal
route without direct contribution from the geniculostriate route.

Figure 3. Visual pathways in the feline brain. This schematic figure shows the
geniculo-cortical (primary) visual pathway (blue arrows) and the ascending tectofugal visual
pathway (red arrows) in the cat’s brain. Abbreviations: LGN—Lateral geniculate nucleus,
Pul—Pulvinar, LP—Lateral-posterior nucleus of the thalamus, A17—Visual area 17
(primary visual cortex), LS—Lateral suprasylvian cortex, AEV—anterior ectosylvian visual
area, IVA—Insular visual area, LM-Sg—Lateral medial-suprageniculate nuclei of the
thalamus, SNr—Substantia nigra pars reticulata, PPT—Pedunculo-pontin tegmental nuclei,
STN—Subthalamic nucleus, SCs, SCi, SCd—Superior colliculus (superficial, intermedier,
deep layers, respectively), CN—Caudate nucleus, FEF—Frontal eye field.
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The story started in 1980, when Otto Creutzfeldt and Lennart Mucke attempted to record the visual
properties of neurons in the claustrum via stereotaxic targeting. They were repeatedly able to record
visually highly active neurons, but these turned out to be located outside the border of the caudal
portion of the claustrum on histological control. This serendipitous finding led to the discovery of a
novel visual area along the anterior ectosylvian sulcus (AES) [75] and initiated the experiments that we
describe below. It should be noted that the existence of the anterior ectosylvian visual area (AEV) was
simultaneously detected by Olson and Graybiel, who had similarly searched for visual activity in the
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claustrum [76,77]. Later, the extent of the visual region was extended to the cortex throughout almost
the whole length of the AES, including its rostral gyral cortical region; that was called the insular visual
area (IVA) [78-80] a name that was later found not to be totally appropriate [81]. The morphological
experiments of ours and others confirmed the tectal source of visual information towards the AES
cortex. Hence, this area now seems to be the only cortical visual area that is provided with visual
afferentation entirely bypassing the lateral geniculate complex [74,80,82]. The AEV receives thalamic
afferents mainly from the lateral medial-suprageniculate nuclear complex (LM-Sg), while a smaller
fraction of the afferentation comes from the medial part of the nucleus lateralis posterior (LPm) [76].
The source of the cortical afferentation to the AEV is mainly the posterior-medial division of the lateral
suprasylvian area (PMLS) [83,84]. The predominant targets of efferentation of the visual neurons along
the AES are the LM-Sg and the intermediate and deep layers of the SC, although it sends visual
efferents to the PMLS, to the frontal visual areas (lower bank of the cruciate sulcus and the lower
lateral side of the frontal part of the feline brain), to the amygdala and other cortical and subcortical
structures, outside of the lateral geniculate complex and the A17 region [83]. The substantial
corticothalamic connections directed our attention to the LM-Sg. This nucleus of the posterior thalamus
had earlier been paid less attention to in morphological and physiological analysis because of problems
with the definition of its borders. Acetylcholinesterase staining offered a chance to circumscribe (and to
locate) this thalamic area exactly [85]. Anatomical tracing experiments proved that there is a
noteworthy convergence of inputs from a wide anteroposterior and mediolateral aspect of the
intermediate and deep layers of the SC to the neurons in the LM-Sg [86]. In fluorescein double-staining
experiments we observed, that collicular neurons send bifurcating axons towards the ipsilateral and also
the contralateral LM-Sg [87]. Similar bifurcation of collicular axons were suggested in the primate,
where the two SCs provide visual and oculomotor information for each frontal eye field [88].
Anatomical experiments revealed that both the substantia nigra (SN) and the pedunculopontine
tegmental nucleus of the feline brain send efferents to the ventral part of the LM-Sg. An other
substantial projection was traced from the ventral LM-Sg to the posterior dorsolateral part of the
caudate nucleus (CN) [89]. This finding extended our observations to the CN and the SN, parts of the
feline brain that are directly involved in visuomotor control. This is in line with the findings that the
fastigial nuclei of the cerebellum were found to send bifurcating axons to the right and left LM-Sg and
SC [90].

