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Abstract: One of the most intricate branches of metrology involves the monitoring of 

displacements and deformations of natural and anthropogenic structures under 

environmental forces, such as tidal or tectonic phenomena, or ground water level changes. 

Technological progress has changed the measurement process, and steadily increasing 

accuracy requirements have led to the continued development of new measuring 

instruments. The adoption of an appropriate measurement strategy, with proper instruments 

suited for the characteristics of the observed structure and its environmental conditions, is 

of high priority in the planning of deformation monitoring processes. This paper describes 

the use of precise digital inclination sensors in continuous monitoring of structural 

deformations. The topic is treated from two viewpoints: (i) evaluation of the performance 

of inclination sensors by comparing them to static and continuous GPS observations in 

deformation monitoring and (ii) providing a strategy for analyzing the structural 

deformations. The movements of two case study objects, a tall building and a geodetic 

monument in Istanbul, were separately monitored using dual-axes micro-radian precision 

inclination sensors (inclinometers) and GPS. The time series of continuous deformation 

observations were analyzed using the Least Squares Spectral Analysis Technique (LSSA). 

Overall, the inclinometers showed good performance for continuous monitoring of 

structural displacements, even at the sub-millimeter level. Static GPS observations 

remained insufficient for resolving the deformations to the sub-centimeter level due to the 

errors that affect GPS signals. With the accuracy advantage of inclination sensors, their use 

with GPS provides more detailed investigation of deformation phenomena. Using 

inclinometers and GPS is helpful to be able to identify the components of structural 

responses to the natural forces as static, quasi-static, or resonant. 
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1. Introduction 

It is essential to determine the type, characteristics and scale of movements of a spatial structure or 

object under load from environmental forces to understand the potential probability of permanent 

damage or eventual destruction of the structure [1-6]. In metrology, various deformation monitoring 

and analysis approaches have traditionally been used [1,7-13] to ensure safe operation and usage of 

such structures. Furthermore, deformation may require very expensive restoration to be performed. 

The construction and management of such structures will be most cost-effective when the causes of 

deformation can be discovered and prevented. Currently, it remains an open question how best to 

detect significant deformations with an adequate level of precision [2,7,14-17]. 

In recent years, the progress of technology has resulted in improved precision of measurement 

systems, yielding more reliable results in deformation analysis of structures [18]. In addition to 

conventional terrestrial surveying methods using theodolites/total-stations, levels and similar surveying 

equipments, satellite-based positioning techniques (Global Navigation Satellite Systems, or GNSS, 

including GPS, GLONASS, Galileo, and Compass) have seen widespread use in structure monitoring. 

However, despite the many strengths and advantages of GNSS and conventional methods, there are 

still a few limitations due to the inherent geometric weaknesses of these systems, specifically, 

individual and atmospheric errors that affect their performance when used in high-precision  

work [1,14,17,19]. To overcome these techniques’ disadvantages and increase their level of accuracy, 

it is necessary to use additional precise measurement equipment, such as inclination sensors, 

accelerometers, and terrestrial laser scanners [1,6,7,12,13,15,20,21]. 

Today, inclination sensors are often part of measurement systems that are used in static and 

kinematic applications of many disciplines, such as measuring the inclination of land or platforms to 

build upon, in aircraft flight systems, vehicle security systems, volcano monitoring, precise  

farming etc. [22,23]. However, the studies are not many on the performance assessments of precise 

inclinometers and their use alongside other techniques for structural monitoring. In this study, a pair of 

inclination sensors of micro-radian precision were used alongside GPS for monitoring and determining 

the movements of a tall building and a geodetic monument (International GNSS Service-IGS 

continuous reference GPS station pillar), both located in Istanbul to the north of the North Anatolian 

Fault (NAF) [24-26]. Explaining merits and limitations of inclination sensors by comparing them to 

static and continuous GPS observations in deformation monitoring based on the drawn results of the 

case studies is purposed. The followed strategy and methodology for analyzing the deformations of 

case objects may constitute an example to the similar investigations. 

At a glance, large differences can be seen in the specifications of commercially-available inclination 

sensors [22]. The inclinometers used in the study are dual axes digital sensors, able to determine 

simultaneously the degree and direction of inclination, along with the temperature. With an  

opto-electronic sensor unit, 0.001 mm/m measuring accuracy is achieved [27]. Since these sensors do 
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not employ mechanically-driven moving parts, they do not need any maintenance and provide  

long-term stability, which are useful properties for continuous deformation monitoring. 

In monitoring a tall reinforced concrete building which was damaged in the East Marmara 

Earthquake (Mw = 7.2) on 17 August 1999 [28], and then strengthened after the earthquake, two 

inclination sensors and dual-frequency geodetic GPS receivers were employed in the observation 

setup. Three static GPS campaigns were performed at six-month intervals. Considering GPS 

coordinate differences between the campaigns after datum transformation, the deformations were 

investigated to a millimeter-level (relative) accuracy [29]. Using the pair of inclination sensors, the 

structural movements of the building were continuously monitored for 36 days between the second and 

third GPS campaigns [30]. Through monitoring the deformations of the building, besides testing the 

performance of precise inclinometers versus GPS in deformation monitoring, we sought to analyze the 

long-term elastic deformations of the building in addition to record the probable static deformations 

that occurred under the effect of environmental forces, such as earthquakes and strong wind load. 

