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Abstract: Since the piezoelectrically actuated system has nonlinear and time-varying 

behavior, it is difficult to establish an accurate dynamic model for a model-based sensing 

and control design. Here, a model-free adaptive sliding controller is proposed to improve 

the small travel and hysteresis defects of piezoelectrically actuated systems. This sensing 

and control strategy employs the functional approximation technique (FAT) to establish the 

unknown function for eliminating the model-based requirement of the sliding-mode 

control. The piezoelectrically actuated system’s nonlinear functions can be approximated 

by using the combination of a finite number of weighted Fourier series basis functions. The 

unknown weighted vector can be estimated by an updating rule. The important advantage 

of this approach is to achieve the sliding-mode controller design without the system 

dynamic model requirement. The update laws for the coefficients of the Fourier series 

functions are derived from a Lyapunov function to guarantee the control system stability. 

This proposed controller is implemented on a piezoelectrically actuated X-Y table. The 

dynamic experimental result of this proposed FAT controller is compared with that of a 

traditional model-based sliding-mode controller to show the performance improvement for 

the motion tracking performance. 

Keywords: piezoelectrically actuated system; functional approximation technique; 

adaptive sliding controller 
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1. Introduction 

Recently, the micro-positioner has become an important development target for meeting the 

requirements of the precision industry, such as in the semiconductor manufacturing process, 

biotechnology processes and opto-electronics systems. Since the piezoelectric actuator has many 

advantages, such as ultrahigh precision, high resolution, tiny size and quick response speed, it has been 

widely used as a micro-positioning table actuator in these production areas. Piezoelectric actuators can 

also be electrically controlled to move with a resolution on the order of nanometers. However, 

piezoelectric actuators also exhibit undesired serious hysteretic behaviors which limit the performance 

of piezoelectric actuated systems. 

In recent years, different methods were proposed to drive the piezoelectric micropositioning 

mechanisms and control piezoelectrically actuated systems. Chang and Sun [1] tried to control a two 

degree-of-freedom monolithic piezoelectric actuator with a linear resolution to 2 nm. Choi et al. [2] 

designed a sliding-mode controller for fine motion tracking control of the objective lens in the vertical 

direction. Lin and Yang [3] employed a PI feedback control associated with feedforward compensation 

based on the hysteresis observer to compensate the nonlinearity of piezoelectric actuator. Bashash and 

Jalili [4] proposed a modeling and control methodology for real-time compensation of nonlinearities 

along with precision trajectory control of piezoelectric actuators in various range of frequency 

operation. Liaw et al. [5] presented a robust motion tracking control methodology for flexure-based 

four-bar micro/nano manipulator driven by a piezoelectric actuator. In addition, many control 

techniques involving feedback and feedforward-feedback features have been proposed to remove the 

hysteresis-caused tracking errors [6-10]. However, these feedback control techniques do not utilize a 

precise hysteresis model, in contrast, the feedforward-feedback algorithms deal with the hysteresis and 

structural dynamics separately. A compensator is added into the feedforward loop to cancel out the 

undesired effects caused by the hysteresis while designing a feedback controller to control the 

structural dynamic effects. The feedforward compensator can be used to deal with nonlinear hysteretic 

effects; however, the effectiveness of the method relies heavily on the accuracy of the inverse  

hysteresis model. 

Although a piezoelectric actuator has the advantages of high resolution, quick response speed and 

high power-volume ratio, it has serious hysteresis behavior and small travel defects. Hence, it is 

difficult to establish an accurate dynamic model for model-based control design. In this paper, a 

model-free functional approximation based adaptive sliding-mode controller is employed to eliminate 

this model-based requirement. The functional approximation technique (FAT) was utilized to  

design an adaptive sliding controller for different nonlinear systems containing time-varying  

uncertainties [11-13]. This control scheme is proposed for nonlinear systems with unknown bound 

time-varying uncertainties. This approach can estimate the system dynamics and uncertainties on-line 

and no prior knowledge of the system dynamics is required. The uncertainties are represented by using 

finite linear combinations of basis functions with unknown constant weighting vectors. Appropriate 

update laws for the weighting vectors can be selected based on the Lyapunov theory to guarantee the 

system stability. Asymptotic convergence of the output error can be obtained if sufficient number of 

basis functions is used. The optimal expansion coefficients are also updated on-line and used in 
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constructing the adaptive control input. Here, the functional approximation based adaptive  

sliding-mode controller is designed for a piezoelectric actuated X-Y table system tracking control. 

