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Abstract: This work addresses the development and assessment of a fiber optical 
viscometer using a simple and low-cost long-period fiber grating (LPFG) level sensor and 
a capillary tube mechanism. Previous studies of optical viscosity sensors were conducted 
by using different optical sensing methods. The proposed optical viscometer consists of an 
LPFG sensor, a temperature-controlled chamber, and a cone-shaped reservoir where 
gravitational force could cause fluid to flow through the capillary tube. We focused on the 
use of LPFGs as level sensors and the wavelength shifts were not used to quantify the 
viscosity values of asphalt binders. When the LPFG sensor was immersed in the constant 
volume (100 mL) AC-20 asphalt binder, a wavelength shift was observed and acquired 
using LabVIEW software and GPIB controller. The time spent between empty and 100 mL 
was calculated to determine the discharge time. We simultaneously measured the  
LPFG-induced discharge time and the transmission spectra both in hot air and AC-20 asphalt 
binder at five different temperatures, 60, 80, 100, 135, and 170 Celsius. An electromechanical 
rotational viscometer was also used to measure the viscosities, 0.15–213.80 Pa·s, of the same 
asphalt binder at the above five temperatures. A non-linear regression analysis was 
performed to convert LPFG-induced discharge time into viscosities. Comparative analysis 
shows that the LPFG-induced discharge time agreed well with the viscosities obtained 
from the rotational viscometer.  
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1. Introduction 

The advantages of fiber optic sensors include light weight, small size, immunity to electromagnetic 
interference (EMI), large bandwidth, environmental ruggedness, and electrical-optical multiplexing. 
Thus, fiber optic sensors are ideal sensors for the applications of potential smart structures and 
materials. The fiber optic sensor technology has been applied to the health monitoring of 
infrastructures [1]. In several industrialized sectors, a viscometer or viscosity sensing system can be an 
instrument used to measure the viscosity of fluids such as asphalts, motor oils, petroleum products, and 
solvents. Previous studies of optical viscosity sensors were conducted by using different optical 
sensing methods. Experimental data published show that the optical viscosity sensing can be based on 
the use of photodiodes, which is a light-activated switches mechanism [2]. The principle of small angle 
neutron scattering and dynamic light scattering methods has also been used to measure the viscosity of 
a colloidal suspension, which consists of a core-shell system made of sterically stabilized silica 
particles grafted with octadecyl chains in toluene [3]. The sensor concept can be based on the 
frequency response of a fiber partially submerged in water, sucrose and glycerol solutions of different 
concentrations, which is sensitive to the viscosity of the above fluids. The viscosity is determined by 
measuring the vibration of a sinusoidally excited optical fiber probe such as forward light scattering, 
the bend loss theory, and partially immersed fiber vibrations [4-8]. The optical viscometer has been 
developed using the laser-induced capillary wave technique to measure the viscosity of distilled water 
and sulfuric acid with dye of carbon black. This novel micro optical viscosity sensor consists of two 
deep trenches holding photonic crystal fibers for excitation laser, and two shallow trenches holding the 
lensed-fibers for probing laser. The optical interference fringe excited by two pulsed laser beams heats 
the sample surface, and the temporal behavior of surface geometry is detected as a first-order diffracted 
beam, which contains the information of liquid properties (viscosity and surface tension) [9-11]. The 
flow of oil films under gravity and centrifugal force may be adapted to give accurate absolute 
measurements of viscosity for silicon oils [12,13].  

In addition, a single optical tweezer can be used as a quantitative tool to perform absolute viscosity 
of pure water samples on a micrometer-size scale [14]. The wireless magneto-acoustic and  
magneto-optical sensors have been used to measure the viscosity, temperature and density of  
water-glycerin mixtures and different grades of motor oil. The sensor oscillations are strongest at the 
characteristic mechanical resonant frequency of the sensor. Depending upon the physical geometry and 
surface roughness of the magnetoelastic films, the mechanical sensor-vibrations launch an acoustic 
wave that can be detected remotely using a hydrophone or microphone. Furthermore, the sensor 
oscillations act to modulate the intensity of a laser beam reflected from the sensor surface. The sensor 
vibrations were optically monitored using a photo detector placed in the path of a laser beam  
back-scattered off the sensor ribbon [15]. The application of molecular rotors, as nonmechanical fluid 
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viscosity sensors, covalently bound to a fiber optic tip technique has been used for optical viscosity 
sensing particularly in biofluids containing proteins [16]. The above viscosity sensors have been used 
to measure only low or medium viscous materials, such as distilled water, biofluids, sucrose, glycerol 
solutions and silicone oils. Their viscosities are less than 160–240 Pa·s at 60 Celsius, which is the 
viscosity range of an AC-20 asphalt binder. In addition, some viscosity sensors need expensive 
photonic crystal fibers, special processing, double sensing mechanism—magneto-acoustic and 
magneto-optical sensors, or complicated mathematical computation such as Fast Fourier Transform. 

