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Abstract: Successive efforts have processed the Advanced Very High Resolution 

Radiometer (AVHRR) sensor archive to produce Normalized Difference Vegetation Index 

(NDVI) datasets (i.e., PAL, FASIR, GIMMS, and LTDR) under different corrections and 

processing schemes. Since NDVI datasets are used to evaluate carbon gains, differences 

among them may affect nations’ carbon budgets in meeting international targets (such as the 

Kyoto Protocol). This study addresses the consistency across AVHRR NDVI datasets in the 

Iberian Peninsula (Spain and Portugal) by evaluating whether their 1982–1999 NDVI trends 

show similar spatial patterns. Significant trends were calculated with the seasonal Mann-

Kendall trend test and their spatial consistency with partial Mantel tests. Over 23% of the 

Peninsula (N, E, and central mountain ranges) showed positive and significant NDVI trends 

across the four datasets and an additional 18% across three datasets. In 20% of Iberia (SW 

quadrant), the four datasets exhibited an absence of significant trends and an additional 22% 

across three datasets. Significant NDVI decreases were scarce (croplands in the 

Guadalquivir and Segura basins, La Mancha plains, and Valencia). Spatial consistency of 

significant trends across at least three datasets was observed in 83% of the Peninsula, but it 
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decreased to 47% when comparing across the four datasets. FASIR, PAL, and LTDR were 

the most spatially similar datasets, while GIMMS was the most different. The different 

performance of each AVHRR dataset to detect significant NDVI trends (e.g., LTDR 

detected greater significant trends (both positive and negative) and in 32% more pixels than 

GIMMS) has great implications to evaluate carbon budgets. The lack of spatial consistency 

across NDVI datasets derived from the same AVHRR sensor archive, makes it advisable to 

evaluate carbon gains trends using several satellite datasets and, whether possible, 

independent/additional data sources to contrast. 

Keywords: seasonal Mann-Kendall trend test; temporal trends analysis; spatial statistics; 

partial Mantel test; carbon gains; Spain; Portugal; Iberian Peninsula 

 

1. Introduction 

Since the early eighties, the Advanced Very High Resolution Radiometer (AVHRR) sensors 

onboard the National Oceanic and Atmospheric Administration (NOAA) satellite series have been 

capturing daily images of the world, providing spectral information to monitor atmospheric, oceanic, 

vegetation, and land properties of the Earth. To date, three versions of the AVHRR sensor have 

operated: AVHRR/1 (with four channels, operating between 1979 and 1994 onboard the NOAA-6, -8, 

-10 satellites), AVHRR/2 (with five channels, operating between 1981 and 1999 onboard the NOAA-

7, -9, -11, -12, -13, -14 satellites), and AVHRR/3 (with six channels, operating since 1999 to present 

onboard the NOAA-15, -16, -17, -18 satellites) (http://goespoes.gsfc.nasa.gov/poes/project/index.html, 

January 2010). A long-term (1981-present) time-series of global AVHRR daily images has been stored 

at degraded resolution in the Global Area Coverage (GAC) archive. The GAC images are a resample 

of the full 1.1 km resolution AVHRR images by averaging four out of every five samples along the 

scan line and processing only every third scan line. The final resolution is 1.1 × 4.4 km at the subpoint, 

although it is generally treated as 4 km resolution. Repeated efforts have processed the GAC archive 

attempting to produce datasets of consistent time-series of surface reflectance and spectral indices with 

enough quality to study the long-term dynamics and trends of different properties of the Earth. Despite 

the images were captured by similar AVHRR sensors, many issues have to be considered to avoid 

artifacts that may lead to missing or detecting trends in the time series that are or are not related to 

actual changes in important spectral properties of the Earth (e.g., [1,2]).  

One of the important spectral indices that shows dissimilar long-term trends between different 

AVHRR-derived datasets is the Normalized Difference Vegetation Index (NDVI) (e.g., [3,4]). The 

NDVI is calculated from the reflectance in the AVHRR red (channel 1, 580–680 nm) and near infrared 

(channel 2, 725–1,100 nm) bands as follows  [5,6]: NDVI = (NIR − R)/(NIR + R). This spectral index 

is strongly related to the fraction of the incoming photosynthetically active radiation intercepted by 

green vegetation [7] and it is widely and satisfactorily used for monitoring changes in ecosystem 

structure and function [8], detecting long-term trends in vegetation growth and phenology [9,10], 

providing inputs for primary production [11] and global circulation [12] models, and providing a 

reference to model the carbon balance worldwide [13-15]. 
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Since the AVHRR sensor series were not originally designed for vegetation monitoring (but rather 

meteorological studies) and suffer from lack of onboard calibration and navigation/georeferencing 

problems, they have several shortcomings for this purpose [16-19]. To achieve a consistent NDVI 

time-series, the different processing efforts of the GAC archive had to deal with a wide range of 

factors affecting the NDVI. Van Leeuwen et al. [1] showed how multi-sensor NDVI time-series would 

significantly benefit if atmospheric corrections were adequately addressed. For instance, the AVHRR 

near-infrared band (channel 2) overlaps a wavelength interval in which there is considerable radiation 

absorption by water vapor in the atmosphere, which significantly decreases observed NDVI [20,21]. 