This paper is organized as follows: Section 2 describes the piezoelectrically actuated X-Y table 

system structure. The approximate linear model and system identification process are presented in 

Section 3. This identified model can be used to design the model-based controller for comparison. 

Section 4 describes the functional approximation technique. The methodology of controller design and 

the stability analysis are derived in Section 5. Section 6 describes the experimental results of the 

proposed FAT controller. The experimental results are compared with that of the model-based sliding 

controller to show the dynamic performance improvement of the proposed FAT controller. Final 

conclusions are presented in Section 7. 

2. The Experimental System Structure 

A piezoelectrically actuated X-Y table shown in Figure 1 was built for investigating the dynamic 

system control behavior. Two HR8 motors were used to actuate the X axis and Y axis, respectively. 

There is a linear response feature between the piezoelectric actuator velocity and the driver control 

voltage. The actuator and driver can be modeled as a DC motor with internal friction that is driven by a 

voltage amplifier. The driver generates a 39.6 kHz sinusoidal wave to drive the actuator with an 

amplitude function when a command voltage within ±10 V is sent to the driver unit. This constant 

oscillation frequency is generated from the driver unit which was supplied by Nanomotion Limited. 

A PC-based controller was developed for experiments with this system. The X-Y table has two 

independent axes, X and Y, actuated by two different piezoelectric actuators. The experimental layout 

of this positioning system is shown in Figure 2. The control voltage is calculated on the PC, converted 

from a digital to an analogue signal by a D/A interface card and sent to the piezoelectric actuator driver 

unit to actuate the piezoelectric motor. The displacements of this X-Y table are sensing and measured 

by linear encoders and sent back to the PC via an encoder card for closed-loop control. 

Figure 1. Piezoelectrically actuated X-Y table system. 
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Figure 2. Positioning control system experimental layout. 
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To simplify the model description, the system dynamics of the X axis or Y axis can be represented 

as the following second order model: 

)()(),()( tutbtXftx +=&&            (1) 

where x is the displacement of X axis or Y axis stage, f(X,t) is a function of state variables, b(t) is the 

control gain and u(t) is the control voltage. The function f(X,t) is an unknown time-varying function 

with unknown variation bound. However, the bound of the unknown function b(t) can be estimated, 

i.e., bmin ≤ b(t) ≤ bmax Define b(t) as: 

bbtb m ∆+=)(              (2) 

where bm is the nominal value and ∆b is a bounded uncertainty value: 

maxmin0 ττ ≤∆≤< b              (3) 

Since the system dynamics has nonlinear time-varying behavior with unknown uncertainty bounds 

it is difficult to establish an accurate dynamic model for model-based controller design. Here, the 

functional approximation technique is employed to approximate this unknown function f(X,t) for 

releasing the model requirement. 

3. System Identification 

In order to evaluate the accuracy of a functional approximation with respect to the nonlinear 

function of the system, an approximate linear dynamic model for this piezoelectrically actuated X-Y 

table, instead of the original system model, is identified based on system input-output data. A  

pseudo-random-binary-sequences (PRBS) signal with appropriate amplitude is chosen as the input 

signal to excite the piezoelectrically actuated system. The transfer function M(q) describes the 

relationship between the voltage input and the sprung mass position output is chosen as an  

auto-regressive (ARX) model: 

)(

)(
)(

qA

qB
qM =             (4) 
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where 
z
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1

1)(  and q is the shift operator. To 

simplify the model description, the second order approximate transfer function models are selected and 

identified by using the MATLAB’s identification toolbox for X axis and Y axis of the X-Y  

table, respectively:  

3588.07202.0

24.78
)(

2 ++
=

qq
qM x

           (5) 