In this work, we have developed a fiber optical viscometer using an LPFG technique with a 
capillary tube mechanism. LPFG is extremely sensitive to the refractive index (RI) of the material 
surrounding the cladding surface, thus allowing it to be used as ambient RI, chemical solution sensors, 
or chemical concentration indicators. The advantages of LPFGs include their low insertion losses, low  
back-reflection, polarization independence, and relatively simple fabrication. The other strengths of 
LPFGs are their simple construction, ease of use, potential capability for on-site, in vivo, and remote 
sensing, easily multiplexed to enable high-throughout screening of chemical reactions, and even 
disposable and unpackaged sensing. These gratings have offered wide applications in optical 
communications and sensing systems such as in-fiber band rejection filters and various kinds of 
sensors for temperature, strain, RI, and other property measurements [17-25]. Base on the combination 
of the LPFG sensing with a capillary tube mechanism, the LPFG sensor was first immersed in hot air 
and then in asphalt, and the corresponding discharge time and transmission spectra were measured at 
the same test temperature. The discharge time was the time spent on 100 mL of the asphalt being 
measured to flow through the capillary tube when the asphalt reached the immersion level of an LPFG 
sensor. When the LPFG sensor was immersed in the constant volume (100 mL) AC-20 asphalt binder, 
a wavelength shift was observed and acquired using LabVIEW software and GPIB controller 
connected with an optical spectrum analyzer (OSA). As soon as the preheated 100 mL asphalt reaches 
the mark of an LPFG, the time need was used to determine the discharge time. At the discharge time, 
the corresponding wavelength shift could be obtained from the spectra. An OSA was used since we 
would like to acquire and analyze transmission spectra data such as light intensity and wavelength shift. 
In fact, if the 100 mL discharge time is the only measurand, usually an LPFG with optical power meter 
or a light reflectivity change from a cutting plane of optical fiber could be used. It only needs an 
optical fiber (or fiber grating), a light emitting diode and a light detector. Optical power of 
transmission or reflection light from LPFG or fiber cutting plane changes when the surface of asphalt 
reaches to the fiber cutting plane. For the first time to our knowledge, the LPFG technique with a 
capillary tube mechanism was able to successfully yield a comparable viscosity sensing performance.  

2. Principle of Operation and Fabrication 

In general, an LPFG usually is a photo-induced periodic modulation of refractive index along the 
core of a single-mode fiber, with a typical perturbation of Δn ~ 10−4, periods between 100 μm–1 mm 
and length of 2–4 cm. The LPFG couples light from a guided fundamental core mode (LP01) to 
different forward-propagating cladding modes (HE1m) in an optical fiber, which is given by  
phase-matching condition [25]: 
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respectively, and Λ is the period of grating. The coupling of the light into the cladding region generates 
a series of resonant bands centered at wavelength λm in the transmission spectrum, since a cladding 
mode is rapidly attenuated in the fiber due to scattering losses. The center wavelengths λm of an 
attenuation band are solutions of the following equation [25]: 
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and a shift in the central wavelength can be obtained. This unusual feature of LPFG has recently drawn 
several experimental and theoretical investigations [20,23-28] towards the use of the LPFG as a highly 
sensitive refractive index sensor or chemical sensor. They have demonstrated that, as the surrounding 
refractive index ns is changed from ns = 1 to ns = 1.44, the major effect is a blue-shift of the center 
wavelengths of the attenuation bands, which in particular occurs in the longest wavelengths bands. In 
this case, by proper selection of grating parameters (period and cladding mode), wavelength shifts as 
large as 100 nm could be observed and sensitivity can be greatly enhanced. The principle of sensing is 
based on the total internal reflection experienced by the cladding mode between the interface of the 
cladding and the surrounding medium. For 1.45 < ns < 1.46, an abrupt change in the spectrum is 
occurred in which the cladding is expected to no longer support discrete guided modes, leading to the 
coupling spectrum spreads (broadband radiation modes) and nearly disappears for the highest order 
modes. At this point, the wavelength shifts of maximum coupling to shorter wavelengths could be 
observed and the highest sensitivity is shown by the highest order mode. For case of ns > 1.46 the 
cladding mode no longer experiences total internal reflection and the coupling to cladding mode 
structures reappears. It is shown that for higher order modes, as the index increases, the peak 
transmission loss increases and the wavelength shifts slightly increase (red-shift) or remain the same.  