Other atmospheric corrections must also include ozone absorption, Rayleigh scattering, tropospheric 

aerosol optical thickness, and presence of aerosols in the stratosphere after major volcanic eruptions 

(e.g., El Chichón and Pinatubo). In addition to atmospheric corrections, the NDVI signal must be 

corrected for the variation in the solar zenith and viewing angles due to the orbital drift through the 

lifetime of the satellites [22]. Finally, AVHRR reflectance and NDVI data must also be corrected for 

sensor degradation and cross-calibration due to inter-sensor differences in spectral response functions 

of different sensor red and near-infrared bands [1]. In the case of the AVHRR GAC archive, an 

additional source of uncertainty may impact the quality of the data: it consists of the data reduction 

methodology used for transforming the 1.1 km resolution AVHRR data into the coarse resolution of 

the GAC archive [23,24]. 

Depending on the different corrections applied and processing streams and algorithms used, 

successive efforts have produced different coarse resolution AVHRR NDVI datasets from the original 

GAC data. The most common and broadly used ones are, from the earliest to the foremost, Pathfinder 

AVHRR Land (PAL I and II) [24,25], Fourier-Adjustment, Solar zenith angle corrected, Interpolated 

Reconstructed (FASIR) [26], Global Monitoring and Mapping Studies (GIMMS) [27], and Land Long-

Term Data Record (LTDR) [28] datasets. Several studies have evaluated the consistency of the NDVI 

trends across the PAL, FASIR, and GIMMS AVHRR datasets in different regions of the world  

(e.g., [29,30]), and have also compared them to those derived from SPOT VEGETATION and MODIS 

Terra sensors (e.g., [31]). In some of these regions, the NDVI trends have been consistent across 

datasets and sensors, for instance, in the humid Sahel (but not in the driest; [31]), or the Chilean arid 

zones [4]. Contrary, in other regions, the use of different datasets has led to conflicting findings, 

potentially due to differences in the processing and corrections applied to the GAC data  

[e.g., 3,4,32,33]. Despite the LTDR dataset is the most recently produced one and incorporates much 

of the learning from the previous efforts, it does not still exist any published study that includes this 

dataset to evaluate the consistency of the NDVI trends. 

This is also the case of the Iberian Peninsula (Spain and Portugal), where previous studies have 

calculated the NDVI trends based on AVHRR datasets at the regional [34-37] and local [38-40] scales, 

but none have evaluated their consistency across different datasets. Following up the suggestions of 

recent works [3,4,31], in this article we evaluate the spatial consistency of four AVHRR NDVI 

datasets to detect NDVI trends in the Iberian Peninsula, with a special focus on the recently released 

LTDR dataset. We also evaluated the error budget of the NDVI trends from the different slopes 

obtained across datasets. As far as we know, this is the first evaluation of the performance of the new 

LTDR dataset to detect NDVI trends. 
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2. Data and Methods 

2.1. Satellite Datasets 

We focused on the Iberian Peninsula to compare the 1982–1999 NDVI trends across four datasets 

derived from the GAC archive of the AVHRR sensor (NOAA-7, -9, -11, and -14 satellites; for a 

comparison of the datasets see Table 1 in this paper, and Table 1 in Baldi et al. [4]). We used the 

portion of the images located between 35° N and 45° N latitude, and 3.5° E and 10.2° W longitude. 

The period considered includes both extremely dry and wet periods for the Peninsula [41,42]. 

The first dataset was the Pathfinder AVHRR Land-II (PAL-II) dataset. It consists in 10-day NDVI 

composites at 64 km2 spatial resolution. Images were radiometrically and spatially corrected (for 

details see [24,43]). The atmospheric correction scheme follows the algorithm of Gordon et al. [43], 

including Rayleigh scattering and ozone. PAL-II did not correct for aerosols, water vapor, or satellite 

drift. The second dataset was the “Fourier-Adjustment, Solar zenith angle corrected, Interpolated 

Reconstructed” (FASIR, version 4.13) [26] dataset. Since it made use of the PAL-II dataset, it also has 

a spatial resolution of 64 km2, and contains 10-day composite images. In addition to PAL-II 

corrections, it includes Fourier adjustment of outliers and a bidirectional reflectance distribution 

function that seeks a common viewing and illumination geometry. The third dataset was obtained from 

the Global Inventory, Modeling and Mapping Studies (GIMMS) team and includes the new and 

updated release of the per-continent global data (1981–2006) made available in 2007 [44]. Currently, 

the GIMMS dataset is the most commonly used dataset to model and evaluate vegetation patterns and 

trends around the world. It has a spatial resolution of 64 km2, and contains two composite images per 

month. It has been corrected for sensor degradation, inter-sensor differences, solar zenith angle and 

viewing angle effects due to satellite drift (using an empirical mode decomposition function [22]), 

cloud cover, volcanic aerosols, and other effects not related to vegetation change (it is not corrected for 

water vapor, ozone, and scattering) (for details see [27]). GIMMS is currently thought to be consistent 

with NDVI derived from VEGETATION and Moderate-Resolution Imaging Spectroradiometer 

(MODIS) sensors [27]. 

