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Abstract: This paper proposes a distributed algorithm for establishing connectivity and
location estimation in cluster-based wireless sensor networks. The algorithm exploits the
information flow while coping with distributed signal processing and the requirements
of network scalability. Once the estimation procedure and communication protocol are
performed, sensor clusters can be merged to establish a single global coordinate system
without GPS sensors using only distance information. In order to adjust the sensor
positions, the refinement schemes and cooperative fusion approaches are applied to reduce
the estimation error and improve the measurement accuracy. This paper outlines the technical
foundations of the localization techniques and presents the tradeoffs in algorithm design. The
feasibility of the proposed schemes is shown to be effective under certain assumptions and the
analysis is supported by simulation and numerical studies.

Keywords: anchor-free localization; cooperative estimation fusion; wireless sensor networks

1. Introduction

One of the most needed and challenging components in an ad-hoc wireless network is the development
of practical localization algorithms for the automatic discovery of sensor position. Due to the low power,
lower cost, and simple configuration requirements of wireless sensor networks, GPS devices and the
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installation of a base station may be precluded. Hence, robust and distributed internal algorithms are
required for sensor positioning problems.

It has been shown that cluster architecture guarantees basic performance achievement in ad-hoc
networks, since this effective topology control technique conserves limited energy resources, improves
energy efficiency, and further provides scalability and robustness for the network. Accordingly, we
propose a distributed localization algorithm for cluster-based wireless sensor networks. This paper
assumes that a number of sensors are scattered about the landscape. Initially, all of the sensor positions
are unknown and must deduce their positions based on the limited information they receive. The basic
strategy is to allow groups of nearby sensors to deduce their positions relative to each other in the
cluster formation. These clusters are defined by their shared “local” coordinate systems. To this end, the
Cooperative Hierarchical Positioning Algorithm (CHPA) performs location estimation in four phases:
(I) Initial Local Position Estimation; (II) Position Refinement, (III) Relative Global Coordinate System,
and (IV) Cooperative Estimation Fusion.

In Phase I, at the local level, sensors exploit the “particle filter” methodology [1, 2] to carry out the
needed calculations. Besides the advantages of a Bayesian approach, the particles allow a robust method
of location identification, which can be tailored to communicate (virtually) any amount of information
between sensors. By quantifying the inherent trade-offs (cost of communication vs. improvement with
increased communication), it is likely to lead to an adaptable strategy applicable in a variety of situations.

In Phase II, once a sensor has obtained the initial position estimate, due to the errors occurring in the
distance estimation, the sensor needs to implement a refinement mechanism to determine its position.
Assume that the mth sensor is located at position xm

∗ , and the sensor’s best estimate of its current position
at time k is xm

k . The goal of the positioning refinement is to reduce the difference between the estimated
locations and the real locations. This paper describes a distributed refinement scheme, which applies the
Markov chain Monte Carlo (MCMC) method on each estimated sensor right after the location estimation
such that estimation error and propagation error can be reduced in a distributed way.

In Phase III, a communication protocol allows nearby clusters (these which share “border sensors”)
to merge into larger clusters until eventually the complete network is referred to the same coordinate
system. The calculations are done in a decentralized manner since the cost of communication (in terms
of power consumption) is high.

In Phase IV, based on the refined position estimates and the relative coordinate system, when
the measurement does not meet the required estimation accuracy, the target sensor may broadcast a
fusion message to its neighbors, group nearby two sensors into a measurement system, and trigger the
cooperative sensor fusion to resolve conflicts or disagreements, and to complement the observations
of the environment. This work introduces the centralized scheme, the progressive scheme, and the
distributed scheme for cooperative position estimation. A centralized estimation approach is a process
structure that all the neighboring sensors transmit their observations directly to the estimated sensor
(the central unit) where the estimation is performed. The progressive estimation method is a processing
structure in which the estimation groups sequentially update the estimation result based on each group’s
local observation and partial decision from its previous groups in the sequence without sending data
from all sensors to a central processing unit. For the distributed scheme, the target sensor fuses its local
estimate and the estimates received from the neighborhood.
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One of the unique features of our algorithm is the “sharing” of distributional data by the various
sensors. This has the obvious intuitive effect of helping to make all the estimates consistent. But it
may also have the effect of spreading misinformation if (for instance) a sensor malfunctions. It should
be possible to include reliability measures that would effectively discard “bad” information. Hence we
explore adding this feature into the basic algorithm to provide extra tolerance to sensor faults, which can
be viewed as an attempt to reduce or remove error propagation.

The organization of this paper is as follows: Section 2 reviews the current literature on the sensor
localization approaches. Section 3 formulates the position estimation problem and derives a hierarchical
solution that relies on a cooperative self-localization protocol [3]. Then, Section 4 investigates the impact
of the measurement errors and the uncertainty associated with the system model on estimation accuracy.
Section 5 summarizes the performance of the proposed localization methodology. Finally, Section 6
draws conclusions and shows future research directions.

2. Related Work

Recent approaches to location discovery often require the availability of GPS on some reference
sensors [4, 5], or assume some sensors with prior position information [6, 7]. In [8], the authors describe
a centralized method using connectivity constraints and convex optimization when some number of
beacon nodes are initialized with known positions. For a wireless ad-hoc network, these assumptions
may not be reasonable because the information may not be available or because of the communication
requirements. In [9, 10], distributed systems for GPS-free positioning in ad-hoc networks are proposed
to establish a relative global coordinate system. However, the computational burden of these procedures
is heavy and their communications overhead is large.

[11] presents a case study of applying particle filters to location estimation for ubiquitous computing.
The performance results shows that it is practical to run particle filters on devices ranging from high-end
servers to handholds. [12] provides a theoretical foundation for the problem of network localization
in which some nodes know their locations and other nodes determine their locations by measuring the
distances to their neighbors. Grounded graphs and graph rigidity theory are applied to construct network
localization. In [13], the Cramer-Rao lower bound (CRLB) is derived for network localization. The
authors argue that besides considering measurement errors, algorithmic errors should be explored in
assessing localization accuracy. In [14, 15], acoustic sensor networks for a relative localization system
are analyzed by reporting the accuracy achieved in the position estimation. The proposed systems are
designed for those applications where objects are not restricted to a particular environment and thus
one cannot depend on any external infrastructure to compute their positions. The proposed mechanisms
efficiently handle multiple acoustic sources by removing false-positive errors that arise from the different
propagation ranges of radio and sound.

In [9, 16, 17], clusters consisting of clusterheads and their cluster members are first localized in order
to build local coordinate systems. Registration is then used to compute the transformations between
neighboring coordinate systems such that the related global coordinate system can be established. The
authors in [18] propose a cluster-based localization approach to provide efficient and scalable localization
in a large and high-density network. [19] proposes to use cluster-based network topology for determining
the position information of the sensor nodes. [20] describes a distributed algorithm for localizing a
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cluster-based sensor network in the presence of range measurement noise and avoiding flip ambiguities.
However, neither algorithm provides theoretical analysis for the problem of network localization.

In [21], multidimensional scaling (MDS) is applied to perform distributed optimization for network
localization. Priyantha et al. [22] use communication hops to estimate the network’s global layout
without location information of known reference nodes. [23] uses multilateration to organize a global
coordinate system from local information. Patwari et al. [24] use one-hop multilateration from reference
nodes using both received signal strength (RSS) and time of arrival (ToA). In [25], with considering a
motion model in the optimization, a maximum likelihood estimator is proposed to localize a small team
of robots effectively.

In order to improve position estimates, several refinement schemes are proposed in the
literature [7, 26–30] by using known sensor locations and distance measurements to neighboring
sensors. [7] presents an approach called AHLoS (Ad-Hoc Localization System) that enables sensor
nodes to discover their locations using a set distributed iterative algorithms. [26] presents the
collaborative multilateration to enable ad-hoc deployed sensor nodes to accurately estimate their
locations by using known beacon locations that are several hops away and distance measurements to
neighboring nodes. To prevent error accumulation in the network, node locations are computed by setting
up and solving a global non-linear optimization problem. [28] proposes a heuristic refinement approach
to improve position estimates. [29] proposes an iterative quality-based localization (IQL) algorithm
for location discovery. The IQL algorithm first determines an initial position estimate, after which
the Weighted Least-Squares (WLS) algorithm is used iteratively to refine the position. In the WLS
algorithm the Gaussian distribution is used to determine the reliability of measurements. [30] attempts
to find locations for the sensors which best fit the set of all range measurements made in the network in
a least-mean-squares sense. [27] demonstrates the utility of nonparametric belief propagation (NBP) for
self-localization in sensor networks. However, the computational complexity and communication costs
inherent in a distributed implementation of NBP are high. Comprehensive surveys of design challenges
and positioning algorithms for wireless networks can be found in [31–36].