The cladding modes are very sensitive to change in the refractive index of the ambient (surrounding) 
environment, particularly when the ambient refractive index higher than that of the cladding index is 
referred to as a leaky cladding mode [17,25-28]. The leaky cladding modes in LPFG arising from 
Fresnel reflection have been extensively studied by several authors [17,25-28]. In this situation, either 
wavelength shifts or amplitude changes of resonance peak wavelengths can be used to sense the 
external environment change. Previous experiments are normally conducted by dropping a series of 
ambient refractive-index oils and some mixture of them (RI from 1.00–1.60) upon the LPFG. The 
wavelength shifts are found to be nearly constant (about 1–2 nanometers) when the ambient refractive 
index is greater than the RI, about 1.46, of cladding material. As an example, for the highest order of 
spectrum with an ambient refractive index of 1.64, it is shown that there is +2 nm wavelength shifts 
and the peak of LPFG spectrum becomes deeper [17]. Furthermore, the air, water, and ethylene glycol 
or index matching oil have been used as different materials in a series of ambient refractive indexes 
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from 1.00 to 1.72, and the results show that the 1,560 nm resonance wavelength shifts a couple 
nanometers when the ambient refractive index is between 1.46 and 1.72 [25]. In a similar reported 
experimental study, several long-period gratings were fabricated in hydrogen-loaded Corning Flexcore 
fiber and then submerged into various refractive index oils (in the RI range of 1.00 to 1.73), and results 
illustrate that the 1,520 nm resonance wavelength shifts a couple more nanometers for the ambient 
refractive indexes of 1.49, 1.57, 1.66, and 1.73 [26]. For the surrounding refractive indices higher than 
that of the cladding, the resonance wavelength shifts have been shown a considerably reduced 
sensitivity and shifting about a few nanometers [27]. Those experiments have shown that if the 
refractive index is much higher than the cladding, such as 1.54, 1.57, 1.66, or 1.73, for the higher order 
modes the resonance wavelengths of the LPFG are slightly increased (about several nanometers) and 
the peaks of LPFG attenuation bands become deeper [25-27]. 

The materials used in most previous studies are not high viscous fluids, such as AC-20 asphalt, and 
are normally tested at room temperature, which are different from the five test temperatures we used, 
i.e., 60, 80, 100, 135, and 170 Celsius. In this paper, we focused on the use of LPFGs as level sensors 
and the wavelength shifts were not used to quantify the viscosity values or refractive indexes of asphalt 
binders. For our experiment, the temperature effect can be ignored since we measured the wavelengths 
both in hot air and asphalt at the same temperatures, such as 60, 80, 100, 135, and 170 Celsius. It has 
been reported that the RI of an AC-20 asphalt could be in the range of 1.64–1.66 (vide infra) which is 
higher than that of the cladding, but there is no enough information regarding the RI testing conditions 
and the type of asphalt (bitumen) [29]. With this refractive index, the responses of resonance peaks of 
the LPFG spectrum to an AC-20 asphalt are expected to become deeper. 