In addition to the engineering structures, geodetic control network benchmarks are also subject to 

deformations under environmental effects and tectonic activities, and the distortions in a geodetic 

network affect the health and reliability of the geospatial infrastructure and cause crucial problems in 

every spatial data application. Therefore, we performed a second experiment with the inclinometers to 

monitor the movement of a geodetic monument, namely, a 1.20 m tall ISTA-IGS pillar. The pillar is 

located outdoors on the roof of a five-story reinforced concrete building on the campus of the Istanbul 

Technical University, and it carries a bullet type GPS antenna. Continuous monitoring of the pillar was 

required to explain the effects of movement from the host building, as well as atmospheric effects such 

as temperature, wind, and humidity. The inclination sensors continuously measured the movements  

of the pillar and the pier of the building, where the pillar is located, for two periods of  

approximately 30 days each in two different years, 2000 and 2002 [31,32]. Along with the 

observations from the inclination sensors, the baseline solutions were also obtained between the two 

continuous reference GPS stations, ISTA and KANT (a station of the Marmara GPS  

Network-MAGNET, which was established for geodynamic and earthquake research in the Marmara 

region) and the displacements of ISTA pillar was investigated depending on these solutions [33]. 

The time series obtained from the inclinometers and continuous GPS data were processed using the 

Least Squares Spectral Analysis (LSSA) technique, which is useful for the evaluation of periodic, 

multi-parameter, and noisy time series that can be decomposed into their component signals [34-37]. 

This method is based on the least squares approximation technique, which is closely related to least 

squares parametric adjustment [34,37], and it has certain advantages compared to classical Fourier 

methods, such as overcoming the blindness of former techniques to the existence of sampling 

irregularities or gaps in the data. It was applied in its original form by [38] and [39], and alternate 

forms have been used by a number of researchers in the fields of geodetic science [34,37,40,41-45], 

astronomy [46,47], geophysical applications (e.g., [48]), mathematics (e.g., [49]), microbiology  

(e.g., [50]), medicine (e.g., [51]), and finance. 

In the overall conclusions from the case studies, besides the high accuracy advantage of inclination 

sensors in monitoring the dynamic structural movements at submillimetre level, detecting static or 

quasi-static deformations of the structure are not easy using these instruments. The displacements 

along the plumb line, like uplift or collapse of the structure, cannot be recognized using them. 
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However, these limitations of inclination sensors can be defeated by GPS technique. Using static GPS 

observation method, the static or quasi-static deformations of a structure can be determined at the 

centimeter level. In literature, certain strategies, applying effective mitigation algorithms to GPS 

observations, are reported and suggested to improve the reliability of the GPS results [52-54]. In 

addition to its static applications, the GPS technique can be employed in continuous monitoring, and 

the analysis results of GPS time series and inclinations can be converted each other and hence provide 

a double check for continues structural movements. In the results of this study, although the inclination 

sensors were proved self-sufficiency in monitoring structural deformations, their use together with 

GPS sensors provide a more reliable results and detailed insight of structural behaviors. The results of 

this study should also be considered to emphasize the importance and necessity of structural health 

control using appropriate monitoring and analyzing techniques in active tectonic regions like İstanbul. 

2. Description of the Observation Setup 

2.1. Precise Inclination Sensors 

Inclination sensors measure angular tilt with respect to an artificially-generated horizon (i.e.,  

a steady liquid surface), and they are used in a wide spectrum of applications, including land (or 

platform) leveling, aircraft flight controls, automobile security systems, and many civil engineering 

applications. Two specifications of these instruments, namely, precision and number of axes (which 

are usually, but not always, orthogonal), determine whether an inclination sensor is appropriate for a 

specific application [22]. 

In this study, two Leica NIVEL20 digital inclination sensors were employed [27]. These are precise 

dual-axis instruments with ±0.001 mm/m (0.001 mrad) measuring accuracy within an effective range 

of 1.5 mm/m and capable of measuring inclines and declines along the orthogonal directions 

(described as X and Y axes, intersect each other at an origin that defines a coordinate system). This 

axis definition is displayed on the sensor for the user’s reference, and thus, the directions of inclination 

can easily be identified (see Figure 1). The advantage of a dual-axis instrument is that it can observe 

the tilt of a surface and thus be able to interpret the movements of the observed object when it is 

deflected from the vertical. 

Figure 1. Functional principles of the inclinometer: (a) Horizontal position. (b) Tilted 

position. 1 The light from the LED, 2 LED, 3 Container with liquid inside, 4 Biaxial 

position detector [27]. 

 
(a)          (b) 
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In the design of the sensor, the horizon (tilt-sensitive element) is provided by a liquid in a closed 

container. The liquid’s surface is perpendicular to the vertical, independent of the sensor’s orientation. 

The inclination of the horizon relative to the sensor is measured by opto-electronic means. All the 

optical components used in the sensor are fastened to the underside of a flat glass plate. The plate also 

forms the bottom of the container with the transparent liquid. Through opto-electronic components, the 

luminous surface of a Light-Emitting Diode (LED) is imaged on a position-sensitive photodiode. The 

light from the LED is guided from below through the flat glass and the liquid, is totally reflected at the 

liquid’s surface, and then passes again through the liquid and the flat glass. Finally, the photodiode 

detects the position of the impinging light spot relative to the origin, which was adjusted and calibrated 

precisely in the horizontal configuration of the sensor (see Figure 1) [27]. 