In this paper, we consider the possibility of flip ambiguity (detailed in Section 3.3.) and provide
relative global localizations with measurement noise. One of the main characteristics of the proposed
approach is that each sensor carries along a complete distribution of estimates of its position. It helps
to solve the local minimum issues that often plague such nonlinear estimation problems by allowing the
data to drive the collapse of the distribution—thus, as the data increases to the point where the position
is more sure, then the distribution collapses to a point. Moreover, the distribution is inherently a measure
of the accuracy of the estimation; hence if a given task requires a certain accuracy, it is possible to
determine if that level of accuracy is currently available. Most importantly, the network localization is
complete without absolute position information of reference nodes, which may be useful for commercial
and scientific applications of wireless ad-hoc sensor networks.

Though much research has studied cooperative localization with the emphasis on
algorithms [9, 16, 32, 37] very few works focus on the fundamental performance limits and GPS-free
positioning in the presence of range measurement inaccuracy. This paper outlines the technical
foundations of the localization techniques and presents the tradeoffs in algorithm design. A scalable
distributed algorithm for sensor localization problem is proposed and an estimation-theoretic analysis
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of the proposed measurement mechanism is presented to assess the achievable estimation accuracy and
to explore the fundamental performance of the algorithm. Specifically, a statistical model is derived
to describe the localization performance considering unreliable measurements, which may provide a
valuable way to show the limits of performance.

3. Cooperative Hierarchical Positioning Algorithm (CHPA)

This section describes a distributed algorithm that forms a relative global coordinate system
efficiently. The localization operation is performed in four phases: “initial local position estimation”,
“position refinement”, “relative global coordinate system”, and “cooperative estimation fusion.” The
main assumptions on the network are that (a) the sensors are in fixed but unknown locations, (b) all links
between sensors are bidirectional, and (c) all sensors have the same transmitting range. Observe that
there is no base station or centralized control to coordinate or supervise activities among sensors.

3.1. Phase I: Initial Local Position Estimation

When sensors of a network are first deployed, they may apply the Clustering Algorithm via Waiting
Timer (CAWT) from [38] to partition the sensors into clusters using the waiting timer

WT
(k+1)
i = γ ·WT

(k)
i (1)

where WT
(k)
i is the waiting time of sensor i at time step k and 0 < γ < 1 is inversely proportional

to the number of neighbors. If the random waiting timer expires and none of the neighboring sensors
are in a cluster, then sensor i declares itself a clusterhead. It then broadcasts a message notifying its
neighbors that they are assigned to join the new cluster with ID i. After applying the CAWT, there are
three different kinds of sensors: (1) the clusterheads (2) sensors with an assigned cluster ID (3) sensors
without an assigned cluster ID, which will join any nearby cluster later and become 2-hop sensors. Thus,
the topology of the ad-hoc network is now represented by a hierarchical collection of clusters. Figure 1
(left) shows an example of the cluster formation in a random network of 100 sensors with R/ℓ = 0.175,
where R is the transmission range and ℓ is the side length of the square.

When the estimation procedure starts in a cluster-based network topology, a clusterhead called
sensor 1 locates itself at the origin (0, 0) and selects the left-hand or the right-hand coordinate system as
the local coordinate assignment. Then sensor 1 detects its neighbors and deploys one of the neighboring
sensors, sensor 2, to the x-axis at (d12, 0) based on the distance information d12. A third sensor is
selected to be sensor 3 which has connectivity to both sensors 1 and sensor 2. Given the known positions
of sensors 1 and 2 and distance information, d13 and d23, sensor 3 can estimate its own location to the
responding coordinate system. Therefore, sensors 1, 2 and 3 considered as a group form a basis for
this local coordinate system. The solvability of the network localization problem is detailed in [39],
which suggests that if the three known sensors are no-three-in-line, the network localization problem is
solvable and the unknown position can be determined in the two-dimensional space. Accordingly, all
other sensors which are within communication range of these sensors can then estimate their positions
with respect to this local coordinate system. Similarly, as the cluster of known sensors grows, the location
of each of the unknown sensors can be determined from three neighboring known sensors. Thus, the
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sensor locations can be obtained by building a local coordinate system from the clusterhead and applying
multilateration to enable ad-hoc deployed sensor nodes to accurately estimate their locations by using
known sensor locations and neighboring distance measurements. Figure 1 (right) shows the estimation
procedures of ad-hoc wireless sensor networks in the two-dimensional space with sufficient connectivity.

Figure 1. Clusters are formed in a random network of 100 sensors (left); The estimation
procedures of ad-hoc wireless sensor networks in the two-dimensional space with sufficient
connectivity. Sensor 1, 2 and 3 are considered as a group to form the basis for the local
coordinate system. Since there are two possible locations of sensor 3, either S3 or S ′

3, two
related local coordinate systems are formed due to the mirror property of the cluster (right).
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Suppose that a sensor does not know its position but is able to receive information from other sensors
which are assumed to have relative local position estimates. There are many ways to “solve” this sensor
location problem. This section details the Bayesian particle filter method which may be preferred
because it is robust to noisy measurements, it allows for flexible information transmission, and it can
be robust to lost or lossy data.

Assume the mth sensor obtains a new measurement from (at least) three sensors and estimates its own
position using the particle filter. The sensor position is given by the discrete-time state equation

xm
k = Φxm

k−1 + Γwk (2)

where xm
k is the position of the sensor and wk is an uncorrelated Gaussian diffusion term describing the

uncertainty. Note that this system equation is suitable for many different systems and the only changes
will be the matrixes Φ and Γ, which depend on the system model. For instance, the differences of the
methodology between a moving sensor and a fixed sensor are the choices of Φ and Γ, and the rest of
the methodology is the same. Hence, the same basic procedure can be used in other tasks such as target
tracking. Here we assume the sensors do not move between observations, Φ is the two-dimensional
identity matrix, and Γ is a zero matrix. The measurement term for the mth sensor is

zmk =
∑
ℓ∈Im

∣∣∣||xm
k − xℓ

k|| − dmℓ

∣∣∣+ vk (3)
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where the sum is over the nearby sensors xℓ
k, Im is the index set of estimated known sensors, || · || denotes

the ℓ1-norm ranging measurement, dmℓ represents the measured distance between the sensors and may
be approximated in application by the inverse of the signal strength or by calculated from the time delay
between transmission and reception [40], and the measurement noise vk is another uncorrelated zero
mean Gaussian white noise process.

Figure 2. The x and y coordinate bounds of the unknown sensor can be obtained by the
distance and position information, which provides a good set of initial samples for the
particle filtering.

Table 1. The Particle Filtering Method.

1. Initialization: Generate a set of random samples xk(i), i = 1, 2, . . . , N from the prior density
at time k = 0. Each sample of the state vector is a ‘particle’.

2. Prediction: Each random sample is passed through the state equation to obtain samples from
the prior density at time k + 1. Thus

x̂k+1(i) = Φxk(i) + Γwk(i),
where wk(i) is a sample drawn from the probability density function of the system noise.

3. Measurement Update: The weights of the likelihood function p(zk+1|x̂k+1(i)) are updated
for each sample in the random set i = 1, 2, . . . , N and the normalized weights are

qk+1(i) =
p(zk+1|x̂k+1(i))∑n

j=1
p(zk+1|x̂k+1(j))

for each sample.
4. Resampling: Take N samples with replacement from the random sample set x̂k+1(i),

i = 1, 2, . . . , N , to generate the new sample set xk+1(i).
5. Position: The best single estimate of the position is the mean of xk+1(i), x̄k+1.

Before measurements are taken at k = 1, the initial state vector is obtained by applying the
distance measurements as constraints on the x and y coordinates of the unknown sensor. The idea
in [7], using known sensor positions and the bounding-box algorithm to extrapolate unknown sensor
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positions, inspires us to choose a proper prior density for generating initial samples. Figure 2 shows
how the distance information can be use to obtain the x and y coordinate bounds of the unknown sensor.
Therefore, the unknown sensor combines its bounds on the coordinates to form a bounding box, which
provides a good set of initial samples for the particle filtering. The particle filter method is shown in
Table 1.

3.2. Phase II: Position Refinement

Due to the error caused by the location estimation algorithm (the estimation error) and the error
intrinsic to the problem (noisy distance measurements), location adjustment algorithms are needed in
order to improve the estimation accuracy and limit the propagation errors. After the sensor is located
near to its true position, a refinement technique is applied to elevate the estimates immediately. This
subsection details the operation of a distributed model for refining the location estimates based on the
initial position information from Phase I.

Because the particle filter loses diversity in the samples for static models, the Metropolis-Hastings
(M-H) algorithm [41] may be used to generate new samples and provide improved estimation accuracy.
The basic idea of the M-H algorithm is to simulate an ergodic Markov chain whose samples are
asymptotically distributed according to the target probability distribution π(·) and use a candidate
proposal distribution q(xk(i), ·) to select the candidate of the current state independently with the
acceptance probability

α(xk(i), x
′

k(i)) = min
{
1,

π(x
′
k(i))q(x

′
k(i), xk(i))

π(xk(i))q(xk(i), x
′
k(i))

}
. (4)

Table 2. The Metropolis-Hastings Algorithm.