The fabrication and techniques of LPFGs have been reported elsewhere [25,30,31]. The 
experimental apparatus consists of a computer-controlled CO2 laser associated with a high-speed 
optical beam scanner, a translation stage, a broadband amplified spontaneous emission (ASE) fiber 
source and a high-resolution OSA (ANDO AQ6315A) used to monitor in-situ the transmission loss as 
the grating was written. The CO2-induced LPFGs studied in the paper were fabricated in hydrogen-free 
Corning SMF-28 fibers. The LPFGs were about 22 mm long and their grating periods were  
about 550 μm, written with a laser power of 0.8 W and a total exposure time of about 2 min. The 
transmission spectrum was interrogated during the writing and its characteristics such as insertion loss, 
resonance peak wavelength, and peak depth were analyzed after the grating was written. With suitable 
fabrication parameters such as laser power, exposure time, grating period, and scan speed, the resulting 
resonance wavelengths ranging from 1,200 nm to 1,600 nm with a greater than 20 dB peak depth were 
obtained. The experimental setup for LPFGs fabrication is shown in Figure 1(a). Figure 1(b) shows a 
transmission spectrum of an LPFG sensor in air and immersed in water at 25 Celsius. 

In this study, each transmission spectrum was referenced to the background spectrum of a bare fiber 
in air. The 3 dB bandwidth was determined by finding the peak of the ASE spectrum, and rising  
by 3 dB on each side. The spectral width of the ASE spectrum was determined by the separation of 
these two points because each has a power spectral density equal to one half the peak power spectral 
densities. The resonance wavelength was calculated as the average of two wavelengths determined in 
the 3 dB bandwidth measurements.  
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Figure 1. (a) Schematic for experimental setup of LPFGs fabrication; (b) transmission 
spectrum of an LPFG sensor in air and immersed in water at 25 Celsius. 
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3. Experimental and Modeling  

The test material, the sensing mechanism of an LPFG-based viscometer, and the use of non-linear 
regression model are described in this section. 

3.1. Material and Viscosity Sensing System  

Since asphalt is one of the most popular paving materials, an AC-20 asphalt binder was used as an 
example of a viscous material. The viscosity range of an AC-20 asphalt binder should be 200 ± 40 Pa·s. 
The AC-20 asphalt is refined from crude oil and it is thus not a polymer-modified asphalt but rather a 
petroleum asphalt cement. Since asphalt binders are viscoelastic and temperature-dependent materials 
and their properties, such as viscosity and refractive index, depend on several factors including the crude 
oil source, petroleum refining techniques, using additives or not, test temperature, and age effect. Thus, 
our material, an unmodified asphalt binder refined from crude oil, meeting the requirement of 200 ± 40 
Pa·s at 60 Celsius is classified as AC-20 asphalt. The refractive index of the AC-20 asphalt was rarely 
reported from the current available journals, books, or internet resources. As reported in [29], the 
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refractive index of the asphalt is about 1.64–1.66 and the material described therein could be 
unmodified asphalts, AC-10 (100 ± 20 Pa·s at 60 Celsius) or AC-20 asphalt binders. However, there is 
no enough information regarding the RI testing conditions and the type of asphalt (bitumen) [29]. 
Viscosity can simply be defined as resistance to flow of a fluid. Viscosity grading of asphalt binders 
usually is based on viscosity measurement at 60 Celsius. To the best of our knowledge, for those 
samples of asphalt binders we studied in this work, there are no theoretical results of the viscosity 
being made. They have to be measured using the rotational viscometer, which is the most common 
viscosity measurement device for asphalt binders or high viscosity materials in the field of civil 

engineering. The basic equation for absolute viscosity or dynamic viscosity is: 

dt
dγ
τη   = , where,  

τ  = shear stress, 
dt
dγ

 = strain rate. Strain rate is the same as the velocity gradient. In addition, the 

kinematic viscosity, 
ρ
ην = , which is the ratio of absolute viscosity to mass density. Thus, kinematic 

viscosity can be obtained by converting absolute viscosity into kinematic viscosity [32]. 
Figure 2 shows the schematic for the LPFG-based viscometer. This optical viscometer consists of a 