The summarized results showed that the ascending tectal axons carrying visual information constitute
a fiber pathway linking the mesencephalon with the dorsal thalamus and then with a number of
telencephalic centers. Nuclei of the mammalian posterior thalamus i.e., the LM-Sg and the lateral
posterior-pulvinar complex (LP-Pul), and their sauropsidian and avian homolog, the nucleus rotundus,
occupy a central position in this pathway [91,92]. The neurons in this pathway exhibit unique
physiological properties, which in no way resemble those described in the geniculostriate pathway. The
same receptive field properties have been found in neurons along the AES including the IVA, the
LM-Sg and later the posterior dorso-lateral part of the CN and the SN [93,94]. Hence, below we
summarize our physiological findings, irrespective of the region in question. The most intriguing finding
was the absolute absence of retinotopic organization, in contrast with the impressive retinotopy in the
geniculostriate pathway [95]. Receptive fields consistently included the area centralis and extended
practically over the entire visual field of the corresponding eye, not only in the AEV, but in all the
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regions found in this pathway. Others have raised the possibility that the neurons in the AEV are
arranged according to their directional preference [96], although our observations do not support this
concept [97]. The absence of traditional topographic coding raised the idea that there could be another
type of spatial coding in this system. Indeed, Middlebrooks and coworkers described panoramic coding
properties in the auditory neurons along the AES [98] and similarly we found evidence for panoramic
coding of spatial visual information in the ascending tectofugal system [99]. The majority of the visual
neurons proved to be selective for the stimulus location; they gave significantly different responses to
stimuli from different spatial locations. These make one assume that the visual neurons of the ascending
tectofugal system have similar abilities to serve as panoramic localizers [94,96]. The regions of maximal
sensitivity within the visual field are widely distributed among the LM-Sg, the AEV and the CN neurons.
Thus, populations of maximally active neurons can accurately code the spatial position of the visual
information. This is a distributed population code of visual information that is based on panoramic
localizer neurons.

A striking physiological characteristic of these neurons (i.e., in the AEV, IVA, LM-Sg, CN and SN)
is their overwhelming sensitivity to movement in the receptive field. First, we found that the neurons
were primarily sensitive to small stimuli moving very rapidly in a specific direction in the huge receptive
field (Figure 4).

High directional sensitivity, together with the preference for a high stimulus speed was a
characteristic that turned out to be similarly valid for the cells in the SC, which is evidently the main
source of visual information for this pathway [100]. The neurons along the extrageniculate visual
pathway seemed not to be sensitive to the orientation or shape of the stimuli. This supports our concept
that the receptive field properties make these cells serve as “motion” or “novelty” detectors.

The visual information processing depends critically upon the integration of spatial and temporal
information. The sinusoidally modulated grating is an elementary component of the visual scene in the
sense that any two-dimensional visual object can be represented by an appropriate combination of these
gratings [101,102]. Responses of neurons to drifting gratings of different spatial and temporal
frequencies can be interpreted in terms of the dimensions and distribution of spatially and temporally
summed excitatory and inhibitory components within their receptive fields [103,104]. Thus, the
discussion of the spatiotemporal filter properties of neurons in the ascending tectofugal system may
contribute to an understanding of the role of the system in visual information processing and the related
sensory-motor actions. Similarly to the findings of the classical studies, the intermediate and deep layers
of the SC (SCi, SCd), the LM-Sg, the AES cortex and the CN possessed very similar spatiotemporal
spectral receptive field properties. The neurons responded optimally to low spatial frequencies and
exhibited low spatial resolution and low-pass spatial tuning. The temporal frequency properties have
been found to be similar in the different examined structures. Optimal responses were recorded to high
temporal frequencies and the cells displayed high temporal frequency cut-off and narrow temporal
frequency tuning. These findings indicate that these neurons act as effective spatio-temporal filters in the
low spatial and high temporal frequency domain, which suggests that this system plays a major role in
the detection of sudden changes in the environment and in the analysis of the velocity of movement. In
human vision, the motion detectors cover a wide range of spatial frequencies, but do not seem to be
relevant in terms of high spatial frequencies [105]. All motion detectors are apparently fine tuned for
temporal and spatial frequencies [105], the narrow tuning aiding the velocity detection and the analysis
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of the object in motion, regarding shapes, edges, and so on [106,107]. Neurons responding optimally to
low spatial and high temporal frequencies with a narrow tuning [108] have all the capacities to perceive
the optic flow [109]. Thus, they could be optimal candidates for tasks involved in the perception of
self-motion. The ascending tectofugal visual system may play a role in recording movements of the
visual environment relative to the body, and thus it may participate in the adjustment of motor behavior

in response to environmental challenges.