1. Set k = 0 and repeat for xk(i), i = 1, 2, . . . , N . N is the number of samples.
2. Draw x

′
k(i) from the proposal density q(xk(i), ·).

3. Set u to a draw from a U(0, 1) distribution.
4. Acceptance probability:

α(xk(i), x
′
k(i)) = min

{
1,

π(x
′
k(i))q(x

′
k(i),xk(i))

π(xk(i))q(xk(i),x
′
k
(i))

}
,

where π(·) is the target density from which samples are desired.
5. If (u ≤ Acceptance Probability)

accept proposal and set xk+1(i) = x
′
k(i).

else
reject proposal and set xk+1(i) = xk(i).

end
6. Return the values {xk+1(1), xk+1(2), . . . , xk+1(N)} and set k = k + 1.

Therefore, instead of using a centralized accumulator host to adjust sensor locations, applying the
Markov chain Monte Carlo (MCMC) method on each estimated sensor right after the location estimation
allows estimation error and propagation error to be reduced in a distributed way. Here we summarize the
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M-H algorithm with the initial value x0(i) in Table 2. The performance evaluation and the discussion of
the proposed location adjustment algorithms are depicted in Section 5.

3.3. Phase III: Relative Global Localization

This section shows how the geometrical and communication requirements change when merging two
coordinate systems to a single one. At some point, as the position estimation proceeds, the coverage
of two coordinate systems begin to overlap, at which time they may be merged together into a single
coordinate system. Eventually, all sensors have been gathered into one coordinate system and the sensor
location problem is solved. If there is GPS (or other absolute measures) available, then this coordinate
system can be referenced to standard measurements. If there are no GPS available, then the coordinate
system is relative.

3.3.1. The Information Flow

The information flow for achieving a global coordinate system in a sensor network is now described.
Table 3 details the messages used to communicate between sensors. The communication protocol starts
when the clusterhead sends a Local signal to its cluster members in order to establish a local coordinate
system. When a sensor has information to share, it can broadcast an Info signal to its neighboring
sensors. Based on the transmission and reception of the Info signals, sensors disseminate and obtain
preliminary information such as estimates of position and distance between nearby sensors. When a
sensor has location information from two coordinate systems, which means it is a shared sensor in two
clusters, it sends a Merge signal that contains information of its estimated positions from two clusters
to its neighboring sensors. After finishing the process of transmitting and receiving the Merge signal,
the border sensors calculate adjustment information, a translation vector

−→
dS and an orthonormal rotation

matrix Rmerge (detailed in Subsection ), for reorienting the coordinate system. Then it transmits an
Adjust message that contains adjustment information to the reoriented cluster in order to convert the two
coordinate systems into a single one, this merging the two clusters into one.

Table 3. The Message Types for Communication.

1. Local - The target sensor, say sensor m, broadcasts a Local message
to build a local coordinate system.

2. Info - When a sensor has information to share, it can broadcast a Info signal
to its neighboring sensors.

3. Merge - A Merge signal contains position information of the shared border sensor.
It is sent when the sensor has location information from two coordinate systems.

4. Adjust - Adjust messages contain instruction that all sensors in the cluster
must update their coordinates to reflect the merging of the clusters.
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3.3.2. Relative Global Coordinate System

Now we consider two neighboring clusters generated from clusterheads A and B. Denote the sensor
which can communicate with more than one cluster as a border sensor. If there are two border sensors
between cluster A and B, and if those two sensors can communicate with each other, the two clusters
can be merged. This kind of network topology may be formed by applying the topology management
algorithm proposed in [42]. Figure 3 (left) shows an example of the cluster formation with distributed
border sensors.

Figure 3. An example of the cluster formation with distributed border sensors (left); The
process of merging clusters. The border sensors, sensor i and sensor j, communicate with
each other by sending Merge messages in order to obtain adjustment information. Then
sensor i transmits an Adjust signal to the sensors in the reoriented cluster (right).
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The process of merging the two clusters consists of a calculation of the adjustment information and
a communication protocol whereby the results of that calculation can be transmitted throughout the
cluster. Figure 3 (right) illustrates the process of merging clusters by applying the communication
protocol and the adjustment information in a two-dimensional space. This process of finding these
adjustment quantities,

−→
dS and Rmerge, is called coordinate system registration [43, 44]. The aim of

coordinate registration is to transform a point p in the right-hand or left-hand coordinate system to the
corresponding point p′ in the right-hand one applying the adjustment information: p′ = Rmerge · p+

−→
dS .

Suppose cluster A and cluster B are adjacent and sensors i and j are two border sensors. Given that
cluster A is in the reference right-hand coordinate system, here two cases are considered: (1) Cluster B
is in the right-hand coordinate system; (2) Cluster B is in the left-hand coordinate system.

For case 1, based on the preliminary information, the border sensors have

w⃗(1) =

 xi

yi


A

−

 xj

yj


A

(5)
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v⃗(1) =

 xi

yi


B

−

 xj

yj


B

. (6)

Thus, the rotation angle θ(1)merge is

θ(1)merge = cos−1 w⃗(1) · v⃗(1)
|w⃗(1)||v⃗(1)|

, 0 ≤ θ(1)merge ≤ π (7)

Then the orthogonal matrix R(1)
merge is obtained to encapsulate the rotation operation. With the adjustment

information, the transformed positions of sensors i and j yield

p
′

i =

 x
′
i

y
′
i


A

= R(1)
merge

 xi

yi


B

+
−→
dS (8)

p
′

j =

 x
′
j

y
′
j


A

= R(1)
merge

 xj

yj


B

+
−→
dS (9)

Accordingly, the transformation errors are given by

errorp′i
=

 x
′
i

y
′
i


A

−

 xi

yi


A

(10)

errorp′j
=

 x
′
j

y
′
j


A

−

 xj

yj


A

(11)

For case 2, the positions of sensors i and j in the coordinate system of cluster B need to be mirrored
around one of their axes. That is,

pi =

 −xi

yi


B

pj =

 −xj

yj


B

(12)

Thus, the rotation angle θ(2)merge is described as in (7) with

w⃗(2) =

 xi

yi


A

−

 xj

yj


A

(13)

v⃗(2) =

 −xi

yi


B

−

 −xj

yj


B

(14)

and the reoriented positions are

p
′′

i =

 x
′′
i

y
′′
i


A

= R(2)
merge

 −xi

yi


B

+
−→
dS (15)

p
′′

j =

 x
′′
j

y
′′
j


A

= R(2)
merge

 −xj

yj


B

+
−→
dS (16)

As a result, the transformation errors are

errorp′′i
=

 x
′′
i

y
′′
i


A

−

 xi

yi


A

(17)
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errorp′′j
=

 x
′′
j

y
′′
j


A

−

 xj

yj


A

(18)

Given the transformation errors (10), (11), (17), and (18), the border sensors may use a criterion with
local preliminary information such as neighboring connectivity to determine the relationship between the
coordinate systems of two clusters. Considering the observations under the two hypotheses H1 : Z1 =

||errorp′i || + ||errorp′j || and H2 : Z2 = ||errorp′′i || + ||errorp′′j ||, the decision rule for the registration
process becomes: H1 : z1 < z2; H2 : z1 > z2. Based on the decision rule, the border sensors are able
to compute the transformation errors for each case and to find the desired adjustment information for
reorienting the coordinate system.

Once those calculations have been performed, sensor i follows the communication protocol and
transmits an Adjust message to the sensors in the reoriented cluster in order to update their coordinates
so that two local coordinate systems convert to a single one. This operation is applied repeatedly until
the global coordinate system is established. Figure 4 depicts the process of coordinate registration and
how the coordinate transformation is performed. To establish an absolute coordinate system, the process
can proceed identically to the merging and adjusting of two clusters and follow the same communication
strategy with a minimum of three GPS sensors. An example of merging two clusters is illustrated in
Section 5.5.

Figure 4. The process of coordinate system registration. (a) The right-hand coordinate
hypothesis H1: cluster B is in the right-hand coordinate system; (b) The left-hand coordinate
hypothesis H2: cluster B is in the left-hand coordinate system.

3.4. Phase IV: Cooperative Estimation Fusion

Based on the refined position estimates in Phase II and the relative coordinate system in Phase III,
when the measurement does not meet the required estimation accuracy (e.g., the measurement variance
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is larger than the accuracy threshold), the estimated sensor, say sensor m, may broadcast a fusion
message to its neighbors and trigger the cooperative sensor fusion to resolve conflicts or disagreements,
and to complement the observations of the environment. The cooperative estimation system can be
organized by sensor m with collecting the neighboring observations or grouping nearby two sensors into
a measurement system with group IDs based on the neighboring geometric information. This subsection
introduces the centralized scheme, the progressive scheme, and the distributed scheme for cooperative
position estimation (Figure 5).

Figure 5. An example of group topology and the approaches for cooperative position
estimation: (a) the centralized scheme, (b) the progressive scheme, and (c) the
distributed scheme.