The former three NDVI datasets have also been recently compared by Baldi et al. [4] for South 

America (see Table 1 in Baldi et al. [4] for a detailed comparison). Our study, in addition, makes use 

of the newest AVHRR dataset created by the Land Long Term Data Record (LTDR) team [28] (in 

Table 1, we provide an extension of Baldi et al. [4] table for the LTDR version 2 dataset). LTDR is a 

NASA-funded REASoN project that aims to produce a consistent long term data set from AVHRR, 

MODIS, and Visible/Infrared Imager/Radiometer Suite (VIIRS) sensors. The LTDR project is 

reprocessing GAC data from 1981-present by applying the preprocessing improvements identified in 

the Pathfinder AVHRR Land II (PAL-II) project, and the atmospheric and BRDF corrections used in 

MODIS preprocessing steps (http://www.ltdr.nascom.nasa.gov, September 2009) [28]. The LTDR 

dataset consists in daily global images at a spatial resolution of 0.05 × 0.05 degrees (~5 km2). As in the 

former datasets, we calculated 15-day maximum value composites [20] of the LTDR daily images to 

minimize the noise due to cloud cover, cloud shadow, and aerosols contamination (though it may not 

be completely removed [2]). Despite the geolocation accuracy is supposed to be of about one pixel, in 

our evaluation of the LTDR version 2 dataset, we have found a long-term systematic geolocation 
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displacement of 2 to 3 pixels from the NW to the SE of the images along the 1982–1999 period. This 

caused an “artificial” NDVI negative trend in the NW border of the continents, and a positive NDVI 

trend in the SW borders (Alcaraz-Segura, unpublished). 

Table 1. Description of the AVHRR LTDR NDVI dataset [2,28] used in this study (this 

table extends the comparison across PAL-II, FASIR, and GIMMS provided by Table 1 in 

Baldi et al. [4]). 

 LTDR version 2  

Data Set Origins (and 

its spatial resolution) NOAA-AVHRR GAC L1B (1.1 × 4.4 km, known as 4 km) 

Instrument and change 

in times 

NOAA-7, -9, -11, -14 (to be expanded in next versions) 

Known temporal span 1981-1999 (to be expanded in next versions) 

Temporal resolution The original dataset consists of daily images with no temporal compositing. 

Spatial resolution 0.05 x 0.05 degrees, same as MODIS Climate Modeling Grid products 

Spatial compositing Forward, nearest neighbour mapping. Selection of the 4.4 km pixel with the 

maximum NDVI value for the 0.05º output bin. Only zenith angles less than 

42º were used. 

Temporal compositing The original dataset consists of daily images with no temporal compositing. 

Radiometric corrections Ocean-clouds vicarious calibration using the Vermote/Kaufman parameters 

[45]. This technique uses ocean observations to track the degradation of 

channel 1 and observations of clouds to follow the evolution of the channel 

1/channel 2 ratio. This vicarious calibration technique was evaluated [46] by 

using MODIS observations over a stable desert site, where the independently 

derived sets of AVHRR calibration coefficients were consistent to within less 

than 1%). 

Viewing and 

illumination corrections 

Correction of illumination and viewing angle effects with Bidirectional 

Reflectance Distribution Function (BRDF) techniques will be implemented in 

version 3. 

Cloud corrections Rigorous cloud (and cloud shadow) screening using Cloud Advanced Very 

High Resolution Radiometer (CLAVR-1) [23,44].   

Stratospheric aerosols 

correction 

Aerosol corrections will be implemented in version 3 [47]. 
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Table 1. Cont. 

Molecular absorption 

and scattering 

corrections 

Rayleigh scattering and water vapour corrections based on Reanalysis 

ancillary data (surface pressure, water vapour, wind speed) from the NOAA 

Center for Environmental Prediction (NCEP) (surface pressure was refined 

with NOAA TBASE Digital Elevation Model) [48]. Ozone correction used 

concentration measurements from the Total Ozone Mapping Spectrometer 

(TOMS) [49]. Aerosol corrections will be implemented in version 3 [47].  

Manual checking On navigation accuracy, data drop outs, bad scan lines, and other strange 

values. Inverse navigation to relate an Earth location to each sensor 

instantaneous field of view. 

Noise attenuation No specific noise attenuation applied.  

Scaling procedures No specific scaling procedures applied. 

Quality Assessment 

(QA) 

MODIS-like [50] 16 QA bits must be used prior to using a given pixel in any 

scientific analysis. 

Errors - Geolocation: ~1 pixel accuracy. Orbital model run with corrected on‐board 

clock and ephemeris data and inverse navigation to geolocate each sensor’s 

instantaneous field of view [28].  

- NDVI: Accuracy: 0.0064 to 0.024; Precision: 0.02 to 0.037 (for clear and 

average atmospheric conditions) [2]. RMS error about the one-to-one line 

between daily NDVI images and the NDVI calculated at 48 AERONET sites 

in 1999 is two times lower for LTDR than for PAL [28]. 

2.2. Temporal Trend Analysis  

Since NDVI time-series often do not meet parametric assumptions such as normality and 

homoscedasticity, we evaluated the existence of significant 1982-1999 NDVI trends by using the 

seasonal Mann-Kendall trend test (as suggested by de Beurs and Henebry [9]). This is a rank-based 

non-parametric test robust against seasonality, non-normality, heterocedasticity, missing values, and 

intra-annual autocorrelation [51-53]. The use of this test avoids the loss of seasonal information when 

checking for trends, so we kept the full temporal resolution of the NDVI seasonal dynamics in all 

datasets (instead of using just the annual mean or maximum).  