The flat glass plate, serving simultaneously as a component and as the support for the actual sensor 

element, is clamped onto a trough-shaped metal base. The sensor is set up on three hardened and 

ground circular support surfaces on the underside of this base. The support surfaces have through holes 

for the screws in the center. The sensor is covered with a plastic hood that serves primarily as a 

thermal insulator, which is meant to prevent external heat effects from causing non-uniform thermal 

expansion in the interior of the sensor and consequent measuring errors (see Figures 2(b) and (c)). A 

temperature sensor is also installed to monitor the sensor’s temperature. A bubble level on the sensor 

allows the operator a rough determination of the horizontal. More precise adjustment of the horizon is 

done electronically by the help of software before starting measurement with the instrument. The 

values of inclinations in the X and Y directions (in mrad, mm/m, or arc-min) and the temperature 

(inC) are available as measurement values, and the observed data is visualized and stored using 

commercial software in a terminal computer. The inclinometer has an RS-232 or RS-485 serial 

interface, the latter of which has the capability of operating up to thirty-two sensors on the same 

network. Some specifications of the measuring capacity of the sensor are summarized in Table 1 [27]. 

Figure 2. (a) Mounting elements of the NIVEL20 sensor. (b) The sensor on the support 

surface (steel console platform) with its plastic hood. (c) Cover of plastic hood [27]. 

 
(a)        (b)      (c) 

A: Wall mount; B: 3 × M6 washer to install wall mount; C: 3 × M4 screws to install the sensor;  

D: Flange assembly to align the sensor in the desired direction by rotation; E: 3 × M5 ball pressure 

screws for coarse leveling of sensor; F: 1 × M6 center screw of the flange assembly; G: Nut to 

secure the leveling 3 × M5 ball pressure screws to ensure long-tem stability of the setup. 
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Table 1. Specifications of the inclinometer [27]. 

Specification Value 

measuring range 1.5 mrad (or mm/m) 
accuracy 0.001 mrad 
resolution 0.001 mrad 
zero-point stability <0.005 mrad/C 
operating temperature range −20 to +50 C 
storage temperature range −30 to +60 C 
relative humidity 10 to 95% 
dimensions of the instrument (L × W × H) 90 × 90 × 63 mm 
weight of the instrument 850 g 
supply voltage 12 V DC 25% 

 

Because the main objective of this research is to investigate the performance of inclination sensors 

in monitoring structural deformations, the sensors were deployed at the top (17th) floor of a 54-meter 

high building in Istanbul (see the location of the building vs. NAF in the Istanbul map in Figure 3), as 

the top floor is where the maximum displacements were expected.  

Figure 3. Locations of the tall building (HLKL) and the geodetic network stations (ISTA 

and KANT) in Istanbul. The red line indicates the approximate location of the North 

Anatolian Fault (NAF) (refer to [25] and [26] for active tectonic maps of Turkey). 

 
 

In the setup, each sensor was mounted on the piers of two orthogonal walls, and the orientation of 

the sensors on the steel mounting platforms (see Figure 4) was arranged so that the tilt components can 

be calculated in the employed reference system and can be compared to the other sensor. Precise 

adjustment of the sensors was done electronically before starting the measurements. For visualization 

and storage of the data, a laptop computer and an uninterruptable power supply (UPS) were placed 

next to the sensors, and software accompanying the inclinometers was used to manage the data (see 

user interface of the software in Figure 4(d)). The software interface allows the user to see incoming 
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data either graphically or numerically during or after the observation period. Apart from a failure in the 

storage process at the beginning of the measurements, both instruments measured the inclination and 

temperature values during the whole campaign for 36 days at a sampling interval of about 5 minutes 

(irregularly occurred sudden changes in the data out of given sampling time is recorded automatically). 

The analytical results of the inclination and the results from the GPS processing were both used for 

deformation analysis of the building. 

Figure 4. (a) Monitoring setup of the tall building: locations of inclination sensors and the 

deformation network benchmarks on and around the building [30], (b,c) instruments used 

in the study, (d) user interface of the monitoring software. 

 
 

While the first experiment evaluates the indoor performance of inclinometers, the second test of the 

study clarifies their outdoor performance in deformation monitoring. In the second experiment, the 

structural deformation of the ISTA GPS reference station pillar was monitored. Since the pillar is on a 

building instead of a geologically safe location on hard terrain, and thus the self-movements of the 

building might affect its position, concerns about the stability of the pillar required its deformations to 

be investigated in the second phase of this study. 

The monitoring setup included the pair of inclination sensors, one of which was mounted on the 

pillar and the other on the building pier on which the pillar had been constructed (see Figure 5). The 

observations were performed in two individual campaigns between February and April in 2000  

and 2002, with approximately 30 days of observation in each campaign. During the observation period, 

the sensors were protected against atmospheric effects like direct sunlight, rain, and snow. The 

sensors’ axes were oriented properly with the help of a compass to provide parallel reference systems. 

Thus, in both campaigns, the sensors’ X-axes were set approximately to the North-South direction and 

the Y-axes were in the East-West direction. They were connected to each other using an RS485 

standard cable and then to a laptop computer using an RS232 standard cable. A UPS supplied power to 

the system to make it resilient to electricity outages (Figure 5). The inclination data and instant 

temperature values were collected at one-minute intervals and stored in a database for further analysis. 

Additionally, the daily weather conditions were also reported by an observer, providing valuable input 

for the interpretation of results. 
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Figure 5. (a) Monitoring setup of the geodetic pillar [31], (b,c) Pictures from the  

campaign 2000. 

 

2.2. GPS Observations 

The satellite-based Global Positioning System (GPS) was originally introduced for navigation, but 

its high accuracy and reliability in positioning drove its adoption for structural deformation monitoring 

as well as other geodetic surveys, and subsequently for seismological studies [9,15,16,55,56]. With 

advantages in terms of accuracy and practicality, GPS proved its success for determining abrupt 

displacements and also very slow movements of structures, and this success motivated its application 

to studies of rapid displacements, for instance, recording the oscillations of bridges and other slender 

engineering structures [1,10,15]. 