3.4.1. The Centralized Scheme

A centralized position estimation scheme is a process structure that all the neighboring sensors
transmit their observations directly to the estimated sensor (the central unit) where the estimation
is performed. By means of the given measurements and (3), the approximated probability density
function characterizing the cooperative estimation is obtained with the approaches in Phases I and II.
The drawback is that if some sensors are faulty or the observations are corrupted, the fusion among all
the neighboring sensors may deteriorate the estimation accuracy.

3.4.2. The Progressive Scheme

The progressive position estimation scheme is a processing structure that the estimation groups
sequentially update the estimation result based on each group’s local observation and partial decision
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from its previous groups in the sequence without sending data from all sensors to a central processing
unit [45, 46]. Hence, only partial estimation results are transmitted through the network. In this work,
the progressive scheme (Table 4) is developed based on the particle-based approaches in Phases I and II,
which are used for tracking filtering and predictive distributions in the position estimation process. Each
cooperative group propagates only the mean and variance of the posterior density to its next estimation
group. Therefore, as shown in Figure 5, group j+1 may approximate the posterior density of group j
as a Gaussian with the received mean and variance and use this Gaussian approximation [47] for the
initialization of the particle filtering.

Note that this particle-based technique allows a robust method of location identification and leads to
a flexible strategy for the sensing task since any amount of information can be adaptively communicated
between sensors.

Table 4. The Progressive Estimation Methodology

1. Initialization: Group j+1 generates a set of random samples xk(i), i = 1, 2, . . . , N from
the bounding box of the estimated sensor (N1 samples) and the estimated Gaussian posterior
density function of estimation group j (N2 samples) at time k = 0. N = N1 +N2.

2. Prediction: For i = 1, 2, . . . , N , sample from p(xk+1|xk = xk(i)) to have {x̂k+1(i)}Ni=1.
3. Measurement Update: Obtain the respective normalized weights by

qk+1(i) = p(zk+1|x̂k+1(i))/
∑n

j=1 p(zk+1|x̂k+1(j))

4. Position: Compute the mean µk+1 and covariance
∑

k+1 as
µk+1 =

∑N
i=1 qk+1(i)xk+1(i)∑

k+1 =
∑N

i=1 qk+1(i)(µk+1 − xk+1(i))(µk+1 − xk+1(i))
H

and forward these partial information to the next estimation group j+2.

3.4.3. The Distributed Scheme

The distributed scheme is executed in two steps: (1) Group Estimation: The position estimation is
conducted within each cooperative group. Each group member sends its observation to the central unit
of the cooperative group (e.g., the sensor with a higher sensor ID) where the local decision is performed.
(2) Estimation Fusion: a fusion rule is applied to combine the posterior density of the estimation from
each cooperative group in the estimated sensor.

Here we introduce two Bayesian fusion schemes for a distributed localization system. During the
fusion process, sensor m fuses its local estimate and the estimates received from the neighborhood. One
possible way to combine the probabilistic information obtaining from different Bayesian measurement
systems is to fuse the estimates linearly [48], i.e.,

ϕ̂m =
Nc∑
ℓ=0

ωmℓϕmℓ (19)

where Nc is the number of the neighboring Bayesian measurement systems in the fusion process, which
is Nc = ⌊Nm/2⌋; Nm is the number of neighboring sensors of sensor m; ωmℓ is a weight such that,
0 ≤ ωmℓ ≤ 1 and

∑Nc
ℓ=0 ωmℓ = 1; ϕm0 is the local estimate of sensor m; ϕmℓ is the estimate received from

the neighborhood; ϕ̂m is the fused estimate of sensor m.
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Referring to (19), the weight reflects the significance attached to the estimate, which can be used to
model the reliability of an information. As a result, the next issue is to determine ωmℓ for each estimate
and try to weight out faulty estimates. There are many strategies to choose ωmℓ. One scheme is to use the
utility measure. Since the utility of a sensor measurement is a function of the geometric location of the
sensors, here we consider the Mahalanobis measure [49]. Hence, with respect to a neighboring system
estimate characterized by the mean µmℓ and covariance Σ, the utility function for sensor m is defined as
the geometric measure

Umℓ = (µm0 − µmℓ)
TΣ−1(µm0 − µmℓ) (20)

where µm0 is the local estimated position of sensor m and ℓ = 1, 2, . . . , Nc. That is, the utility measure
is based on the Mahalanobis measure of the local estimate to a neighboring system estimate. In order to
arrive at a consensus, the utility measure Umℓ can be shown to be Umℓ ≤ 1 [50].

Table 5. The Distributed Estimation Fusion.

1. The target sensor, say sensor m, broadcasts a fusion message to form the neighboring
Bayesian measurement groups.

3. Sensor m collects the estimation information from the neighboring multi-Bayesian groups.
4. Use the Mahalanobis distance to test the individual utility measure.

if (the utility measure Umℓ1)

cooperate with the local estimate with ωmℓ =
1

Umℓ∑
k∈Us

1
Umk

, where Us is the index set

of the neighboring estimates that pass the utility test.
else
ωmℓ = 0 (i.e., discard that group estimate)

end
5. When the local estimate and the group estimates are non-coherent

(1) choose the estimate which has more confidence (less variance) or
(2) exclude the local estimate and fuse the group estimates with the CI method.

Given the utility measure, two estimates can be allowed to be compared in a common framework and
measure how much they differ |µm0 − µmℓ|. For a larger Umℓ, the neighboring system estimate may be
weighted smaller, which means the weight of the estimate may be described by the inverse proportion of
the utility measure. Therefore, when a neighboring system estimate succeeds the utility measure, it may
cooperate with the local estimate with

ωmℓ =
1

Umℓ∑
k∈Us

1
Umk

(21)

where Us is the index set of the neighboring estimates that pass the utility test. Otherwise, ωmℓ is set to
be zero. However, when the local estimate and the group estimates are non-coherent (i.e., Umℓ > 1, ∀ ℓ),
another possible approach for sensor m is to choose the estimate with more confidence (less variance),
or to exclude its local estimate and fuse the group estimates using the Covariance Intersection (CI)
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method [51]. The CI method takes a convex combination of mean and covariance estimates that are
represented in information space. Since these estimates are independent, the general form is

P−1
cc = ω1P

−1
a1a1

+ · · ·+ ωnP
−1
anan (22)

P−1
cc c = ω1P

−1
a1a1

a1 + · · ·+ ωnP
−1
ananan (23)

where
∑n

i=1 ωi = 1, n ≥ 2, ai is the estimate of the mean from available information, Paiai is the estimate
of the variance from available information, c is the new estimate of the mean, and Pcc is the new estimate
of the variance. The distributed estimation approach is summarized in Table 5.

4. Performance Analysis

In [22], a hardware platform (Crickets) has been developed to enable the sensor nodes to measure
inter-node ranges using the time of arrival (ToA) or time difference of arrival (TDoA) between Ultrasonic
and RF signals [20]. This section provides an estimation-theoretic analysis to assess the achievable
ranging accuracy with the ToA information. Assume that all measurements of the arrival time stamps
are independent normal random variables caused by the measurement error in the clock. This normality
assumption is justified in [49] when the clock skew is small. Therefore, applying the results in [40, 52] for
distance estimation with the time of arrival information, all ranging errors may be described by normal
random variables. Based on the uncertainty in the distance information, the localization performance
and the estimation behavior are examined. Moreover, the complexity analysis is provided to evaluate the
feasibility of the proposed positioning method.

4.1. Analysis of Position Estimation

In order to investigate the estimation performance of the position measurement, Figure 6 depicts the
measurement using known positions and distance information to obtain the unknown sensor position.
Notice that sensors a, b, and c are three known sensors with estimated positions (xa, ya), (xb, yb), and
(xc, yc), respectively. Given the distance measurements, the unknown sensor position (xe, ye) can be
computed by triangulation, which is

xe =
dce′xa + dae′xc

dae′ + dce′
+ dae

(
yc − ya
xc − xa

)
sinα√

1 + ( yc−ya
xc−xa

)2
(24)

ye =
dce′ya + dae′yc
dae′ + dce′

± dae
sinα√

1 + ( yc−ya
xc−xa

)2
(25)

where dae′ = dae cosα, dce′ = dac − dae′ ,

α = arccos

(
d2ae + d2ac − d2ce

2daedac

)
(26)

and

β = arccos

(
d2ab + d2ae − d2be

2daedab

)
(27)
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Figure 6. Two examples showing the way to compute the unknown sensor position (xe, ye)

by triangulation using known distance and position information.