The seasonal Mann-Kendall test first evaluates whether each periodic sub-annual interval (i.e., 

months, composite periods, or seasons) exhibits significant monotonic trends based on Kendall’s S 

score and its variance. Then it computes a Z score and performs a heterogeneity test to see if this trend 

is consistent across all sub-annual intervals. To minimize the influence of errors, outliers, missing data, 

and tied observations on the slope estimation [54], we used a non-parametric linear slope estimator 

suggested by Sen [55]. First, in each sub-annual period, Sen’s Method calculates the median of all 

possible two-point slopes between pairs of years [51] but discarding tied observations [56]. Then, it 

calculates the median of all the sub-annual period slopes [54].  

The trend test was run using the MATLAB code “Seasonal Kendall Test with Slope for Serial 

Dependent Data” provided by Jeff Burkey through the MATLAB Central file exchange 

(http://www.mathworks.com, accessed May 2009). At present, this test is corrected for intra-annual 

autocorrelation but not for inter-annual autocorrelation [57]. For each pixel and dataset, the overall 
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slope obtained with the Sen Method, and the p-value calculated with the seasonal Mann-Kendall trend 

test, were stored. Significant slopes were assumed for p-values < 0.05. 

2.3. Spatial Consistency Analysis  

The slope and p-value images of the four datasets were transformed to a common UTM 30N 

projection, European 1950 Datum, and 8 km pixel size. Then, we removed from the analysis all pixels 

that were considered as sea in the PAL, FASIR, or GIMMS datasets, or as water in the quality 

assessment flag of the LTDR dataset. Three types of analyses were carried out to evaluate the spatial 

consistency of the NDVI trends across the four datasets. First, we created a consensus map that 

displays for every pixel the degree of consistency across the four datasets (Table 2). Second, we 

compared across datasets the percentage of pixels showing significant trends, the polarity of the trends, 

and the magnitude of their slopes. We also evaluated the relative error budget of the NDVI trends by 

calculating the coefficient of variation of the slopes across the four datasets. 

Table 2. Legend of the consensus map of Figure 2 displaying the degree of consistency of 

the NDVI trends across the four datasets. The possible combinations were classified into 

the following nine categories.   

 Full consistency Most likely Ambiguous 

Positive 

significant trends 

1: all datasets show 

significant positive 

trends 

2: three datasets agree, 

one shows absence of 

significant trends 

3: two datasets agree, 

two show absence of 

significant trends 

Absence of 

significant trends 

4: all datasets show 

absence of significant 

trends 

5: three datasets agree, 

one shows significant 

trends 

6: remaining 

combinations (uncertain 

trends) 

Negative 

significant trends 

7: all datasets show 

significant negative 

trends 

8: three datasets agree, 

one shows absence of 

significant trends 

9: two datasets agree, 

two show absence of 

significant trends 

 

Finally, partial Mantel tests (an evaluation of spatial similarity) [58-60] were used to examine the 

correlation between pairs of AVHRR datasets while controlling the effect of spatial autocorrelation to 

remove spurious correlations [61] (i.e., accounting for the influence that the spatial autocorrelation of 

trends among proximate pixels has on the calculation of the correlation between AVHRR datasets). 

The partial Mantel statistic calculates the partial Pearson correlation between the two dissimilarity 

matrices (A and B, one for each AVHRR dataset trends) conditioned by a third dissimilarity matrix (C, 

the geographical distance between pixel locations). Each dissimilarity matrix corresponds to a 

symmetric n x n matrix where rows and columns corresponded to the same sampled pixels (n) and 

where the value of each i,j cell was the Euclidian distance (difference) between the i row pixel and the 

j column pixel (expressing difference in the slope of the NDVI trend for A and B, and geographical 

distance for C). If matrix C (“space”) is not related to matrices A and B (“datasets”), we simply would 

get the Pearson correlation coefficient between A and B. The significance of the relationship was 

evaluated by permuting (1,000 times) rows and columns in the first dissimilarity matrix (A), but 
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keeping constant the other two [62]. The test was run using the “Community Ecology vegan  

1.15-4” R-package [63]. Due to computational limitations, we bootstrapped the analysis 10,000 times, 

using 100 pixels showing significant trends as sample size for each comparison. In addition, following 

the same bootstrapping procedure, we also calculated Pearson’s correlation coefficients to compare the 

linear relationship among the datasets when spatial autocorrelation was not expressly accounted for in 

the analysis. To look for significant differences in linear correlation (Pearson’s r) and spatial similarity 

(partial Mantel’s r) among the four datasets, we ran 20 ANOVA tests using random subsamples of  

50 significant (p-value < 0.001) values of r from the 10,000 bootstrapped analyses. Comparisons 

between classes were based on the Sheffe’s S procedure, which provides a confidence level (alpha of 

0.05) for comparisons of means among all datasets, and it is conservative for comparisons of simple 

differences of pairs. All analyses were repeated considering all NDVI trends (significant and  

non-significant) altogether, whose results are shown in the Appendices. 