Figure 4. Visual properties of neurons in the ascending tectofugal system. A: Top:
Peristimulus time histograms (PSTHSs) of a directionally selective LM-Sg visual neuron in
the ascending tectofugal system. Bottom: the position and movement of the stimulus in the
visual field of the cat. The black spot left to the arrows symbolizes the moving visual
stimulus. The upper and lower PSTHSs correspond to the response of the neuron to the
stimulus moving along the trace indicated by the upper and lower arrows, respectively. The
grey part represents the extent of the visual receptive field. Abbreviations: AC: area
centralis, HM: horizontal meridian, VM: vertical meridian. B: Velocity response curves for
a spot stimulus (2<in diameter) of eight visual AEV neurons of this system. Note the high
responsiveness of the units to high velocities! C: Effect of the length of the light stimulus
(1< in width) on the response of visual neurons in the AEV. Note the maximal
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Other interesting aspect of the ascending tectofugal system is its sensitivity to several sensory
modalities. Beside the visual neurons, auditory, somatosensory and multisensory neurons were also
found. The visual and the somatosensory modalities predominated in the ascending tectofugal system.
The sensory receptive fields were extremely large. The visual and auditory receptive fields covered the
whole physically approachable sensory field, while the somatosensory receptive fields covered the whole
body surface of the animal. The receptive field properties of the multisensory neurons were similar to
those of the unimodal neurons. Similarly to the absence of retinotopic organization, we observed no
signs somatotopic organization.

4. Lateral Suprasylvian Areas of the Feline Brain

Palmer et al. [110] in 1978 gave the first description of the cortical regions surrounding the
suprasylvian sulcus and it is widely agreed that LS cortex consist of six visuotopically organized areas:
anteromedial and anterolateral lateral suprasylvian area (AMLS and ALLS), posterior medial lateral
suprasylvian (PMLS), posterior lateral lateral suprasylvian (PLLS), dorsal and ventral lateral
suprasylvian areas (DLS and VLS).

These regions are connected to other cortical and subcortical structures which play major role in the
processing of visual information, and the analysis of motion information. Because of the reason that the
LS areas receive not only extrageniculo-extrastriate visual information originating from the SC but also
geniculo-striate visual input [111,112] we discuss these cortical regions of the feline brain separated
from the ascending tectofugal system. The collicular information is relayed through the pulvinar and the
lateral posterior nucleus of the thalamus to the LS [113-115].

LS is classically associated with motion perception and are thought to play a major role in the
analysis of motion. It is implicated in attention shifts [116-118], speed discrimination [119], the
integration of complex motion [120] and the detection of forms that are in motion [121,122]. From the
six areas which were originally described, the posteromedial lateral suprasylvian sulcus was most
extensively studied.

Several studies have shown that the PMLS neurons are motion-sensitive, have large receptive fields
that are exquisitely selective for the direction of motion and prefer relatively higher velocities
(10-409s) [17,118-126]. Behavioral studies have also demonstrated the involvement of the PMLS
cortex in motion processing [115,119,120,127-130]. This extrastriate area is traditionally thought to be
one of the second stage analyzers, but studies with drifting plaid rarely found pattern motion-sensitive
cells in the PMLS, most of the neurons were found to be component motion-sensitive, and it was
suggested that in this area the response to the direction of motion is secondary to the determination of
orientation, and that motion signals are integrated in other parts of the feline cerebral cortex [123].
There has been disagreement in the literature concerning the presence or absence of orientation
selectivity in the PMLS [118,119,122,131-135]. However, Li et al. [17] found that the pattern motion
or the component motion sensitivity may not be a fixed feature of a certain cell, but the direction tuning
of the PMLS neuron can vary with the orientation element of the stimulus. When the component lines of
the stimulus were much shorter than the size of the receptive field, the majority of cells were selective to
the direction of pattern motion, while only a small population was sensitive to the direction of
component motion. Response profiles of the majority of the neurons became more component-motion
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selective with the size increment of orientation element in the stimulus by elongating the component
lines in the patterns. These results suggest that additionally to the widely discussed orientation-sensitive
mechanism, certain types of other processes, relatively independent of the one-dimensional orientation
cue, may also be involved in the determination of the motion’s direction, because such a dynamic
variation of pattern motion and component motion sensitivity would probably require dual underlying
mechanisms. The two mechanisms may act parallel in a dynamic competition, where one rises as the
other falls, depending upon the strength of the orientation element in the stimulus. As a result, when one
mechanism prevails over the other, it would respond like a pattern motion- or component
motion-sensitive cell, otherwise unclassified. Even at relatively low levels of the visual system, some
kind of non-orientation-based processing may coexist with the orientation-sensitive processing in
dynamic competition. During other experiments [125] dealing with the optic flow analyzing feature of
the PMLS it has been found that this area is not likely to be specialized for the analysis or discrimination
of different flow patterns, but may play some kind of relay role in the optic flow information processing.
On the other hand, Villeneuve et al. [136] investigated if the PMLS neurons can signal the direction of
motion of complex random dot kinematograms (RDKS), wherein the composing elements do not
provide any local coherent motion cues. According to their results the PMLS neurons can signal the
direction of a complex RDK, which requires the integration of local motion over a large spatial area.
The cells in this area are capable of binding local motion cues, even if these cues are separated by
relatively large spatial displacement. These data suggest that most PMLS cells can signal the direction
of motion of complex RDKs only when the latter stimulates the area beyond their classical receptive
fields, presumably through intra- or inter-cortical (AMLS, PLLS, DLS) connections or by afferents
from subcortical nuclei (LP-pulvinar complex) involved in complex motion analysis. The coding way in
PMLS is likely to be coarse, rather than sparse, since the majority of the cells were direction-selective
and almost always broadly tuned to the direction of motion, even for higher order stimuli such as
complex RDKSs, and the way of coding did not vary with the stimulus context. In this study they could
not detect pattern-motion-sensitive cells, but they emphasised that the stimulus they used is so
fundamentally different that any direct comparison between the plaid-defined and the
random-line-defined pattern-motion can be excluded. These studies support the hypothesis that the
PMLS is one of the most important early cortical stages in motion integration.