Due to the errors in distance measurement, the position and distance estimates may be described by
normal random variables. Let Dij denote the normal random variable for the distance estimate between
a pair of sensors i and j with Dij ∼ N(µDij

, σ2
Dij

). Let Xi and Yi be the normal random variables
for the known estimated x and y coordinates of sensor i, respectively, with Xi ∼ N(µXi

, σ2
Xi
) and

Yi ∼ N(µYi
, σ2

Yi
). Now we rewrite (24) as

Xe = W1 +W2 (28)

where the random variables

W1 =
Dce′Xa +Dae′Xc

Dae′ +Dce′
(29)

W2 = Dae ·W3 ·
W4

W5

(30)

W3 =
Yc − Ya

Xc −Xa

(31)

W4 = sinα = sin

(
arccos

(
D2

ae +D2
ac −D2

ce

2DaeDac

))
=

√√√√1−
(
D2

ae +D2
ac −D2

ce

2DaeDac

)2

(32)

W5 =

√
1 + (

Yc − Ya

Xc −Xa

)2 =
√
1 +W 2

3 (33)

W6 =
Dce

′Ya +Dae
′Yc

Dae
′ +Dce

′
(34)

For the random variable W1, let us first consider the distribution function of Dae
′ . Based on Figure 6,

the random variable Dae
′ is

Dae
′ = Dae cosα =

V

2Dac

(35)

where V = D2
ae + D2

ac − D2
ce. Thus, the random variable V is the weighted sum of quadratic forms

of independent normal random variables (i.e., a linear combination of noncentral chi-squared random
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variables [53, 54]), which is

V =
3∑

k=1

akUk (36)

where ak represents the weight and Uk is an independent non-central chi-squared random variable with
pk degrees of freedom and a non-centrality parameter δk. Hence, the characteristic function of Uk is

ϕUk
(t) = (1− 2it)−pk/2 exp

(
itδk

1− 2it

)
(37)

where i = (−1)1/2, and the characteristic function of V is

ϕV (t) =
3∏

k=1

ϕUk
(akt) (38)

with the mean µV =
∑3

k=1 ak(pk + δk) and the variance σ2
V = 2

∑3
k=1 a

2
k(pk + 2δk). In our case,

pk = 1 ∀k, a1 = a2 = 1, a3 = −1, δ1 = µ2
Dae

, δ2 = µ2
Dac

, and δ3 = µ2
Dce

.
Referring to [55, 56], the normal approximation may be applied to obtain the distribution function,

which yields
Dae

′ ∼ N(µD
ae

′ , σ
2
D

ae
′ ) (39)

with
µD

ae
′ =

µV

2µDac

(40)

σ2
D

ae
′ =

4σ2
Dac

µ2
D

ae
′ + σ2

V

4µ2
Dac

(41)

Using the analytical techniques for normal approximation, the distribution function of W1 can be
approximated by

W1 ∼ N(µW1 , σ
2
W1

) (42)

with

µW1 =
µD

ce
′µXa + µD

ae
′µXc

µD
ae

′ + µD
ce

′

(43)

σ2
W1

=
(σ2

D
ae

′ + σ2
D

ce
′ )µ

2
W1

+ µ2
D

ce
′σ

2
Xa

+ µ2
Xa

σ2
D

ce
′ + µ2

D
ae

′σ
2
Xc

+ µ2
Xc
σ2
D

ae
′

(µD
ae

′ + µD
ce

′ )2
(44)

In order to derive the probability density function of W2, let us first consider the random variables
W3,W4, and W5, respectively.

For the random variable W3 (31), let W3 = M1/M2. Therefore, the variables M1 = Yc − Ya

and M2 = Xc − Xa follow a bivariate normal distribution M1 ∼ N(µYc − µYa , σ
2
Yc

+ σ2
Ya
) and

M2 ∼ N(µXc − µXa , σ
2
Xc

+ σ2
Xa

). [55] and [57] show that as the ratios µM1/σM2 and µM2/σM2 increase
and the probability that M2 is negative tends to zero, then the probability density function of W3 is
given by

W3 ∼ N(µW3 , σ
2
W3

) (45)

with
µW3 =

µM1

µM2

(46)
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σ2
W3

=
µ2
M1

σ2
M2

µ4
M2

+
σ2
M1

µ2
M2

(47)

For the random variable W4 (32), it can be further expressed by W4 =
√
1−Q2, where the random

variable Q = V/(2DaeDac) and the random variable V is defined as in (36). Hence, the density function
of Q is given by

Q ∼ N(µQ, σ
2
Q) (48)

with
µQ =

µV

2µDaeµDac

(49)

σ2
Q =

4µ2
Q(µ

2
Dae

σ2
Dac

+ µ2
Dac

σ2
Dae

) + σ2
V

4µ2
Dae

µ2
Dac

(50)

With Taylor development of W4 at µQ, we obtain

W4 ≈
√
1− µ2

Q − µQ√
1− µ2

Q

(Q− µQ) (51)

Therefore, the density function of W4 is approximated by W4 ∼ N(µW4 , σ
2
W4

) with µW4 =
√
1− µ2

Q

and σ2
W4

= µ2
Qσ

2
Q/(1 − µ2

Q). Similarly, for W5 defined as in (33), with Taylor development at µW3 and
applying the density function of W3, the density function may be approximated by W5 ∼ N(µW5 , σ

2
W5

)

with µW5 =
√
1 + µ2

W3
and σ2

W5
= µ2

W3
σ2
W3

/(1 + µ2
W3

).
Accordingly, referring to (30) and applying the normal approximation techniques, the density function

of the random variable W2 yields
W2 ∼ N(µW2 , σ

2
W2

) (52)

with
µW2 =

µDaeµW3µW4

µW5

(53)

σ2
W2

= µ2
Dae

µ2
W3

(
σ2
W5

µ2
W4

µ4
W5

+
σ2
W4

µ2
W5

)
+

µ2
W4

µ2
W5

(
µ2
Dae

σ2
W3

+ µ2
W3

σ2
Dae

)
(54)

Thus, the density function of the estimated x coordinate Xe is Xe ∼ N(µXe , σ
2
Xe
) with µXe = µW1+µW2

and σ2
Xe

= σ2
W1

+ σ2
W2

, where µW1 , σ2
W1

, µW2 , and σ2
W2

are described as in (43), (44), (53), and (54),
respectively.

For the estimated y coordinate Ye, it can be rewritten as

Ye = W6 ±Dae ·
W4

W5

(55)

Following the same analysis procedures for Xe and applying the normal approximations, the density
function yields

Ye ∼ N(µYe , σ
2
Ye
) (56)

with
µYe = µW6 ± µDae

µW4

µW5

(57)

σ2
Ye

= σ2
W6

+ µ2
Dae

(
σ2
W5

µ2
W4

µ4
W5

+
σ2
W4

µ2
W5

)
+

σ2
Dae

µ2
W4

µ2
W5

(58)
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where the distribution of W6 yields the same results as described for W1 by substituting Ya and Yc for
Xa and Xc in (43) and (44), respectively.

Accordingly, the localization performance can be assessed with the uncertainty in the distance and
position information. Moreover, based on the above analysis, the effect of error propagation with
imperfect position and distance information may be approximately depicted. Note that this analysis
applies normal approximations to describe the probability density functions of the position estimation.
The numerical results will be illustrated in Section 5. in order to compare the simulation results and
validate the appropriateness of normal approximations.

4.2. Analysis of Measurement Performance

The relationship of mapping between the state and observations is not known precisely because of
the measurement errors and the uncertainty associated with the system model. In order to evaluate
estimation behavior, the distribution of the measurement term (3) for sensor m is derived to extract
information about estimation accuracy.

To proceed with the analysis, notations and assumptions are introduced to capture the sensible
measurement performance. We rewrite the measurement term (3) as

Zm =
∑
ℓ∈Im

∣∣∣||Pm − P ℓ|| −Dmℓ

∣∣∣+ V m (59)

=
∑
ℓ∈Im

∣∣∣D̂mℓ −Dmℓ

∣∣∣+ V m (60)

where Zm is the random measurement term, Im is the index set of estimated known sensors, Pm is the
estimated position of sensor m, P ℓ is the estimated position of sensor ℓ, D̂mℓ denotes the ℓ1-norm ranging
measurement obtained from estimated positions, Dmℓ is the ranging measurement between sensors m and
ℓ, and V m is the measurement noise. Suppose that Zm, Pm, P ℓ, Dmℓ, and V m are assumed to be normal
random variables which distributions are Zm ∼ N(µZm , σ2

Zm), Pm ∼ N(µPm , σ2
Pm), P ℓ ∼ N(µP ℓ , σ2

P ℓ),
D̂mℓ ∼ N(µD̂mℓ

, σ2
D̂mℓ

), Dmℓ ∼ N(µDmℓ
, σ2

Dmℓ
), and V m ∼ N(µV m , σ2

V m).
Now denote Fmℓ as

Fmℓ = |D̂mℓ −Dmℓ| = |Gmℓ| (61)

where Gmℓ = D̂mℓ − Dmℓ, which is a normal random variable with the distribution Gmℓ ∼
N(µGmℓ

, σ2
Gmℓ

) with mean µGmℓ
= µD̂mℓ

−µDmℓ
and variance σ2

Gmℓ
= σ2

D̂mℓ
+σ2

Dmℓ
= σ2

Pm+σ2
P ℓ+σ2

Dmℓ
.