Figure 1. Difference in magnitude and spatial patterns of the significant 1982-1999 NDVI 

trends across four AVHRR datasets: (a) PAL-II, (b) FASIR, (c) GIMMS, and (d) LTDR 

for the Iberian Peninsula. Significant trends were considered for p-values < 0.05 by means 

of the seasonal Mann-Kendall trend test. Slopes express change of NDVI per year.  
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3. Results 

The AVHRR datasets showed that most of Iberia experienced either positive or no trends in NDVI 

during the 1982-1999 period. The areas with negative trends are small and isolated, despite the dataset 

considered (Figure 1, Table 4). Datasets, though, differed in the magnitude of the NDVI trends  

(Figure 1, Table 3). The mean NDVI trend of the whole Iberian Peninsula was similar and positive for 

PAL-II, FASIR, and LTDR datasets (Table 3), though it was half in magnitude for the GIMMS 

dataset. When the means for positive and negative significant trends were calculated separately, the 

PAL-II dataset showed the steepest trends (Table 3), while the GIMMS datasets showed the weakest 

ones (half in magnitude than PAL-II). 

Table 3. Differences in the magnitude of the 1982-1999 NDVI significant trends across 

four AVHRR datasets for the Iberian Peninsula. Significant trends were considered for  

p-values < 0.05 by means of the seasonal Mann-Kendall trend test. Slopes express change 

of NDVI per year. 

 PAL-II FASIR GIMMS LTDR
Greatest significant positive slope 0.0144 0.0116 0.0066 0.0136
Greatest significant negative slope −0.0069 −0.0066 −0.0057 −0.0178
Global mean slope (including zeros) 0.0019 0.0018 0.0009 0.0020
Mean of significant positive trends 0.0045 0.0037 0.0024 0.0031
Mean of significant negative trends −0.0044 −0.0037 −0.0023 −0.0027

 

The consensus map (Figure 2) showed that in 20% of the Peninsula the four datasets exhibited 

absence of significant trends (pixels distributed across the southwestern quarter of the Peninsula and 

the agricultural high plains of the Duero basin) (Table 4).  

Table 4. Percentage of pixels of Spain, Portugal, and the Iberian Peninsula exhibiting 

significant NDVI trends (p-value < 0.05) in each AVHRR dataset (PAL-II, FASIR, 

GIMMS, and LTDR), and percentage of pixels that showed consistent significant (positive, 

absence, or negative) NDVI trends across all four datasets. Significant NDVI trends were 

considered for p-values < 0.05 by means of the seasonal Mann-Kendall trend test. 

 % of pixels with: PAL-II FASIR GIMMS LTDR Across all 
SPAIN Significant positive trends 44.6 50.6 38.2 66.2 24.9 

Non-significant NDVI trend 54.8 48.5 60.9 29.8 20.4 
Significant negative trends 0.6 0.9 0.9 4.0 0.1 

PORTUGAL Significant positive trends 30.2 44.6 37.2 76.0 17.2 
Non-significant NDVI trend 69.8 55.3 62.6 23.0 17.0 
Significant negative trends 0.0 0.1 0.2 0.9 0.0 

IBERIAN 
PENINSULA 

Significant positive trends 42.4 48.8 37.2 67.0 22.6 
Non-significant NDVI trend 57.0 50.5 62.0 29.4 20.2 
Significant negative trends 0.6 0.7 0.8 3.6 0.1 
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Figure 2. Consensus map showing the spatial consistency of the significant NDVI trends 

across the four datasets (PAL-II, FASIR, GIMMS, and LTDR) for the Iberian Peninsula. 

See Table 2 for legend explanation. Significant trends were considered for p-values < 0.05 

by means of the seasonal Mann-Kendall trend test. Percentages in the legend indicated the 

extension of each class in the Peninsula. Locations referred in the text: (1) northern,  

(2) central, (3) southeastern, (4) Algarve, and (5) Aracena mountain ranges; croplands of:  

(6) the Duero basin plains, (7) Valencia, (8) Guadalquivir basin, (9) Segura basin, and  

(10) La Mancha plains. 
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In an additional 22% of Iberia, three databases did not detect significant trends (most likely no 

trends in Figure 2). A 23% of the Peninsula showed positive and significant NDVI trends across the 

four datasets (areas along the northern, central, and southeastern mountain ranges) and an additional 

18% across three databases (most likely positive trends in Figure 2). Consistent significant negative 

NDVI trends across the four datasets occurred in less than 1% of the Peninsula (isolated pixels in 

Aracena mountains and in agricultural areas in the Guadalquivir and Segura basins, La Mancha plains, 

and Valencia). The LTDR dataset showed the greatest percentage of pixels with significant NDVI 

trends (Table 4), while the GIMMS dataset showed the lowest (LTDR detected significant trends in 

32% more pixels than GIMMS) (Table 4). In Spain, the percentage of pixels exhibiting consistent 

significant NDVI trends across all datasets was 7.8% greater than in Portugal, though it varied 

depending on the dataset (e.g., for PAL, Spain showed 15% more pixels with significant trends than 

Portugal, while for LTDR, Portugal showed 6.7% more trending pixels than Spain) (Table 4). The 

relative error budget of the NDVI trends, evaluated by means of the coefficient of variation of the 

slopes across the four datasets, showed a similar spatial pattern to the consensus map. Those areas 

showing consistent positive or negative significant trends across the four datasets differed on average 
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by less than 50% in the magnitude of their slopes, while in areas showing non-significant trends, the 

magnitude and sense of the slopes largely varied across datasets by more than 100%.  

Table 5. Contingency table showing the consensus across datasets in the number (lower 

left) and percentage (upper right) of pixels that exhibited significant NDVI trends 

(Negative or Positive) or non-significant trends (Absence) (p-value < 0.05). Darker gray 

tones highlight the highest consensus values. 