The posterolateral part of the lateral suprasylvian sulcus (PLLS) is generally held to be an area
similar to the PMLS, contributing to motion analysis, but the specific response properties for visual
motion are quite different [74,119], thus, it is supposed to have different role in motion information
processing. Contrary to the PMLS, which receives inputs from area 17 and other structures which also
get input from the primary visual cortex (areas 18 and 19, and the lateral division of the lateral posterior
nucleus) and projects to areas 17, 18, 19 and 20a and other LS areas, the PLLS receives only sparse
input from striate-recipient structures, but instead it is driven mainly by tectal inputs from the medial
division of the lateral posterior nucleus and projects to more remote extrastriate areas such as the
AEV [74,137-140]. The reciprocal connection between the PMLS and the PLLS is weak [74,132-134].
We do not have as much as information about the PLLS as we have about the PMLS. These two
regions seem to be located at roughly equivalent stages in the hierarchy but in two substreams.
Li et al. [125] showed that the vast majority (90%) of PLLS cells respond to optic flow patterns,
although only 20-25% of the neurons have been found to be selective to certain types of optic flow
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stimuli (i.e., translation, rotation or expansion-contraction). This is consistent with the results of
Kim et al. [141], who demonstrated that the majority of cells in the lateral suprasylvian cortex respond
preferentially to optic flow movies rather than to equivalent texture movies. Additionally,
Sherk et al. [142] have found that the PLLS neurons react mostly to objects moving against an optic
flow movie rather than to a bar moving against a homogenous background. Beside this indirect evidence,
direct evidence also suggests that the PLLS cortex plays an important role in figure-ground
segmentation. Robitaille et al. [143] pursued a systematic investigation in this area to determine the
spatial features of the receptive fields of the neurons, and to describe their spatial frequency tuning
functions, moreover, in the second step illusory edges were created by drifting texture stimuli (i.e., a
horizontal bar) against a similarly textured, but static background, with the help of random-dot
kinematograms. Almost all cells recorded in the PLLS (96%) were binocular, and a significant majority
of the receptive fields (79.2%) were end-stopped. Most neurons (81.0%) exhibited band-pass spatial
frequency tuning characteristics and reacted optimally to low spatial frequencies (mean spatial
frequency: 0.08 c/deg). The remaining group of neurons (19.0%) exhibited low-pass properties. All the
recorded neurons responded vigorously to edges defined by motion. The vast majority (96.0%) of
neurons reacted optimally to large texture elements; approximately half the neurons (57.3%) also
responded to finer texture elements. Moreover, 38.5% of the units have been found to be selective to
the width of the bar. Finally, some (9%) cells responded in a transient fashion to leading and to trailing
edges. In conclusion, cells in the PLLS area are low spatial frequency analyzers that are sensitive to
texture and to distance between edges defined by motion.