There are, however, various measurement approaches for determining coordinates using geodetic 

GPS receivers, such as static (fixed GPS antenna in a certain position), kinematic (GPS antennas along 

a path), real-time kinematic (positioning in real time with receivers connected by radio or wire link), 

and post-processing kinematic. In each of these, the positioning principles remain the same: the GPS 

antenna represents the apex of an inverted pyramid, the base of which is usually defined by at least 

four satellites (with accurately-known coordinates), and information is continually received from the 

satellites during the entire observation session. Hence, the coordinates of the point (the receiver 

antenna) can be determined to average accuracy of a few millimeters after correcting for short-period 

errors that affect the GPS signals, such as atmospheric and tropospheric delays [10]. However, the 

accuracy and reliability of coordinates vary depending on certain factors that affect the quality of GPS 

measurements, namely, the satellite visibility, availability, and geometry; the quality of the transmitted 

signal and its delay by the ionosphere and troposphere; secondary reflections of the satellite signal by 

topographical objects (multipath signals); and personal errors like misreading the GPS antenna height 

or centering the antenna on a wrong benchmark [1,10,19]. To improve the positioning quality, 

therefore, special precautions and efforts may be required in GPS monitoring of deformations [52-54]. 

In any case, low accuracy is expected from observations taken in places where satellite visibility is 

poor, such as in canyons or streets surrounded by high buildings, as well as near reflecting surfaces 

where signals are noisy, such as water reservoirs and metal covers. The selection of receiver location 

and the duration of measurements, as well as software exclusion of low-quality measurements or 

signals (including “cut-off angles”, i.e., satellites at very low angles relative to the horizon and signals 

subject to strong atmospheric effects) permit us to control these sources of errors. 
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In addition to inclination sensors, GPS was also included in the monitoring setup of both 

experiments here. Hence, both techniques were compared, and their merits and limitations in 

deformation analysis were clarified. We can thus assess their individual and together contribution to 

the deformation monitoring. In each case study, a different GPS measurement and data analysis 

strategy was adopted. 

In monitoring the tall building, three GPS campaigns were completed at six-month intervals, and 

the static GPS measurement method was applied. The control network for GPS monitoring, established 

at the beginning of the first campaign, can be seen in Figure 4. The benchmarks of the control network 

were located on stable hard terrain around the building (numbered 101 to 106), and four of the 

deformation benchmarks were also located at the tops of the piers of the building (S101, S102, N101, 

and N102) (Figure 4). Dual-frequency twelve-channel geodetic GPS receivers were used in the 

campaigns. The durations of the GPS sessions varied from 40 to 60 minutes, with 5-second sampling 

intervals. The GPS data of the campaigns were processed using default parameters of a commercial 

GPS data processing software (Leica Geo Office—LGO) and in the results the relative accuracy of 

GPS-derived positions of the deformation points is calculated better than 3 millimeters.  

In deformation analysis of the ISTA pillar using the GPS technique, the baseline solutions are 

considered between two continuous reference stations, namely, the ISTA and KANT pillars. The 

KANT geodetic pillar is located 6 km southeast of ISTA on geologically-stable hard ground (see the 

map in Figure 3). Both geodetic monuments are located on the same tectonic plate [24-26,33]. In the 

processing strategy, the coordinates of ISTA (Easting and Northing) were derived from the hourly GPS 

data of the stations with 30-second sampling intervals. The sequential solutions (24 solutions per day 

for approximately 30 days) of both measurement campaigns constituted the time series. Then, the 

periods of movement were determined using LSSA, and the results were compared with the output 

from the LSSA for inclination sensors data. 

3. Methodology and Details of Data Analysis 

3.1. Least Squares Spectral Analysis (LSSA) Method 

Due to the nature of the measurements, the observed time series are assumed to be composed of two 

main constituents: signal and noise. The noise can be random and systematic. Uncorrelated random 

noise with constant spectral density, which is known as white noise, is assumed to be ideal. However, 

in practice, the observables mostly include non-white random noise, which is a band-limited random 

function of time. Systematic noise may also have systematic and non-systematic parts and can be 

modeled with certain mathematical forms. In contrast, non-systematic noise can include datum shifts 

and trends, which renders the series non-stationary. When analyzing the time series, a possible trend is 

generally identified and removed to avoid non-systematic noise [34,36], and de-trended data consists 

of superimposed signals. 

Depending on the structure of the analyzed data, in some cases a particular signal of a time series 

can be dominant and can be modeled using simple techniques such as a parametric model or 

polynomial fitting. However, the measurements mostly have irregular distributions with unequal 

intervals, and in such cases spectral techniques are used to analyze the data as a sum of periodic signals 
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and to estimate their periods and amplitudes. This can be done either using non-parametric methods, 

such as Fourier transform based algorithms, which are commonly applied to longer time series with 

equidistant data, or using parametric methods, such as Least Squares Spectral Analysis, a method to 

decompose a signal into a sum of trigonometric terms using least squares techniques, even for short 

time series with non-equidistant data. 

Spectral Analysis by Least Squares was first developed and applied by Vaniček in 1969 [38,39] to 

overcome the inherent limitations of classical Fourier methods. Notable advantages provided by LSSA 

are: (i) the systematic noise (colored or otherwise) can be rigorously suppressed without causing any 

shift in the existing spectral peaks [40], (ii) time series with unequally-spaced values can also be 

analyzed without pre-processing [41], (iii) time series with an associated covariance matrix can be 

analyzed and (iv) statistical tests on the significance of spectral peaks can be performed, which makes 

the method promising and powerful for evaluating the time series. 