LPFG sensor, a broadband ASE fiber source, a high-resolution OSA (ANDO AQ6331), a  
temperature-controlled chamber, a computer with LabVIEW 8.5 software package and GPIB controller 
(NI-488.2, GPIB-USB-HS), and a cone-shaped reservoir with capillary where gravitational force could 
cause the liquid, such as asphalts, to flow through the capillary tube [32,33]. The diameter of capillary 
outlet tube is 9 mm and the distance between the outlet tube and the bottom of the beaker is 75 mm 
[see Figure 2(a)]. A home-made data acquisition system running with LabVIEW software package and 
GPIB interface, was used to acquire and analyze the transmission spectrum data of the LPFG from the 
OSA. During the course of data taking, we kept the eye’s horizon line be matching with the 100-mL 
level mark and the discharge time, independently measured by using a stopwatch (within 0.1 s error), 
was the time duration of 100 mL of fluid, such as asphalt, to flow through the capillary tube when the 
fluid reached the immersion level of an LPFG sensor [see Figure 2(b)]. We marked the immersion 
level, at the top of each LPFG, to ensure all LPFGs have been exactly 100% immersed in 100 mL 
asphalt. The immersion level of an LPFG was at the same 100 mL level of a beaker [see Figure 2(b)]. 
The LPFG sensor was first immersed in hot air and then in asphalt, and its transmission spectra was 
measured at the same temperature with the OSA. When the LPFG sensor was immersed in the constant 
volume (100 mL) AC-20 asphalt binder, a wavelength shift was observed and acquired by the data 
acquisition system. As soon as the asphalt reaching the mark of an LPFG, the time needed between 
empty and 100 mL was used to determine the discharge time. At the discharge time, the corresponding 
wavelength shift could be obtained from the spectra. The sensing length of the LPFG fibers used in 
this work was around 2 cm. Our data acquisition system was designed to detect the wavelength shift of 
the LPFG at high speed as the test liquid reached the top sensing level of the LPFG within a few mm 
depths. For precise viscosity measurement, we kept experimental setup in hot air and asphalt 
measurement at a constant temperature (within 0.1 °C fluctuation). Since we measured the same test 
temperature for both in hot air and asphalt, the temperature effect causing wavelength change between 
room temperature and test temperature is the same and can be eliminated. 
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Figure 2. Schematic for (a) an LPFG-based viscometer; (b) an LPFG bonded on a steel 
sheet glued on the wall of a beaker. 
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Furthermore, AC-20 asphalts possess a viscosity of 200 ± 40 Pa·s at 60 Celsius; it is hard to purge 
the asphalt out of the LPFG after testing. Thus, we used several LPFGs with different resonant 
wavelengths as disposal sensing components for the optical viscometer. The LPFGs were bonded, with  
high-temperature-resistance adhesive tape, at both ends on a small straight steel sheet, which was 
glued to the wall of a beaker to minimize the bending of the fiber. Therefore, we controlled to 
minimize the variations of test results, not influenced by temperature, strain or bending effects, as 
much as possible. Such an optical LPFG-based viscometer was capable of measuring simultaneously 
the discharge time and transmission spectra of a fluid at different temperatures. We measured the 
discharge time and transmission spectra for the AC-20 asphalt binder using this LPFG-based 
viscometer at 60, 80, 100, 135, and 170 Celsius. The viscosity of this asphalt was also tested  
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at 60, 80, 100, 135, and 170 Celsius using an electromechanical type of Brookfield rotational viscometer 
(RV, HB DV-II+ Pro) based on the method of AASHTO T316 [34]. The LPFG-induced discharge time, in 
seconds, were proposed to be converted into absolute viscosities, which were reference viscosities and 
measured from RV at the same temperatures. 

3.2. Non-Linear Regression Model 

The relationship between the discharge time, t, from the LPFG viscometer and the viscosities, η, 
from the Brookfield rotational viscometer was established using non-linear regression analysis. The 
Carreau-Yasuda-like model has been successfully used in the rheology area (such as polymers, 
asphalts), and thus was selected for the use of a non-linear regression model [35,36]. The  
Carreau-Yasuda-like model was as follows:  

( ) [ ] α
β

αληηηη
1 

0 ) (1 )( 
−

∞∞ +×−+= tt      (3) 

This model has five adjustable parameters, α, β, λ, ηo, and η∞. We fitted this model to the data, 
viscosity (η) obtained from rotational viscometer, as a function of LPFG-based discharge time (t) and 
calculated the above parameters. For non-linear regression modeling, the spreadsheet-like software, 
Excel Solver was performed. The tangent mode set for estimate, the forward step used for derivates 
and the Newton method selected as search technique were carried out. 