Consider now the situation where Fmℓ = |Gmℓ|. Therefore, the distribution of the absolute measurement
Fmℓ is described as the folded normal distribution [58]. The probability density function of the resulting
folded normal distribution is

hFmℓ
(fmℓ) =

1√
2πσGmℓ

[
e
−(fmℓ−µGmℓ

)2/2σ2
Gmℓ + e

−(fmℓ+µGmℓ
)2/2σ2

Gmℓ

]
, fmℓ ≥ 0 (62)

with mean

µFmℓ
=

√
2

π
σGmℓ

e
−µGmℓ

/2σ2
Gmℓ + µGmℓ

[1− 2M(−µGmℓ
/σGmℓ

)] (63)

and variance
σ2
Fmℓ

= µ2
Gmℓ

+ σ2
Gmℓ

− µ2
Fmℓ

(64)
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where
M(a) =

1√
2π

∫ a

−∞
e−t2/2dt (65)

In order to estimate the position, at least three nearby location-aware sensors are needed. Without loss
of generality, let the neighboring sensor ID be ℓ = 1, 2, and 3 and assume that the folded normal random
variables are independent, which is a reasonable condition in our case. Thus, the distribution of the sum
of the folded normals Sm =

∑3
ℓ=1 Fmℓ can be derived by convolution, which is

hSm(sm) =
2

π

√√√√ 1

(σ2
Fm1

+ σ2
Fm2

)σ2
Fm3

∫ sm

0
eA(x) [erf (σFm1B(x)) + erf(σFm2B(x))] dx, sm ≥ 0 (66)

with A(x) = −x2/2(σ2
Fm1

+σ2
Fm2

)+(sm−x)2/2σ2
Fm3

and B(x) = x/
√
2σ2

Fm1
σ2
Fm2

(σ2
Fm1

+ σ2
Fm2

), where
erf(·) is the error function and σ2

Fmℓ
is described as in (64), which is related to the variances of position

and distance estimates.
Suppose that the measurement noise is negligible. Thus the distribution of the random measurement

term Zm may be described by (66), which highly depends on the deviations of estimated anchor positions
and estimated distances. Observe that the measurement term Zm is actually a way to depict estimation
accuracy of the system since the objective is to minimize the estimation error. Based on the above
settings, (66) may also represent an ideal measurement performance for realistic estimation experiments.
However, with the deviations of distance estimates, in order to suppress the measurement error we may
obtain inaccurate localization results though using the anchor sensors with accurate position information.
In other words, when applying the particle filtering methodology, the measurement term Zm of sensor m
may weight out the best possible particles due to the incorrect distance information. The measurement
performance will be illustrated and further discussed in Section 5.

4.3. Complexity Analysis

When developing the local position estimation (Phase I), one round of local flooding is initiated in
order to gather distance information. Then, the distance and position information from the nearby three
nodes are applied to estimate its own position. Thus, the time complexity is O(1) round.

Suppose that the total power requirements include the power required to transmit messages ET ,
the power required to receive ER, and the power required to process EP . Therefore, the total energy
consumption for initial local positioning in the network is EL = N

(L)
T ·ET +N

(L)
R ·ER +N

(L)
P ·EP with

N
(L)
T = NS, N

(L)
R =

NS∑
i=1

Ni, N
(L)
P = NS (67)

where NS is the number of sensors in the network and Ni is the number of the neighboring sensors of
sensor i. Thus, for a sensor node, the average energy consumption yields EL/NS . Given the energy
consumption analysis above, the communication complexity for establishing the local coordinate system
in the network and for estimating the position of a sensor node are O(NS) and O(1), respectively.

Due to the error caused by the location estimation algorithm (the estimation error) and the error
intrinsic to the problem (noisy distance measurements), location adjustment algorithms (Phase II) are
needed in order to improve the estimation accuracy and limit the propagation errors. Once the position
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refinement is executed, one round of 1-hop flooding is performed for broadcasting the estimated position
information. Hence, the time complexity and communication complexity are the same as those in
Phase I.

For merging the coordinate systems of two clusters (Phase III), two border sensors (sensor p and
sensor q) execute one round of local flooding for exchanging the Merge message and determining the
merging cluster. Then, the border sensor, say sensor q, calculates the adjustment quantities and 4 rounds
of local flooding are performed for the the process of coordinate registration and transformation in the
2-hop cluster topology. Therefore, the time complexity is O(5) rounds. Based on the operation of
building the relative global localization, the energy consumption yields EG = N

(G)
T ·ET +N

(G)
R ·ER +

N
(G)
P · EP with

N
(G)
T = (Nch − 1) · (5 + |H(2)

i |) (68)

N
(G)
R = (Nch − 1) · (Np + 2 ·Nq +Ni +

∑
k∈H(2)

i

Nk +Nr) (69)

N
(G)
P = Nch − 1 (70)

where H
(2)
i denotes the index set of 1-hop cluster members of cluster i with neighboring 2-hop cluster

members, sensor r is the parent node of sensor q, Ni is the number of the neighboring sensors of sensor
i, and Nch is the number of clusters in the network. Accordingly, the communication complexity due to
performing coordinate registration and transformation is O((Nch − 1)Navg), where Navg is the average
number of neighbors of a sensor in the network.

Based on the operations described in Section 3.4, the complexity analysis of the proposed cooperative
estimation approaches (Phase IV) are described, respectively. For the centralized scheme, all the
neighboring sensors transmit their observations directly to the estimated sensor. Therefore, the time
complexity is O(1) round. The energy consumption yields ECC = N

(C)
T · ET +N

(C)
R · ER +N

(C)
P · EP

with
N

(C)
T = Ni, N

(C)
R =

∑
j∈S(i)

b

Nj, N
(C)
P = 1 (71)

where S
(i)
b is the index set of neighboring sensors of sensor i. Thus, the communication complexity due

to transmitting the observations is O(Navg).
For the progressive scheme, the estimation groups update the estimation result sequentially based on

each group’s local observation and partial decision from it’s previous groups in the sequence. Hence, the
time complexity is O(2NEG) rounds for estimation groups consisting of two sensors, where NEG is the
number of estimation groups. The energy consumption is given by ECP = N

(P )
T · ET + N

(P )
R · ER +

N
(P )
P · EP with

N
(P )
T = 2 ·NEG, N

(P )
R =

∑
j∈G(i)

b

Nj, N
(P )
P = NEG (72)

where G
(i)
b is the index set of sensors in the estimation groups of sensor i. Thus, the communication

complexity due to transmitting the observations and partial decisions is O(2NEG).
For the distributed scheme, the target sensor fuses its local estimate and the estimates received from

the neighborhood. Hence, the time complexity is O(2) rounds, which are for group estimation and
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estimation fusion. The energy consumption is given by ECD = N
(D)
T ·ET +N

(D)
R ·ER+N

(D)
P ·EP with

N
(D)
T = 2 ·NEG, N

(D)
R =

∑
j∈G(i)

b

Nj, N
(D)
P = NEG + 1 (73)

Similar to the progressive scheme, the communication complexity due to transmitting the observations
and group decisions is O(2NEG).

5. Experiments and Discussion

In order to assess the performance of the proposed methodology, the feasibility of the proposed
schemes is examined via simulation and numerical results. In the following experiments, the particle
filtering methodology is applied with the number of samples N = 500.

5.1. Initial Position Estimation

In this section we present the result of initial local position estimation by placing three reference
nodes and one unknown node over the sensing field 10×10 units in size and assuming that this unknown
node connects with all reference nodes. The positions of the three reference nodes are (7,3), (3,8),
(1,4) and the true position of this unknown node is (4,1). Figures 7 (a)-(c) show the procedures of
initial position estimate by using particle filter method with the bounding box algorithm. “•” represents
the reference node, “◦” represents the unknown node, “·” represents the particle and “×” represents
the initial estimated sensor location. The estimation error of the initial position estimate is shown in
Figure 7 (d), which depicts that the estimation error converges to 0.5 quickly after a few iterations.
Figure 8 shows the resulting initial position estimation for a network of 25 nodes with 3 reference
nodes, which suggests that the particle filter method with bounding box algorithm provides an acceptable
performance of initial position estimation.

5.2. Performance of Theoretical Approximation

This set of experiments compares the initial position estimation of an unknown sensor using particle
filtering and the theoretical approximation derived in Section 4.2. We consider the uncertainty of position
estimation and distance measurement and then use the estimated distributions from other known sensors
to get the distribution of the position estimate of the unknown sensor. Let σD and σP denote the distance
deviation and position deviation, respectively. Suppose that the true position of the unknown sensor
m is (17,30) and the position distributions of three known sensors are N(µP 1 , σ2

P 1), N(µP 2 , σ2
P 2), and

N(µP 3 , σ2
P 3) with µP 1 = (0, 0), µP 2 = (23, 70), µP 3 = (50, 0), σDm1 = σDm2 = σDm3 = σD, and

σP 1 = σP 2 = σP 3 = σP . In the simulation, we sample the distributions of the position estimates
obtained from three known sensors and the distributions of the distance estimates 200 times in order to
get the possible values for the particle filtering. Then we fuse these 200 distributions to get the possible
position distribution of the unknown sensor using the Covariance Intersection (CI) method described as
in Equations (22) and (23). In this set of experiments, we choose to weight each typical run equally.
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Figure 7. (a)-(c) are the procedures of initial position estimation by using particle
filter method with bounding box algorithm; (d) shows the estimation error of the initial
position estimate.
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Figure 8. Using particle filtering for initial position estimation. “•” represents the
reference node, “◦” represents the unknown node, and “×” represents the initial estimated
sensor location.
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Given the deviations at distance and position information, Figure 9 shows the distributions
of simulation results and the theoretical approximation of initial position estimates with unbiased
distance and position information (top left) and biased distance measurements (top right), respectively.
Figure 9 (bottom) shows the standard deviation of the mean value of position estimates. The plot varies
the variance of the distance measurement. Observe that Figures 9 demonstrates that the approximated
probability density function can well describe the measurement performance, which implies that the
approximation may be a sensible way to assess the estimation process of an unknown sensor under the
circumstances with ranging and positioning errors of known sensors.