In LSSA, an observed time series is considered to be a function of time ti and is represented by  

f = f(t) = fi, i = 1,2,…,n. As the main objective of LSSA is to detect the periodic signals in f, 

especially when both random and systematic noise is present, f can be modeled with function g  

as follows: 

g x  (1) 

where  is a matrix of known base functions and x is the vector of unknown parameters. Here it is not 

necessary for the time series to be equally-spaced. However, the observations fi are assumed to possess 

a fully populated covariance matrix Cf. To estimate the model parameters x, the standard least squares 

method (e.g., [51]) is used, in which the difference between g and f is minimized in the least squares 

sense. The estimate of model parameters can be obtained as follows: 

ොݔ ൌ ሺФ்ܥ௙
ିଵФሻିଵ Ф்ܥ௙

ିଵ݂ (2) 

੗ෝ ൌ Ф ොݔ ൌ ФሺФ்C௙
ିଵФሻିଵ Ф்C௙

ିଵ݂ (3) 

In the least squares method, the model parameters are determined to minimize the difference 

between ੗ෝ and f. Using the standard least squares [57], we obtain: 

ොݒ ൌ ݂ െ ੗ෝ ൌ ݂ െ ФሺФ்C௙
ିଵФሻିଵ Ф்C௙

ିଵ݂ (4) 

From the projection theorem, it is known that ݒො ٣ ੗ෝ , which means that f has been decomposed into 

a signal ੗ෝ and noise ݒො (residual series). Thus, to describe how ੗ෝ represents f, a fractional measure s 

that is the ratio of the length of this orthogonal projection to the length of f is used: 
1

1

ˆC

C

T
f

T
f

f g
s

f f



  (5) 

In spectral analysis, the hidden periodic signals that are expressed in terms of sine and cosine base 

functions are sought. Therefore, if a set of spectral frequencies (i, i = 1,2,…,m) are specified, then we 

can express the signals as: 

੗ෝሺ߱௜ሻ ൌ ොଵ௜ݔ cos ߱௜ݐ ൅ ොଶ௜ݔ sin ߱௜(6) ݐ 
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Let ݔො ൌ ሾݔොଵ௜  , ොଶ௜  ሿ் and Фݔ ൌ ሾ cos ߱௜ݐ , sin ߱௜ݐሿ. Then ݔො can be determined from Equation (1). For 

different frequencies i, i = 1,2,…,m, different spectral values can be obtained. Then, the least squares 

spectrum is defined by: 

    11

1

ˆC
1 , 1, 2,...,

C

T
f i n

i T
f s

f g Q
s i m

f f Q








 
    

 
 (7) 

where Qn and Qs are the quadratic norms of the noise and signal, respectively [34]. Equation (7) 

describes the least squares spectrum. Obviously, the least squares spectrum of f is the collection of the 

spectral values for all desired frequencies i, i  1,2,…,m. The greater the spectral value at a 

frequency i, the more powerful f is at this frequency [34]. Given Equation (7), statistically significant 

spectral peaks satisfy the following inequality: 

 
1

,2,1
2i v

v
s F 


    

 (8) 

It is obvious from Equation (8) that the least squares spectrum follows the Fisher distribution with v 

degree of freedom and  level of significance [34]. Also, Equation (7) can be further developed into 

other forms to provide the researcher with more familiar spectral representations, such as power 

spectral density (PSD) in decibels (dB) or in unit2/frequency, where ‘unit’ is the unit of the time series 

values [37]. In [34], the least squares PSD in decibels is given by: 

 LSPSD 10log dB
1

s

s
    

 (9) 

Solving Equation (7) with respect to Qs and dividing by the frequency f, the classical least squares 

spectrum can be transformed into the least squares PSD in unit2/f: 

  2
LSPSD unit

1
nQ s

f
f s
    

 (10) 

The least squares PSD in Equations (9) and (10) are equivalent to those determined from the Fast 

Fourier Transform (FFT) when the series is equally spaced and equally weighted. In addition, these 

equations can also be used to calculate the power spectra of any series, without the restrictive 

conditions of the FFT, which is the advantage of the LSSA method [37]. 

Generally speaking, the observed time series may include trigonometric base functions (Equation (6)) 

to describe the periodic components of the series, along with random walk and auto-regressive 

components. When the calculation of the least squares spectrum is carried out, there will be a 

simultaneous least squares solution for the parameters of the process. This approach is represented as a 

rigorous approach to the problem of hidden periodicities, where the parameters of the assumed linear 

system driven by noise are determined simultaneously with the amplitudes and phase of the periodic 

components, as well as with other parameters that describe systematic noise [34,37,58]. The LSSA 

software that implements the above algorithm was used in the spectral analyses of data in this  

study [34,36]. 
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3.2. Case Study-I: Analyzing Movements of the Tall Building 

In this section, we discuss the results from the inclination sensors and GPS data for clarifying the 

behavior of the building. First, we present the raw temperature and inclination data from the sensors. In 

Figure 6, the first chart shows the indoor temperatures recorded by the sensors, varying between 19 C 

and 24 C. The outdoor temperatures over the observation period ranged between 4 C and 11 C. The 

second chart shows the inclination data in milliradians (mrad) along the Y (east-west) and  

X (north-south) axes. In the legends, the data are labeled dX and dY, since these values are relative to 

an initial value of tilt, which was set to approximately zero at the beginning of the observations. In 

Table 2, the ‘magnitude’ corresponds to the maximum displacement of the observed object [30]. 

Figure 6. Temperature changes and inclinations of the tall building from 8 February  

to 15 March 2003. 

 

Table 2. Statistics of the tall building inclinations in mrad. 