4. Results and Discussion 

4.1. Viscosity Measurements 

The LPFG-based viscometry for asphalt binders was conducted with three samples. The average 
discharge time (see Table 1) from the LPFG viscometer were 7,934, 1,448, 446, 35, 24 seconds  
at 60, 80, 100, 135, and 170 Celsius, respectively.  

Table 1. Experimental data of LPFG-based and rotational viscometers. 

Method Test temperature, °C 
 60 80 100 135 170 

LPFG 
viscometer 

100 mL Discharge time, s 7,930.0 
7,935.0 

1,407.9 
1,465.4

445.1 
446.1

34.5 
34.6 

23.4 
24.1 

 7,938.0 1,466.3 445.5 36.2 23.9 
Mean, s 7,934.3 1,447.6 445.5 35.2 23.8 
RMS1, s 3.30 27.33 0.41 0.78 0.29 
CV2, % 0.05 2.31 0.11 2.72 1.51 

Rotational 
viscometer 

Viscosity, Pa·s3 209.40 
221.40 
210.60 

20.80 
21.60 
20.98 

5.34 
5.36 
5.35 

0.56 
0.57 
0.57 

0.15 
0.16 
0.15 

Mean, Pa·s 213.80 21.13 5.35 0.57 0.15 
RMS, Pa·s 53.96 3.43 0.08 0.05 0.05 

CV, % 3.09 1.99 0.19 1.02 3.77 
1 RMS = root mean square. 2 CV = coefficient of variation. 3 Pa·s = 10 poises = 1,000 centipoises 
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This viscometer combines an LPFG level sensor and a capillary tube mechanism. The 100 mL 
discharge time is the key mersurand. The LPFGs were used as a level sensor with an OSA since we 
could acquire and analyze transmission spectra data such as light intensity and wavelength shift. 
However, the wavelength shifts of LPFGs varied probably due to the fabrication parameter factors and 
without quality-control process. The transmission spectra and average resonance wavelength shifts of 
the LPFG sensors in hot air and asphalt at several temperatures are plotted in Figure 3. Obviously, 
when the LPFGs were immersed in asphalt, the resonance wavelengths of the sensors were shifted to 
the longer wavelength. Figure 3(a) shows a plot of transmission spectra of the LPFG sensors in hot air 
and asphalt with increasing changes in temperature (from bottom to top). The transmission spectra 
have been offset for a better presentation. Based on the results of Table 1, there is no clear relationship 
between wavelength shifts and viscosities at different temperatures. We did not try to prepare the 
LPFGs having similar responses to the refractive index change because the information of wavelength 
shifts were not used to obtain the viscosity of the samples used in the experiment. It can be seen that 
the average wavelength shifts increased as the test temperatures increased. The asphalt has been 
reported having a refractive index, about 1.64, higher than the cladding [29]. Figure 3(b) displays the 
average wavelength shifts, with a 3 dB bandwidth method, about 0.96, 1.34, 2.40, 3.23, and 4.03 nm  
at 60, 80, 100, 135, and 170 Celsius, respectively. The amount of resonance wavelength shifts of  
AC-20 asphalt binder, under the condition of the five temperatures, were found to be about 1–4 nm and 
showed the trend of slightly increase with increasing temperature, indicating that the corresponding 
refractive indices were more than 1.46 since the wavelength shifts were measured as positive values. It 
is noted that the amount of wavelength shifts (~1–4nm) found here were also matched with some 
previously reported results for the case of the RIs greater than 1.46 or more [25-27].  

Figure 3. (a) Transmission spectra and (b) average wavelength shift of the LPFG sensors 
in hot air and asphalt at several temperatures. 
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Figure 3. Cont. 
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Thus, our experimental results presented here reveal that the refractive index of AC-20 asphalt 

could be more than 1.64 when it was tested more than 60 Celsius of temperature and this value was 
temperature-dependent. Furthermore, Table 1 also shows the viscosity results obtained from the 
Brookfield RV. The viscosity values for three samples, and each sample with five replicates  
at 60, 80, 100, 135, and 170 Celsius were plotted in Figure 4.  