Figure 3. Comparison of the (a) spatial similarity (partial Mantel’s r) and (b) correlation 

(Pearson’s r) of the significant NDVI trends (p-value < 0.05) between pairs of the four 

AVHRR datasets in the Iberian Peninsula. The frequency histograms of Pearson’s and 

partial Mantel’s r resulted from 10000 bootstrapped tests using random subsamples of  

100 pixels. Significant values of r were considered for p-values < 0.001. 
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From the four AVHRR datasets, spatial similarity and correlation of significant NDVI trends was 

the greatest between FASIR and PAL datasets, and the lowest between GIMMS and LTDR (Table 5, 

Figure 3). The rest of the comparisons of the spatial distribution of significant NDVI trends showed 

comparable partial Mantel’s r and Pearson’s r (Figure 3), and percentage of consensus in the 

% 

pixels 

PAL FASIR GIMMS LTDR 

Negative Absence Positive Negative Absence Positive Negative Absence Positive Negative Absence Positive

P
A

L
 Negative     0.27 0.29 0.00 0.10 0.43 0.02 0.37 0.17 0.02

Absence    0.43 43.89 12.70 0.60 45.31 11.11 3.00 24.86 29.17

Positive    0.00 6.30 36.12 0.07 16.24 26.11 0.20 4.49 37.73

F
A

SI
R

 Negative 27 44 0 0.09 0.60 0.01 0.50 0.19 0.01

Absence 29 4440 637 0.54 41.40 8.53 2.81 24.03 23.64

Positive 0 1285 3654 0.14 19.99 28.70 0.25 5.30 43.28

G
IM

M
S Negative 10 61 7 9 55 14  0.21 0.38 0.19

Absence 44 4584 1643 61 4188 2022  3.21 25.07 33.71

Positive 2 1124 2641 1 863 2903  0.14 4.07 33.03

L
T

D
R

 Negative 37 303 20 51 284 25 21 325 14  

Absence 17 2515 454 19 2431 536 38 2536 412  

Positive 2 2951 3817 1 2391 4378 19 3410 3341  
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contingency table (Table 5). The GIMMS dataset showed the lowest correlation with the other three 

datasets, while the LTDR datasets showed a moderate correlation with PAL-II and FASIR (but not 

with GIMMS dataset). 

4. Discussion and Conclusions 

Coarse-resolution satellite datasets of the NDVI derived from the AVHRR GAC archive are one of 

the most valuable sources to evaluate temporal trends of carbon gains at the global, regional, and 

national scales. In carbon budget assessments, countries often make use of these satellite datasets to 

estimate both vegetation uptake and land-use change related release [14]. In our study for the Iberian 

Peninsula, the AVHRR datasets clearly showed that the area showing significant positive NDVI trends 

is important (23% and an additional 18% of Iberia showed consistency across four and three datasets 

respectively) and much larger than the proportion with decreasing trends (only 0.1% of Iberia). The 

area without significant trends was also important (consistently in 20% and an additional 22% of Iberia 

across four and three datasets respectively). However, although clear consistent patterns may emerge 

at the country level or regional scale, local analyses must consider that the area showing significant 

trends can vary depending on the analyzed dataset. For instance, in the whole Iberian Peninsula, it 

varied from 37 to 67% of the area for positive trends, and from 0.6 to 3.6% for negative trends, and 

these differences were much larger for Portugal than for Spain (Table 4). Our study quantified a large 

portion of the territory (57% of pixels for the Peninsula, 66% for Portugal, and 55% for Spain) where 

the use of different NDVI datasets may lead to inconsistent NDVI significant trends (though it 

decreased to just 30%, 37%, and 38% respectively when only the sign of the slope but not the 

significance was considered (Appendix 3)). For agreements across just two datasets (contingency 

tables of Table 5 and Appendix 5), the spatial inconsistency was much lower (even just 20% in the 

comparison between PAL and FASIR; Table 5). In addition to the differences in the magnitude of the 

NDVI trends between GIMMS and LTDR (Table 3), they showed the lowest percentage of agreement 

in the contingency table (Table 5). However, their spatial consistency largely increased when non-

significant slopes were also compared (Appendix 5), due to the lower sensitivity of GIMMS to detect 

both positive and negative NDVI trends.  

Regarding the spatial distribution of the NDVI trends in the Iberian Peninsula, increases in 

vegetation greenness (consistent and most likely positive trends) were largely observed along 

mountain ranges in the north, center, and southeast of both Spain and Portugal, mainly occupied by 

natural forests and tree plantations. This increase in the photosynthetic activity agrees with the general 

trend observed in Europe due to the increase in the forested area, the juvenile age structure, CO2-

fertilization, elevated atmospheric nitrogen deposition, and climate change [14]. NDVI increases were 

also aligned along the Ebro river margins, where irrigation expansion over drylands has increased 

productivity [34,36]. Decreases in vegetation greenness were scarce and localized mainly on 

agricultural lands along the southern and eastern river valleys (Figures 1 and 2, and Appendixes 1 and 

3) and were largely related to land-use changes on croplands: in Valencia, NDVI decrease was related 

to urban expansion and Citrus crop abandonment [36,37]; in La Mancha, it was related to the 

abandonment of vineyards and unsustainable irrigation due to the drop of groundwater tables [36,64]; 

in the Segura river valley, it may be due to both urban expansion and abandonment of unsustainable 
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irrigation [64,65]; in the Guadalquivir river valley, NDVI decreases seem to be caused by a decrease in 

irrigation and rainfall both originated by lower precipitations determined by a trend towards positive 

phases of the North Atlantic Oscillation (NAO) [34,37]. In the woodlands of Sierra de Aracena, NDVI 

decreases also seem to be caused by lower precipitations related to the NAO dynamics [34,37]. The 

regional control of the NAO dynamics over the NDVI trends of the southwestern quadrant is also 

suggested by the high local spatial autocorrelation in this region (Appendix 7), which should be further 

investigated. The PAL, FASIR, and LTDR (but not GIMMS) datasets also displayed high spatial 

autocorrelation in the north and northeastern regions and along the river Ebro valley. Only the GIMMS 

dataset showed very strong autocorrelation in NW Spain (Appendix 7). 