Sensor No\Axis Sensor-I\Y Sensor-II\Y Sensor-I\X Sensor-II\X 

maximum 0.107 0.144 0.036 0.031 
minimum −0.059 −0.001 −0.141 −0.221 
magnitude 0.166 0.145 0.177 0.252 
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The LSSA of the inclination data was performed in two steps. In the first step, all observations 

shown in Figure 6 were taken into account and analyzed. In the second step, involving more rigorous 

investigation of the spectrum, the data was divided into weeks and LSSA was applied to weekly data. 

To expose higher frequencies in the data, the significant signal with a 24-hour period was suppressed. 

In the end, as expected, the LSSA of Sensor-I and Sensor-II data revealed identical results, and 

therefore only the results from Sensor-I data are shown here. 

The outputs were as follows: the periods, frequencies (cycle/hour), amplitudes with root mean 

square errors (RMSE), percentage variance levels (%var, which is a ratio showing how much of the 

signal ĝ  is contained in the observed time series f from Equation (5)), and respective PSDs of the 

periodic signals. Significance tests were performed on the parameters. The variance levels, as derived 

in the first step, are plotted against frequency in Figure 7, where the significance of the signal with  

a 24-hour period (T = 24 h) is seen in both the Y and X lines. Nearly 40% of the signal with T = 24 h 

can be recognized in the observed data with LSSA. This outcome is supported by the evaluation results 

of the weekly observations (see Figure 8). 

Figure 7. Least Squares (LS) spectrum of the entire observations. 

 

Figure 8. LS spectrum of weekly observations. 
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After the signal with T = 24 h, which was marked as significant in the previous steps, was 

suppressed, the significant peak in the X-axis data (inclinations on the north-south direction) with  

T = 12 h was recognized. In the observations on the Y-axis (east-west direction), an additional signal 

with T = 8 h was also identified. The significance of the higher frequencies in the Least Squares 

spectrum is clearly visible in Figure 9. The results of the evaluations are summarized in Table 3. 

Figure 9. LS spectrum of the observations after the signal with the highest period  

is removed. 

 

Table 3. LSSA results of inclination data: periodicities of resonant movements of the tall building. 

Period 
(hour) 

Direction 
Frequency 
(cyc/hour) 

Amplitude 
(mrad) 

Direction 
Frequency 
(cyc/hour) 

Amplitude 
(mrad) 

8 
Y-axis 

(east-west) 

0.125 0.007 
X-axis 

(north-south) 

  
12 0.083 0.012 0.083 0.012 
24 0.042 0.013 0.042 0.024 

 

After analyzing the building movements in the frequency domain based on inclination data, we 

evaluated them in the space domain using GPS data [30]. The data from three GPS campaigns 

conducted in September 2002, February 2003, and August 2003 were processed and hence three 

coordinate sets were calculated for the deformation points after the adjustment. The RMSE of the 

coordinates was around 3 millimeters, and three times the RMSE was adopted as the significance 

level with 99% confidence. In the assessments, the coordinate differences among the sets were  

also considered. 

Easting, northing, and height differences of the N102, N101, S102, and S101 deformation points are 

shown in Figure 10. In the graphs, no significant movement can be seen between the first and the 

second campaigns. However, between the second and the third campaigns, significant changes of less 

than 1.5 cm are recorded in the easting of N101 and in the heights of N102 and S101. In the time 

between the first and third campaigns, significant changes are seen in the easting components of N101, 

N102, and S102. The only change in the easting of N102 is less than 1 cm. In the heights of N101 and 

S101, a 1-cm change is also found to be significant. 
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Figure 10. Coordinate differences of (a) the 1st and 2nd campaigns (b) the 2nd and 3rd 

campaigns (c) the 1st and 3rd campaigns (in meters) at the deformation benchmarks. 

Confidence intervals at 99% confidence level are indicated with a transparent layer on  

the graphs. 

 
(a)         (b)         (c) 

 

From the GPS data analysis, although the significant displacements of the building seemed to be 

proven, these results do not give an idea to distinguish the components of the movement as static, 

quasi-static or resonant. 

3.3. Case Study II: Analyzing Movements of the Geodetic Pillar 

In investigating the movements of the ISTA geodetic pillar, an analysis procedure was followed that 

was similar to the one used for the tall building. Inclination data from two years’ campaigns, along 

with the GPS baseline solutions of each campaign, were analyzed independently using the LSSA 

method. In the main conclusions of the inclination data evaluations, it was seen that the pillar moved 

similarly in the 2000 and 2002 periods, and the results from the GPS data analysis supported this 

conclusion. For a better understanding of the results, we took a closer look at the data and the 

conditions during the observations. The temperature (in C) and the inclination data (in mrad) of the 

sensor pair are illustrated in Figure 11, and the main statistics of the inclination data are presented  

in Table 4.  

According to the corresponding temperature graphs and the observer reports, the weather conditions 

seemed to be generally stable during both campaigns. In observations in the year 2000, the temperature 

varied between 5 C and 32 C, with a 2 C difference between the two sensors on any given day and 

increasing to 7 C at nights. After the 14th observation day, the average daily temperature increased, 

and this appeared to also affect the inclinations of the pillar (see the trend of inclination data, 

especially of the 2nd sensor, after the 14th day of observations in Figure 11). In 2002, the temperatures 

varied between 3 C and 35 C. The daily averages appeared to be consistent throughout the campaign. 

However, it should be noted that the temperatures measured are the values inside the plastic hoods. 
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Figure 11. Temperature and inclination data of the geodetic pillar. Campaigns ran  

from 10 March to 6 April 2000 and from 20 February to 22 March 2002 [32]. 