 
Figure 4. Viscosities of asphalt samples from a Brookfield rotational viscometer at 60, 80, 
100, 135, and 170 Celsius. 
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The average viscosity values at 60, 80, 100, 135, and 170 Celsius were 213.800, 21.127, 5.350, 0.567, 
and 0.153 Pa·s, respectively. The quantitative comparison of discharge time from LPFG-based 
viscometer and viscosities from RV was based on the analysis of root mean square (RMS). The range 
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of RMS values for LPFG-based and rotational viscometers were 0.29–27.33 s and 0.05–53.96 Pa·s, 
respectively. The coefficient of variation, normalization in statistics, indicates the variation of data 
from the discharge time of the LPFG-based viscometer and viscosities from RV were 0.05–2.72%  
and 0.19–3.77%, respectively. Thus, the proposed method—LPFG-based viscometer possessed the 
potential to measure the viscosity of a fluid. 

4.2. Comparative Analysis 

Based on the results from the optical and electromechanical viscometers, the log-log-scale 
relationship between the viscosity (η) of this asphalt binder using RV versus the discharge time (t) 
from LPFG viscometer is shown in Figure 5 (see diamond icon). The non-linear regression was 
performed in two stages, since when the discharge time was about greater than 446 seconds 
(corresponding 100 Celsius, t = 446 s), the asphalt binder behaved or flowed like a Newtonian fluid. 

The viscosity grading of asphalt binders, 

dt
dγ
τη   =  is almost a constant. Thus, the slope of  

viscosity-discharge time line is close to a constant and this could be seen in Figure 5. The error sum of 
squares (SSE) of the non-linear regression models with stages I and II were 9.366E-07  
and 6.368E-10, respectively.  

Figure 5 shows that the comparative plot of LPFG-RV-measured viscosities (see diamond icon) 
agreed well with the predicted viscosities (see rectangular icon). The following equations show the 
two-stage results for non-linear regression analysis using the Carreau-Yasuda-like model: 

( ) ( ) [ ] 656007.0
1943056.0

656007.0  ) 010157.0(1 0159.913291.32 0159.91)(
−

+×+−+−= ttη ; if st  446<  (Stage I) (4) 

( ) [ ] 882737.0
1727609.0

882737.0  ) 002646.0(1 63459.1)(
−−

+×−= ttη ; if st  446≥  (Stage II)   (5) 

Figure 5. Comparative plot of LPFG-RV-measured viscosity and predicted viscosity. 
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5. Conclusions 

Studies presented in this paper successfully illustrate the feasibility of fabricating a class of fiber 
optical viscometer based on the LPFG sensor written by CO2 laser pulses. The realization of the sensor 
is through the measurement of discharge time for 100 mL AC-20 asphalt binder to flow through the 
capillary tube whereas the asphalt reached the LPFG sensor and induced a wavelength shift. Data were 
collected and analyzed at five different temperatures (60, 80, 100, 135, and 170 Celsius). For the first 
time we report the data of viscosity of AC-20 asphalt binder at five different temperature and present 
the explicit formula between the viscosity and discharge time for this sample. Experimentally, the 
LPFG-induced discharge time was converted into viscosities using the Carreau-Yasuda-like model and 
results were compared with those measured from RV at the same temperatures. Theoretically, the  
two-stage non-linear regression analysis was applied to compare the LPFG-RV-measured viscosities 
with the predicted ones. Our results show that the computational predictions agreed well with the 
experimental data. Although in this paper the LPFG was used just as a level sensor, it can be turned to 
a simple way of measuring the discharge time that finally has a link to the viscosity of the test liquid. 
Thus, in this study we have successfully demonstrated a novel LPFG capillary tube viscometer and its 
feasibility of measuring the viscosity of AC-20 asphalt binder at five different temperatures which has 
yet to be reported.  

The proposed LPFG-based viscometer could potentially perform two simultaneous physical 
measurands, the viscosity and refractive index, of a fluid. To our knowledge, this is the first time an 
LPFG sensor associated with a capillary tube mechanism has successfully shown a comparable 
viscosity sensing performance. Such a highly sensitive fiber-optic viscosity sensor is suitable for use in 
various fields of applications, such as civil, food, chemical and biological, mechanical, petroleum, and 
aerospace engineering. The advantage of this type of sensor is relatively simple of construction, 
compact, low cost, and ease of use. Moreover, the sensor has the potential capability for on-site,  
in vivo, and remote sensing, and has the potential use for disposable sensors. 
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