Figure 9. The distributions of simulation results and the theoretical approximation of initial
position estimates with unbiased distance and position information (top left) and biased
measurement information (top right); the estimated sensor position versus the variance of
the distance measurement for simulation results and theoretical approximation (bottom).
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5.3. Measurement Performance

Due to the errors occurring in the distance estimation, the following special case is studied to explore
the impact of the ranging error on the performance of random measurement term. Assume that the



Sensors 2010, 10 1201

mean value of the distance estimation is the true distance and the neighboring reference sensors have
unbiased position information, which means the distance estimation is unbiased and the ℓ1-norm distance
is µD̂mℓ

= µDmℓ
= dmℓ (i.e., µGmℓ

= 0). Figure 10 shows the distributions of the random measurements
with position and distance deviations. Note that as substituting the true position of the estimated sensor
into the measurement term (66) with unbiased distance and position estimates having small deviations,
the peak value of the distribution locates near zero, which may represent an ideal measurement case since
the estimated sensor owns accurate distance and position information. On the other hand, with distance
and position estimates having large deviations, the true position of the estimated sensor makes the peak
value of the distribution shift away from zero. Therefore, in order to suppress the estimation error and
shift the peak value of the distribution back to zero, incorrect estimates may be obtained. That is, as the
iterative process of the particle filter proceeds, the most possible estimates may be weighted smaller or
even be weighted out due to the low value of the likelihood function at the particle and the uncertainty
of distance and position information.

Figure 10. The distributions of random measurements with position and distance deviations.
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5.4. Performance of Position Refinement

In our simulations, two proposal densities are chosen for refining the position estimates with the
Metropolis-Hastings Algorithm. Proposal density I is a normal distribution centered around the current
state estimate, N (xk, σ

2
ε1
). Proposal density II is the sum of all the current samples and noise. The

distribution of the noise is N (0, σ2
ε2
). Assume that σ2

ε1
= σ2

ε2
. This subsection reports the performance

of the sensor location estimate and adjustment by applying the particle filtering and a few Monte Carlo
Markov Chain (MCMC) steps on each particle. Moreover, the importance of resampling after using the
MCMC steps and the impact of error propagation on estimation accuracy are explored via simulation.
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5.4.1. Proposal Density I

By adopting this density, the proposed particles are generated from a random walk x
′
k(i) = xk(i)+σε1

(random walk Metropolis-Hastings). From the work in [59], it recommends that if the proposal density
is normal, then the acceptance rate should be around 0.45 for the random walk chain. Here, we adjust
the parameters to achieve an acceptance rate of 0.4 to 0.5. Figures 11 (a,b) demonstrate the initial
position estimation with perfect distance measurements (σ2

d = 0). The simulation results of the sensor
location estimation and the estimation error are shown in Figure 11 (c), which shows the ability of the
sensor location algorithm detailed in Section 3.2. to locate all n = 10 sensors using only distance (e.g.,
received signal strength or time-of-arrival) information. In Figure 11 (d), the error propagation within
the network is shown to be suppressed by applying the Metropolis-Hastings algorithm. As the number
of iteration increases, a high acceptance rate will be achieved. In this case, accepted particles are taking
distinct but very close values compared with the current state estimate.

5.4.2. Proposal Density II

Instead of using only information from the current state estimate, the complete current distribution of
samples may be used to generate the proposed particles. To evaluate the performance, the same network
layout and the number of samples as that of the system with proposal density I are used. Figures 11
(e,f) illustrate the performance of the sensor location algorithm with proposal density II. Compared with
Figure 11 (d,f) demonstrates that using proposal density II gives more precise sensor location estimates,
less estimation error, and less error propagation. In addition, a faster speed of convergence in location
estimate is achieved. This is attributed to the fact that more sampling diversity is introduced and the
sample impoverishment problem is alleviated.

5.4.3. Resampling

The key point with resampling is to prevent a high concentration of probability mass at a few particles.
Here we investigate the importance of resampling after carrying out the MCMC steps. For comparison,
a particle filter using the same network structure and the number of particles is applied to the samples
drawn from proposal density I with resampling, proposal density I without resampling, proposal density
II with resampling, and proposal density II without resampling, respectively. The simulations based
on these different approaches are shown in Figures 11 and 12. In these tests, the performances of the
methods applying resampling (Figures 11 (d,f) are superior to those of approaches without resampling
(Figures 12 (d,f)). This shows how the degeneracy problem with the MCMC steps can be reduced by
using a resampling scheme.
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Figure 11. σ2
ε1

= σ2
ε2

= 0.5 and σ2
d = 0. (a)(b) A typical simulation run of the sensor

location algorithm locates all n = 10 sensors using distance information; (c)(d) The sensor
location adjustment and estimation error of the typical simulation run by applying the
Metropolis-Hastings algorithm with proposal density I; (e)(f) The sensor location adjustment
and estimation error of the typical simulation run by applying the Metropolis-Hastings
algorithm with proposal density II.

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

Xk
(a)

Y
k

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

Xk
(b)

Y
k

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

Xk
(c)

Y
k

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

The number of iterations
(d)

E
st

im
at

io
n 

er
ro

r

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

Xk
(e)

Y
k

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

The number of iterations
(f)

E
st

im
at

io
n 

er
ro

r



Sensors 2010, 10 1204

Figure 12. (a)(b) demonstrate the initial position estimation; (c)(d) show the sensor location
adjustment and the estimation error by using distance information and proposal density I
without resampling; (e)(f) show the sensor location adjustment and the estimation error by
using distance information and proposal density II without resampling, where σ2

d = 0 and
σ2
ε = 0.5.
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5.4.4. Error Propagation

Cluster-based positioning methods may introduce poor error propagation characteristics due to
the lack of absolute reference points in the hierarchical network topology. Thus, the impact of
error propagation on estimation accuracy is explored given the measurement errors. In the proposed
approach, the amount of error propagated over the cluster is reduced based on the refinement scheme.
Figures 13 (a,b) demonstrate the initial position estimation with imperfect distance measurements
(σ2

d = 0.1). Observe that, as shown in Figures 13 (c)-(f), the error propagation during the estimation
process degrades the estimation accuracy for certain nodes and the proposed refinement schemes
(σ2

ε = 0.5) have limited capability to improve the performance of position estimation. Therefore, a
fundamental problem when locating sensors in a network is to estimate the distance between pairs of
sensors since accurate location estimates highly rely on precise distance measurements.

5.5. An Example of Merging Two Clusters

Figure 14 (left) shows the structure of two clusters generated from the initialized sensors A and B.
There are two shared border sensors, sensor 1 and sensor 2, in the overlapping area. Figure 14 (right)
shows the position estimations of local coordinate systems. Note that applying the estimation procedures,
these two clusters are generated from the initialized sensors A and B, which are located at the origin in
their local coordinate systems.

Once the border sensors have the information of local coordinate systems from two clusters, they
transmit Merge signals. The effect will be to reorient the cluster centered on sensor B. Therefore, sensor
1 uses its own information and the merge signal received from sensor 2 to calculate the adjustment
information. Then sensor 1 transmits an Adjust message to the sensors in the reoriented cluster to update
their positions. Figure 15 (left) depicts the movement of the reoriented cluster using the vector

−→
dS and

Figure 15 (right) shows that the positions of the sensors in the reoriented cluster match the corresponding
positions in the coordinate system of sensor A using the rotation matrix Rmerge.