4079.02815.0

8.16
)(

2 ++
=

qq
qM y            (6) 

The estimation output of these two identified models and the system experimental output with 

PRBS input voltage excitations are plotted in Figures 3(a) and 3(b) for comparison. The solid line 

represents the measured system output and the dotted line depicts the simulated model response. It can 

be observed that the dynamic behavior of the identified model is matched well the piezoelectrically 

actuated system’s dynamic response. The difference between both response curves is due to the 

system’s nonlinear, time-varying behavior and hysterisis dynamics effects. Based on these identified 

models, the unknown time-varying functions can be estimated and used to evaluate the accuracy of the 

functional approximation scheme. In addition, a model-based sliding-mode controller can be designed 

based on the estimation models. Its control performance will be compared with that of the proposed 

FAT controller. 

Figure 3. System identification model output. (a) X axis; (b) Y axis. 

 

(a)             (b) 

4. Functional Approximation Technique 

If a piecewise continuous time varying function h(t) satisfies the Dirichlet conditions, it can be 

transformed into a generalized Fourier series expansion within a time interval [0,T]: 

∑
∞

=

ω+ω+=
1

0 )sincos()(
n

nnnn tbtaath            (7) 
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where a0, an, and bn are the Fourier coefficients and 
T

n
n

π
=ω

2  is the frequency of the sinusoidal 

function. Define: 

[ ]T

nn tttttttZ ωωωωωω= sincossincossincos1)( 2211 L      (8) 

[ ]T

nn bababaaW L22110=          (9) 

then Equation (7) can be rewritten as: 

)()()( ttZWth
T ε+=              (10) 

where ε(t) is the approximation error. When n is large enough, h(t) can be approximated as: 

)()( tZWth
T≈              (11) 

The unknown time-varying function f(X,t) in Equation (1) can be approximated by a linear 

combination of a finite orthogonal basis functions Z(t) to arbitrarily prescribed accuracy as long as n is 

large enough: 

)(),( tZWtXf f

T

f≈              (12) 

where Zf(t) is a orthogonal basis function vector and Wf is a weighting coefficient vector. If the  

number of the basis functions is large enough, Equation (12) can be described as the following  

approximation form: 

)(),( tZWtXf f

T

f=              (13) 

where [ ]T

nf tZtZtZtZ )()()()( 21 L= , and [ ]T

nf WWWW L21= . This functional approximation 

in Equation (13) can be used to represent an unknown function with uncertainty and disturbance. The 

time-varying vector Zf(t) is a known function and the vector Wf is an unknown regulating constant. A 

proper Lyapunov function can be selected to find the update laws for these unknown constants based 

on Lyapunov stability theory. 

5. Controller Design and Stability Analysis 

The objective of this study was to develop a FAT based model-free adaptive sliding-mode 

controller for a piezoelectrically actuated system. Its control performance is compared with that of a 

traditional sliding-mode controller based on an identified model, Equations (5) and (6). The control 

law design and stability analysis for X axis are described in the following sections. 

5.1. Functional Approximation Based Adaptive Sliding-Mode Controller 

Due to the piezoelectrically actuated system has nonlinear time-varying dynamics, the functional 

approximation technique is employed to replace the unknown nonlinear functions for a sliding-mode 

control design. The system control block diagram of this piezoelectrically actuated X-Y table is shown 

in Figure 4. The adaptive laws of the function coefficients can be derived from Lyapunov stability 

theorem. The sliding surface of this second order system can be defined as: 

ees λ+= &              (14) 
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where the positive parameter λ implies the convergent rate of x on the sliding surface. The time 

derivative of s can be derived as: 

ees &&&& λ+=  

exx r
&&&&& λ+−=              (15) 

where xr is the desired value of x. Substituting Equation (1) into Equation (15), yields: 

exutbtxfs r
&&&& λ+−+= )(),(            (16) 

Figure 4. System control block diagram. 
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In order to achieve the sliding surface reaching condition and establish the approximation error 

compensation, the control law u(t) can be designed as: 