 

Table 4. Statistics of 2000 and 2002 campaigns: inclinations in mrad, ISTA geodetic pillar. 

Year 2000 2002 

Sensor No\Axis I\Y II\Y I\X II\X I\Y II\Y I\X II\X 

maximum 0.080 0.512 0.093 0.201 0.072 0.233 0.052 0.305 
minimum −0.114 −0.013 −0.114 −0.182 −0.100 −0.077 −0.065 −0.026 
magnitude 0.194 0.525 0.207 0.383 0.172 0.310 0.117 0.331 

 

In spectral analysis results of the inclinations, the hidden periodicities of the movements of the 

pillar and the building that hosts the pillar were clarified. The data analysis for the year 2000 yields the 

fact that both the pillar and the building seemed to have similar characters of movement as they did  

in 2002. In the overall results, the significant peaks with T = 12 h and T = 24 h were identified in the 

signals by Sensors I and II along the north-south (X-axis) and east-west (Y-axis) directions. The 

graphs in Figures 12 and 13 verify these conclusions. 

Table 5 shows the amplitudes of the periodicities. When the periods of the significant peaks are 

considered, we can recognize the similarity in the resonant movements of the pillar (observed by 

Sensor-II) and the building (observed by Sensor-I, Figure 5). However, the amplitudes of the periodic 

signals show that the displacements of the pillar are greater than those of the building. In the 2002 

results, the amplitude of the signal with T = 12 h on the X-axis is 5 microradians for the building  

and 25 microradians for the pillar). The analysis results of both campaigns were proved against  

each other. 
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Figure 12. LS spectrum of inclination data of Sensor I mounted on the building that hosts 

the pillar. Campaign 2000-Y axis (1DY-2000) and X axis (1DX-2000). Campaign 2002-Y 

axis (1DY-2002) and X axis (1DX-2002). 

 

Figure 13. LS spectrum of inclination data of Sensor II mounted on the pillar. Campaign 

2000-axis Y (2DY-2000) and axis X (2DX-2000). Campaign 2002-axis Y (2DY-2002) and 

axis X (2DX-2002). 

 
  



Sensors 2010, 10                            

 

 

10820

Table 5. Overall LSSA results of inclination data: geodetic pillar (S-II) and host building (S-I). 

 Year 2000 Campaign (10 March to 6 April) 

   Y-axis (east-west) X-axis (north-south) 

 
Period 
(hour) 

Frequency 
(cyc/hour) 

Amplitude 
(mrad) 

Frequency 
(cyc/hour) 

Amplitude 
(mrad) 

SENSOR-I 
12 0.083 0.008 0.083 0.006 

24 0.042 0.018 0.042 0.015 

SENSOR-II 
12 0.083 0.031 0.083 0.026 

24 0.042 0.062 0.042 0.039 

  

 Year 2002 Campaign (20 February to 22 March) 

  Y-axis (east-west) X-axis (north-south) 

 
Period 
(hour) 

Frequency 
(cyc/hour) 

Amplitude 
(mrad) 

Frequency 
(cyc/hour) 

Amplitude 
(mrad) 

SENSOR-I 
12 0.083 0.010 0.083 0.005 

24 0.042 0.026 0.042 0.013 

SENSOR-II 
12 0.083 0.016 0.083 0.026 

24 0.042 0.041 0.042 0.046 

 

Inspecting the deflections of the pillar using the hourly data of continuous GPS reference stations 

generally supported the results of the previous findings. In the variance vs. frequency graphs in  

Figure 14, we can clearly see the significant peaks derived from the time series of the GPS solutions. 

Where the signal for the northing component (dN) contains periods with T = 24 h and T = 12 h, the 

easting component (dE) includes only the period with T = 12 h for both campaigns. In the results, the 

amplitudes of the significant peaks of the signal contents are around 0.5 mm. 

Figure 14. LS spectrum of GPS data (time series of the northing (dN) and easting (dE) 

components of the ISTA pillar position) for both campaigns in 2000 and 2002. 
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3.4. Results and Discussion 

The results from the case studies are as follows: 

 LSSA of the inclination data showed that the tall building (HLKL) has significant periodic 

movements with 24-h and 12-h periods along the north-south and east-west directions. 

Another periodic movement with an 8-h period was identified along the east-west direction. 

As expected, the data from Sensor-I and Sensor-II, mounted on the inner faces of the west 

and north walls, respectively, showed similar results. 

 Since 1 mrad = 0.001 mm/m and the height of the building is 54 meters, we can derive the 

horizontal displacements of the building in mm. Thus, the movement with T = 24 h  

has 0.024 mrad and 0.013 mrad amplitudes, corresponding to 1.3 mm and 0.7 mm horizontal 

displacements, respectively, in the north-south and the east-west directions. These 

amplitudes of displacement are judged to be safe for the building. 

 In the GPS analysis results, no significant displacement is captured between the first and the 

second campaigns. However, in the time between the second and the third campaigns, in 

which inclination observations were also performed between these campaigns, a significant 

change of 1.3 cm was detected in Easting of N101. Additionally, there are significant 

displacements of 1.1 cm and 1.4 cm in the heights of S101 and N102, respectively. 

 When the differences in the GPS coordinates between the first and the third campaigns were 

investigated, significant movements were seen at the centimeter level for every deformation 

point. In the easting of N102, N101, and S102, the differences are 1.0 cm, 1.3 cm,  

and 1.2 cm, respectively. In the vertical direction, N101 and S101 moved by 1.0 cm. 

 In the results of GPS analysis, although the displacements were found to be significant at the 

chosen confidence level, previous experience with this technique has shown that it would 

not be realistic to determine the displacements to less than a centimeter. Considering the 

precision of geodetic GPS, the results obtained can be said to be too optimistic [15,19].  