Many factors may be responsible for the retrieval of different significant NDVI trends across 

datasets, such as differences among their corrections schemes, projection systems, temporal resolution, 

or geolocation errors. For instance, the PAL dataset is known to be strongly affected by both satellite 

drift and volcanic aerosols, while GIMMS does not explicitly address atmospheric corrections [2], and 

LTDR still lacks complete atmospheric correction [2]. In the case of temporal resolution, datasets with 

longer composite periods (e.g., GIMMS and LTDR) are less affected by cloud noise [20] but, since 

they also have fewer composites per year, they may offer less power to retrieve significant trends. 

Hence, in our analysis, it would be expected to have less power in the retrieval of significant trends 

using datasets with fewer composites such as GIMMS and LTDR (24 composites per year), than with 

more composites such as PAL and FASIR (36 composites per year). However, this only happened with 

the GIMMS dataset, the one showing the lowest percentage of significant trends, while the LTDR 

dataset cumulated the greatest percentage of significant trends (Table 4). Additionally, the differences 

in projections and geolocation error, seem to be partially responsible of the very low spatial 

correspondence of significant negative NDVI trends since they were mainly local (occupying a few 

pixels) and along river valleys (Figure 1, Appendix 1). From our findings, in addition to quantifying 

the area affected by consistent trends in vegetation greenness, carbon budget evaluations should also 

assess the differences in magnitude of the NDVI trends, which can largely vary across datasets. In the 

case of Spain and Portugal, the maximum difference across datasets was more than double both for the 

global mean, and for positive and negative trends separately. 

C gains estimates had historically relied on forest inventories or land use–land cover  

changes [15,66,67]. Remotely sensed data has been incorporated as a tool to derive C gains for non-

forested areas and for areas without previous inventories [68-70]. From our and previous studies [3,4], 

it is recommended that evaluations of the carbon balance based on regional NDVI trends derived from 

coarse-resolution AVHRR sensor datasets are compared across several datasets to minimize the broad 

effects that potential local or regional biases in one of them may cause into national carbon budgets. 

Currently, the PAL and FASIR datasets have been mostly substituted by the GIMMS dataset as 

reference to model the carbon balance worldwide [13,15]. Since the LTDR dataset has been produced 

as the first component of a cross-sensor long-term NDVI record (to be continued by the MODIS and 

VIIRS sensors), it is expected that LTDR will also replace all previous AVHRR datasets in this type of 

studies. However, in our analysis, GIMMS and LTDR, the two “most improved” and newest AVHRR 

global datasets, showed the lowest consistency between each other. This strongly suggests that the 

LTDR NDVI trends should also be compared across several AVHRR datasets and, ideally, with 

independent sensors (such as VEGETATION SPOT or MODIS) to seek for consistencies that reduce 
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as much uncertainty as possible. Future long-term NDVI datasets (e.g., coming versions of LTDR) 

should contain global estimates of their errors (as Nagol et al. also suggest [2]) and, whether possible, 

spatially and temporally explicit estimates of uncertainty. As an example of the spatial differences in 

error budgets, Appendix 8 expresses the relative uncertainty of the 1982-1999 NDVI trends throughout 

the Iberian Peninsula as the absolute value of the coefficient of variation of the NDVI slope across the 

four AVHRR datasets. Despite our error analysis being incomplete, it gives a sense of the relative 

level of uncertainty to consider when using NDVI trends to estimate carbon gains at the regional level. 

A proper evaluation of satellite datasets should not only restrict to the physical and mathematical 

assumptions of image processing but it should also test them at the level of predictions, e.g., 

comparing trends derived from spectral data with independent observation of change [3,4]. Identified 

areas with extreme land cover changes that cover a substantial portion of a 64 km2 pixel (e.g., 

deforested areas in South America and expansion of center pivot agricultural systems over drylands) 

are ideal places to contrast remotely sensed trends with observed changes.  
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Appendices 

Appendix 1. Difference in the magnitude and the spatial patterns of the 1982-1999 NDVI 

trends (both significant and non significant) across four AVHRR datasets: a) PAL-II, b) 

FASIR, c) GIMMS, and d) LTDR for the Iberian Peninsula (Spain and Portugal). Slopes 

express change of NDVI per year. 
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Appendix 2. Differences in the magnitude of the 1982-1999 NDVI trends (both significant 

and non-significant) across four AVHRR datasets for the Iberian Peninsula (Spain and 

Portugal). Slopes express change of NDVI per year. 