The anteromedial lateral suprasylvian cortex (AMLS) seems to be a likely candidate for higher-order
motion processing in the feline visual cortex [144-146]. Neurons in the AMLS cortex exhibit large and
complex-like receptive fields, and most of them (74%) can be classified as direction-selective on the
basis of their responses to drifting sinusoidal gratings [147]. Most significantly, direction selectivity was
present for complex motion stimuli. A subset of the recorded neurons (21%) exhibited pattern-motion
selectivity in response to moving plaid patterns. The capability of the AMLS neurons to signal
higher-order stimuli was further supported by their selectivity to moving complex random-dot
kinematograms. Moreover, 45% of the neurons were direction-selective when radial optic flow stimulus
was applied. These results suggest that the AMLS cortex is involved in higher-order analysis of visual
motion. Researches find it possible that the AMLS cortex represents a region between the PMLS and
the AEV in a functional hierarchy involved in motion integration [76,147-150].

5. Is There a Primate Homolog of the Feline Ascending Tectofugal System?

Thorough investigations have been performed during the last few decades to explore the neuronal
background of motion detection in both primates and human. In the human brain researchers found an
area in the occipital cortex (V5/middle temporal area (MT)), which proved to be highly specialized for
visual motion detection [151]. This area is the possible human homolog of the MT-MST area in the
monkey brain, which has been in the focus of attention of researchers recently. The MT-MST area of
the non-human primate brain has been proven to have anatomical connections with the areas V1, V2,
V3 and V4, moreover, it has also direct input from the lateral geniculate [152,153] and pulvinar [154]
nuclei of the thalamus, passing by the primary visual (striate) cortex, V1. The presence of visual fibers
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passing by V1 to MT provides a clear explanation for the motion sensitivity in patients after the loss of
the V1 area.

Several researchers made extensive efforts to prove a direct projection from the LGN to the
extrastriate cortex. A direct projection from the LGN to the MT has been reported as a result of few
studies [32,152,153,155-157]. Indirect evidence for this direct thalamus-V5 connection is also available
in human [158]. The PMLS area of the feline brain is generally considered to be a homolog of the MT,
which is at a lower level than the MST in the visual motion pathway of the primate [34,159,160].
Previously the PLLS was regarded as a possible analog of the MST [160], but finally Li et al. [125]
described the significantly different visual properties of the PLLS neurons (e.g., sensitive to fewer types
of stimuli, the optic flow selectivity is not as good as in MST, but responds better and more selectively
to radial motion), so this area cannot be considered as an equivalent of the MST.

The pulvinar nucleus of the thalamus, which was traditionally divided into 4 parts: oral
(somatosensory), superior and inferior (both visual) and medial (visual and multisensory) is situated
medial and dorsal to the LGN and ventral to the SC [23,161,162]. Further morphological studies
defined eight to ten anatomical subdivisions [163]. However, the clear physiological properties and
inter-relationships of these multiple regions are as yet unclear. It is without doubt that the majority of
the pulvinar is involved in vision [23,164,165]. With their reciprocal connections to many areas of the
cerebral cortex, and input from the colliculus and retina, they occupy an analogous position in the
extrastriate visual system to the LGN in the primary visual pathway, but deal with higher-order visual
and visuomotor transduction. The traditional view is that the inferior and lateral components are
primarily associated with the striate and near-striate cortices, while elements of the lateral and the
medial component are associated with higher cortices (e.g., parietal, frontal, orbital and cingulated
cortices). The pathway in which the pulvinar is involved ascends from the SC and pretectum and,
bypassing the LGN, reaches virtually all the visually related areas of the cerebral cortex [23].

The possibility of the existence of an SC-pulvinar-MT pathway arose, and has been investigated
several times, but finally Stepniewska et al. [161] found that there are neurons in the medial nucleus of
the inferior pulvinar—the major thalamic projection zone to the MT—that receives direct input from the
SC. However, the functional role and the significance of this pathway in primates are not clear. We
argue that the SC-pulvinar-MT tecto-thalamo-cortical pathway in the primate is a good candidate to be
the primate homolog of the ascending tecto-thalamo (LM-Sg, LP-Pul)-cortical (AES cortex, LS areas)
visual system in the feline brain.

6. Conclusions

Motion detection is one of the most important capabilities of the visual system. Furthermore, it
provides information on our own motion. Motion is an essential image quality, which defines the visual
experience regardless of other qualities, like color or contrast. Deficits of motion sensation are quite
rare, however, when they occur, they disable the patient severely. In the present review we summarized
the extrageniculo-extrastriate cortical and subcortical visual structures of the feline and macaque brain,
and discussed their functional role in visual motion perception. Special attention was paid to the
ascending tectofugal system of the feline brain that plays important roles in sensory-motor coordination
and may serve for perception of the visual environment during self-motion. We also discussed the
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homologs, the similarities and the differences between the motion detector regions in the feline and
the primate.
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