The horizontal displacements revealed from the inclination data analysis also support  

this supposition. 

 When the movements of the ISTA geodetic pillar and its host building were investigated 

using inclination data from the two campaigns, periodic movement was found in both 

structures with T = 12 h and T = 24 h. 

 The horizontal displacements of the host building are 0.30 mm/0.20 mm in 2000  

and 0.40 mm/0.20 mm in 2002 along the east-westandnorth-south directions, respectively. 

 The horizontal displacements of the pillar are 1.07 mm/0.67 mm in 2000  

and 0.71 mm/0.79 mm in 2002 along the east-westandnorth-south directions, respectively. 

 The LSSA results on GPS data are consistent with the inclination sensor evaluations. 

Movements with T = 24 h and T = 12 h to the north and with T = 12 h to the east were 

confirmed. The 0.50 mm displacement supports the previous findings as well. 

 Considering that ISTA is a member of a global geodetic network and its position data is 

broadcasted for used as a reference for precise positioning in geodetic and geophysical 

applications, the amount of displacement is considered to be safe and can be ignored. Thus, 

no precaution appears to be required to improve its steadiness. 
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Overall, we can draw the following conclusions : 

i. The repeating T = 24 h movements of the tall building (HLKL), ISTA geodetic pillar, and 

its host building along the east-west and north-south directions can be interpreted as the 

natural responses of these structures to the warming and cooling phenomena in a day. 

ii. However, the harmonics with a period shorter than 24 hours may nevertheless be the 

consequence of daily periodicity as a result of non-linear response of the structure. The 

environmental effects under consideration should not have fundamental periods of 12 h  

and 8 h. 

iii. In terms of accuracy, it is evident from the results of the first case study that static 

observations with the GPS technique remained insufficient to resolve the deformations 

observed by the inclination sensors because of the error sources that affect GPS  

observations [19]. However, from the application point of view, using inclination sensors 

and GPS together in structural monitoring and analysis yields improved insight into 

deformation phenomena. To identify the response of the structure to environmental loading 

as static, quasi-static or resonant, the separate contributions of GPS and inclination sensors 

are both notable. In other words, the static application of GPS helps to identify the static or 

quasi-static deformations of a structure at the centimeter level. On the other hand, using 

inclination sensors provides input for clarifying the amplitude and frequency of periodic 

movements, even at the sub-millimeter level. 

iv. In addition to its static application, the GPS technique can be used for continuous 

monitoring. In the second case study, the structural deformations of the pillar were analyzed 

using time series by continuous GPS solutions. The periodic components of the 

deformation signal were similarly clarified in inclination data evaluation. The daily 

movement of the structure is clear from the spectral analysis results of the GPS data. 

v. The other important output of this study is methodological. We confirmed and 

demonstrated the previously mentioned advantages of the LSSA technique in the spectral 

analysis of irregularly sampled data. Practical data handling and analysis strategy of the 

technique provided benefits in the evaluation of data and the interpretation of the results. 

4. Conclusions 

It is essential to analyze the behavior of structures under static/dynamic loading and to clarify their 

response to these forces to ensure their safe operation and use as well as to prevent the occurrence of 

deformations. Structural analysis is of even higher priority if the region is subject to natural hazards. 

Istanbul, one of the most crowded metropolises of the world, is located close to an active fault, has 

experienced two recent devastating earthquakes, and, according to many studies, is anticipating 

another strong earthquake (>7 Mw) within 30 years [5,59]. Aware of the risk to the city, many 

governmental offices, universities, and civil organizations have dedicated their efforts toward reducing 

the expected loss from the forthcoming disaster, and the data and suggestions based on accurate in situ 

experiments provide valuable input for these efforts. 

From this point of view, this study was carried out in Istanbul to monitor and analyze  

self-movements of a reinforced concrete building and a geodetic pillar established on a building in a 
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post-seismic period, using precise GPS and inclination sensors. We were able to determine the benefits 

of using inclinometers in structural monitoring itself and of obtaining support from static and 

continuous mode GPS observations from the geodetic point of view. In addition, we suggested a 

useable strategy for analyzing the structural behaviors. The results obtained were therefore satisfying. 

In the results, the performance of precise dual-axis inclination sensors is sufficient for continuous 

monitoring and for determining the dynamic structural movements at a submillimeter level. However, 

it is not possible to use the sensors to derive static or quasi-static components of the motion. The other 

limitation in measuring with these instruments is that the displacements in the Z direction (vertical) 

cannot be examined directly, and therefore, only the displacements along the X and Y directions can 

be subjected to analysis. On the other hand, precise GPS observations made full-scale investigation of 

static and quasi-static structural responses possible in three dimensions. Therefore, inclination sensors 

and the GPS technique are complementary to each other. 

The noise in the content of GPS signals (as seen in LS spectrums in Figure 14) decreases the data 

quality in the low-frequency range and hence its reliability for detecting the structural displacements. 

To overcome these disadvantages and obtain reliable results, appropriate strategies must be carefully 

applied in the form of monitoring and effective mitigation algorithms and procedures in data 

processing. Even when the proposed precautions are applied, it is also beneficial to double-check 

through the integration of the inclination and GPS sensors. Since the measurements convert quite well 

to each other, it is not difficult to directly compare the outputs of the two techniques. 

In addition, due to the ongoing modernization of GPS satellites with additional navigation  

signals [60,61], along with expected improvements in GNSS from the ability to integrate signals from 

additional satellite constellations, GNSS shows great promise in terms of accuracy and reliability for 

future investigations of structural deformations. 
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