 PAL-II FASIR GIMMS LTDR 

Greatest positive slope 0.0144 0.0116 0.0066 0.0136 
Greatest negative slope −0.0069 −0.0066 −0.0057 −0.0178 
Global mean slope 0.0027 0.0022 0.0012 0.0021 
Mean of positive trends 0.0033 0.0027 0.0017 0.0026 
Mean of negative trends −0.0019 −0.0012 −0.0008 −0.0013 

 

a) PAL-II b) FASIR  

c) GIMMS d) LTDR 
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Appendix 3. Consensus map showing the spatial consistency of the NDVI trends (both 

significant and non-significant) across the four datasets (PAL-II, FASIR, GIMMS, and 

LTDR) in the Iberian Peninsula. See Table 2 for legend explanation. Locations referred in 

the text: (1) northern, (2) central, (3) southeastern, (4) Algarve, and (5) Aracena mountain 

ranges; croplands of: (6) the Duero basin plains, (7) Valencia, (8) Guadalquivir basin,  

(9) Segura basin, and 10) La Mancha plains. 
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Appendix 4. % of pixels of Spain, Portugal, and the Iberian Peninsula exhibiting NDVI 

trends (both significant and non-significant) in each AVHRR dataset (PAL-II, FASIR, 

GIMMS, and LTDR), and % of pixels that showed consistent (positive, absence, or 

negative) NDVI trends across all four datasets. 

 % of pixels with: PAL-II FASIR GIMMS LTDR Across all

SPAIN Positive trends 82.9 82.0 72.8 80.9 59.8
No NDVI trend 9.3 9.3 17.7 11.2 0.8
Negative trends 7.8 8.7 9.6 7.9 1.6

PORTUGAL Positive trends 90.1 86.0 72.2 91.1 62.7
No NDVI trend 7.8 11.8 20.3 5.7 0.5
Negative trends 2.1 2.3 7.5 3.1 0.1

IBERIAN 
PENINSULA 

Positive trends 84.6 86.4 81.7 88.2 68.1
No NDVI trend 8.6 3.4 3.8 0.1 0.1
Negative trends 6.8 10.2 14.5 11.7 2.1

Appendix 5. Contingency table showing the consensus across datasets in the number 

(lower left) and percentage (upper right) of pixels that exhibited NDVI trends (Negative or 

Positive) or no trends (Absence). Darker gray tones highlight the highest consensus values. 

% 

pixels 

PAL FASIR GIMMS LTDR 

Negative Absence Positive Negative Absence Positive Negative Absence Positive Negative Absence Positive

P
A

L
 Negative   3.07 2.33 0.00 3.95 1.29 0.16 4.58 0.78 0.05

Absence   0.33 2.20 2.15 0.59 2.24 1.84 1.29 2.42 0.96

Positive   0.00 1.71 88.21 0.30 4.02 85.60 2.16 3.28 84.48

F
A

SI
R

 Negative 311 33 0 2.73 0.60 0.07 2.57 0.76 0.07

Absence 236 223 173 1.68 1.66 2.91 3.76 1.69 0.80

Positive 0 217 8923 0.43 5.30 84.62 1.70 4.03 84.62

G
IM

M
S Negative 400 60 30 276 170 44  3.40 0.90 0.54

Absence 131 227 407 61 168 536  2.50 4.70 0.37

Positive 16 186 8659 7 294 8560  2.13 0.89 84.58

L
T

D
R

 Negative 463 131 218 260 380 172 344 253 215  

Absence 79 245 332 77 171 408 91 475 90  

Positive 5 97 8546 7 81 8560 55 37 8556  
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Appendix 6. Comparison of the a) spatial similarity (partial Mantel’s r) and b) correlation 

(Pearson’s r) of the NDVI trends (both significant and non-significant) between pairs of 

the four AVHRR datasets in the Iberian Peninsula. The frequency histograms of Pearson’s 

and partial Mantel’s r resulted from 10000 bootstrapped tests using random subsamples of  

100 pixels. Significant values of r were considered for p-values < 0.001. 
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Appendix 7. Geographical pattern of spatial autocorrelation (significant Local Moran’s I at  

p-value <0.05) of the 1982-1999 NDVI trends (both significant and non-significant) for 

the: (a) PAL-II, (b) FASIR, (c) GIMMS, and (d) LTDR datasets in the Iberian Peninsula.  
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Appendix 7 shows an evaluation of the spatial structure of the NDVI slopes to show, for each 

dataset, those regions experiencing similar NDVI trends. We used the Local Moran’s I [71] to measure 

the local spatial autocorrelation of the NDVI slopes for each pixel considering all surrounding pixels 

a) PAL-II b) FASIR 

c) GIMMS d) LTDR 
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within its area of influence (200 km). Moran’s I generally varies between -1 and 1, indicating negative 

or positive spatial autocorrelation respectively (though these limits can be exceeded [72]). Values near 

zero correspond to absence of autocorrelation [73]. The radius of influence was estimated as the 

distance where the spatial autocorrelation was no longer significant (p-value <0.05) by using 

correlograms, which measure the data autocorrelation as a function of the spatial distance [74]. 

Appendix 8. Map of the absolute value of the coefficient of variation of the NDVI slope 

across the four AVHRR datasets (PAL, FASIR, GIMMS, and LTDR) expressing the 

relative uncertainty of the 1982-1999 NDVI trends throughout the Iberian Peninsula (the 

lower the coefficient of variation, the lower the uncertainty of the NDVI slope). 
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