5.6. Cooperative Estimation Fusion

In this set of experiments, two cases of the measurement deviation of the known positions are
considered: σ2

P = 0.01 and σ2
P = 1. The initial settings and group topology are illustrated in

Figure 5. Without loss of generality, suppose that the prior information for each cooperative scheme
is the bounding box (detailed in Section 3.1.) of the estimated sensor using three neighboring sensors
(e.g., the three black nodes shown in Figure 5). For the centralized approach, the estimated sensor
receives the distance and position information sent from each cooperative member and includes these
information into measurement term (3). For the progressive approach, each cooperative group generates
N1 = 250 samples from the bounding box and N2 = 250 samples from the Gaussian approximation
from previous estimation group, which is described is Table 4. For the distributed scheme, each
cooperative group generates N = 500 samples from the prior distribution (i.e., the bounding box) for
particle filtering. Given the distance and position information of the neighboring known sensors, the best
possible position measurement of the estimated sensor is obtained by combining 300 typical runs for each
cooperative approach.
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Figure 13. (a)(b) demonstrate the initial position estimation; (c)(d) show the sensor location
adjustment and the estimation error by using distance information and proposal density
I; (e)(f) show the sensor location adjustment and the estimation error by using distance
information and proposal density II, where σ2

d = 0.1 and σ2
ε = 0.5.

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

Xk
(a)

Y
k

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

Xk
(b)

Y
k

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

Xk
(c)

Y
k

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

The number of iterations
                      (d)                     

E
st

im
at

io
n 

er
ro

r

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

Xk 
(e)

Y
k

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

The number of iterations
(f)

E
st

im
at

io
n 

er
ro

r

Observe that in the case of good distance observations and a moderate position deviation, Figure 16
depicts that the estimated sensor may still obtain acceptable position estimate without cooperation. On
the other hand, with poor distance observations, the cooperative techniques may be good approaches to
improve the estimation accuracy.
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Figure 14. The global coordinate system of cluster A and cluster B (left); the local coordinate
systems of cluster A and cluster B and the shifting direction of cluster B (right).

Figure 15. The shifted cluster B and the rotation angle θmerge (left); the positions of the
sensors in the reoriented cluster match the corresponding positions in the coordinate system
of sensor A using the rotation matrix Rmerge (right).

The analysis of energy consumption (derived in Section 4.3.) shows that the total energy consumption
of these estimation schemes are close when the data of all the sensors are applied. Given an accuracy
threshold, the progressive process may terminate and return results without having all the sensors being
visited such that computation time and network bandwidth can be reserved. Therefore, the strength of the
progressive estimation scheme is the reduction of the amount of communication and the conservation of
energy. However, compared with the centralized and distributed schemes, the progressive approach may
produce a larger processing delay since it may spend more time on information processing when using
the data from all the sensors. Among these three cooperative estimation methods, the distributed scheme
may provide an efficient way to weight out the faulty sensors and corrupted observations to suppress the
estimation error. This is because if some sensors are faulty or the observations are corrupted, the fusion
among all the neighboring sensors (i.e., the centralized scheme) may degrade the estimation performance
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Figure 16. The comparison of position estimation with and without cooperative fusion
schemes for different variances of the distance measurement; σ2

P = 0.01 (left) and σ2
P = 1

(right); the position error Pm
E = ||Pm

true − Pm
estimate|| for sensor m.
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as shown in Figure 16.

5.7. Comparison

This subsection compares the localization algorithms from two perspectives: the algorithm
perspective and the network topology perspective. Hence, the probabilistic approximation method
(i.e., the particle filter) and the deterministic methods are investigated from the algorithm perspective.
Moreover, the proposed hierarchical approach and other cluster-based approaches are discussed from the
network topology perspective.

5.7.1. Algorithm Perspective

Several deterministic methods are proposed for sensor localization [7, 9, 60, 61]. For instance, the
Min-max method [7], where the main idea is to construct a bounding box for each reference node
using its position and distance measurement, and then to determine the intersection of these boxes.
Notice that the above methods solve the localization problem with a single estimate; the point algorithm
(SPA), where the location estimate is placed at the same position [9]; the centroid algorithm, where
the geometric centroid of the positions of the sensors that generates measurements presents the location
estimate; the smooth weighted centroid algorithm, where the centroid position computation is weighted
by the sensor likelihood models (e.g., the characteristics of the sensors and the measurements) [61]. In
contrast, the proposed CHPA method carries along a complete distribution of position estimation.

The following experiments are conducted in order to depict the weakness and the strength of each
method. Figure 17 depicts the initial position estimation using Min-max [7] and particle filtering.
Note that “•” represents the reference node, “◦” represents the unknown node, and “×” represents the
estimated sensor location. Min-max method has the advantage of being computationally cheap, but
it requires a good placement for anchors. In Phase I, we use particle filter method with bounding box
algorithm to carry out the initial position estimation. Compared with Min-max (Figure 17 (left)), particle
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filter method Figure 17 (right)) can give more precise location estimation in initial phase. In addition,
the distribution of the initial position estimate can be used to do refinement.

Figure 17. Using min-max and particle filtering for initial position estimation.
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Given the errors of distance measurements, Figures 18 and 19 depict the position errors of the
proposed CHPA and the SPA [9] schemes. In the absence of measurement noise, the distance between
the unknown sensor and the reference nodes defines a circle corresponding to possible sensor locations.
Hence, the intersection of at least three circles gives the exact sensor location. However, due to the
noisy measurements, these circles do not intersect at the same point. For the SPA scheme, two noisy
measurements are applied to obtain two possible locations. Then the estimate of the unknown sensor
location is determined by the third distance measurement.

Observe that in Figure 18 with a small distance measurement noise (σ2
d = 0.01), the average estimated

positions using the proposed CHPA and the single estimate using the SPA scheme are close. The average
position errors of these two schemes nearly fall within 3% of the side length of the square l = 10,
which suggests that the deterministic localization method (SPA) may be applied to roughly determine the
possible sensor location since the influence of the measurement variation on the localization performance
is small in this scenario. On the other hand, in Figure 19 with a larger distance measurement noise
(σ2

d = 0.1), although the average position errors of these two schemes nearly fall within 10% of the
side length of the square, the SPA scheme may not explicitly describe the estimation behavior using a
single estimate. In contrast, the proposed CHPA scheme may provide the statistical information of the
estimation behavior with a distribution of the estimated location.

As expected, the proposed CHPA algorithm with particle filtering do require more computation time
and memory than simpler deterministic position estimation algorithms. However, as shown in [11], the
particle filter method is proved to be feasible for location estimation on real devices used in ubiquitous
computing. Therefore, the proposed sensor positioning system may be practical to share data from
different sensor types and to provide distributional estimates to higher-level services and applications.

5.7.2. Network Topology Perspective

The cluster-based localization approaches are proposed because of the need for scalability and
efficiency. Compared with the registration processes in [9] and [44], the computational complexity of the



Sensors 2010, 10 1210

Figure 18. The average position error of each unknown sensor with the measurement noise
σ2
d = 0.01; the proposed CHPA (top left); the SPA (top right).
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proposed method (detailed in Section 4.3.) is much lower since the calculations are not easy to implement
for wireless sensor networks. [18] applies a complex multidimensional scaling (MDS) algorithm [62] to
estimate the position of cluster heads. Thus, the cluster members can use clusterheads as reference nodes.
Although this approach achieve reasonable accuracy, computational and communication overheads are
high. In [19], anchor nodes are deployed for deriving the position of adjacent clusterheads such that
this set of nodes with known positions may form a basis for other clusterheads to localize themselves.
The problem with manual entry of position information may limit the size and scalability of a sensor
network. Therefore, the proposed CHPA approach may provide an efficient way to build up a coordinate
system for wireless sensor networks.

6. Conclusions

We propose a distributed algorithm for the sensor positioning problem in hierarchical wireless sensor
networks. By performing the proposed estimation procedures, a single global coordinate system can be
established without GPS sensors using only distance information. In order to elevate the estimation
accuracy, the Markov chain Monte Carlo (MCMC) steps may be applied to reduce the estimation
error such that the propagation error can be suppressed. In the case of poor observations, cooperative
estimation fusion schemes are proposed to complement the measurements of the environment and
improve the estimation accuracy. Furthermore, the same basic approach can also solve the tracking
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Figure 19. The average position error of each unknown sensor with the measurement noise
σ2
d = 0.1; the proposed CHPA (top left); the SPA (top right).
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problem in which the decentralized sensors combine their information to produce improved estimates of
the target location. Therefore, one of the strengths of the approach is that (essentially) the same algorithm
can be used to track targets with unknown positions.

There are many other algorithmic questions that would be worthwhile exploring. For example, the
resampling method we have used is basic. More advanced techniques may be appropriate, depending on
how typical distributions evolve, how many particles should be used, and how does this depend on the
number of sensors, their density (in space), etc. Furthermore, we believe there are many ways to improve
the performance of the algorithm: (a) by quantifying the trade-offs between amount of communication,
speed of computation, and accuracy of the final estimates. (b) by examining alternate ways to “fuse”
the received data. For example, once distributional estimates are “shared” between nearby sensors, what
are the best ways of incorporating the data? (c) by using a notion of the reliability of the received
data. For example, if the “distance” measured between two sensors varies, then this variation suggests
an unreliability in the data and hence it should be discounted compared to measurements which are
always consistent.

For the proposed measurement solution, trade-offs are found between model complexity, energy
consumption, estimation accuracy, and sensible model description in real systems. Future plans will
involve generalizing the methods to perform actual measurements to evaluate the performance of the
proposed positioning system in ubiquitous computing environments.
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