))sgn(ˆ(
1

sexf
b

u r

m

ηλ −−+−= &&&            (17) 

where f̂  is the functional approximation value of f(X,t) The positive constant η is a design parameter 

for achieving an appropriate robustness. Substituting Equation (17) into Equation (16), we obtain: 

buffss ∆+−+−= )ˆ()sgn(η&            (18) 

Here, f  and f̂  are assumed to be unknown bounded piece-wise continuous functions and satisfy 

the Dirichlet conditions. Then, they can be presented by the functional approximation technique as: 

f

T

f ZWf =              (19) 

f

T

f ZWf ˆˆ =              (20) 

where n

ff WW ℜ∈ˆ,  are weighting vectors and n

fZ ℜ∈  is a vector of basis Fourier series function. 

Hence, the Equation (18) can be rewritten as: 

buZWss f

T

f ∆++−=
~

)sgn(η&            (21) 
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where:           T

f

T

f

T

f WWW ˆ~
−=              (22) 

To prove the stability of this control system and find the update laws for vector fŴ , a Lyapunov 

function candidate is chosen as: 

ff

T

ff WQWsWsV
~~

2

1

2

1
)

~
,( 2 +=            (23) 

where nn

fQ ×ℜ∈  is a symmetric positive definite matrix. By taking the time derivative of the 

Lyapunov function candidate, we can obtain: 

ff

T

ff WQWssWsV
&

&&
~~

)
~

,( +=            (24) 

Since 
T

f

T

f WW
&& ˆ~

−= , the Equation (24) can be rewritten as: 

ff
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T

f ∆+−+−= )ˆ(
~ &

η            (25) 

The update law for fŴ  is chosen as: 

sZQW fff

1ˆ −=
&

             (26) 

Then, the Equation (25) can be further rewritten as: 

bussV ∆+−= η&              (27) 

In order to cover the uncertainty of the unknown function b(t), and establish an appropriate 

robustness, the parameter η can be specified as: 

maxmaxuτ=η            (28) 

where τmax and umax are the maximum values of ∆b and u, respectively. Then the Equation (27)  

results in: 

0≤V&                (29) 

That means this control system stability can be guaranteed by using the update laws shown in 

Equation (26). Based on Barbarlet’s lemma [14], the convergence of the system output error can be 

guaranteed by using the control law u(t), Equation (17). The design procedure of the controller for Y 

axis is similar to that of X axis. 

5.2. Model-Based Sliding-Mode Controller Design 

The sliding-mode control theory has been widely employed to control nonlinear dynamic systems, 

especially the systems that have model uncertainties and external disturbances. It employs a 

discontinuous control effort to drive the system toward a sliding surface, and then switching on that 

surface. Theoretically, it will gradually approach the control target, the origin of the phase  

plane [15,16]. In this section, a model-based sliding-mode controller is designed for the X axis of the 

piezoelectrically actuated system based on the estimated models. Firstly, the time-varying second order 

system model is approximately represented as the form: 
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 )()()()( tDtGutBxtxAx ++−−= &&&  

)()()()( DDuGGxBBxAA mmmm ∆++∆⋅+∆+−∆+−= &      (30) 

These system parameters have time-varying behavior. Their variation bounds are assumed as: 
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         (31) 

The sliding surface for this second order system can be defined as: 

ees ss λ+= &                (32) 

where the positive constant λs implies the convergent rate of x on the sliding surface. Substituting 

Equation (30) into the time derivative of ss, we obtain: 

exDDuGGxBBxAAs srmsmmms
&&&&& λ+−∆++∆⋅+∆+−∆+−= )()()()(      (33) 

The control law us(t) can be chosen as: 

)]sgn([
1

1 ssrmmm

m

s sexDxBxA
G

u ηλ −−+−+= &&&&        (34) 

Substituting Equation (34) into Equation (33), gives: 

  )sgn(])[1( 1 ssrmmms sGDBxxAexDxBxAGs ηλ ∆−∆+∆−∆−+−+−−∆−= &&&&&&  

)sgn(ˆ)1( 1 ssGDBxxAuG η∆−∆+∆−∆−∆−= &            (35) 

where:        exDxBxAu srmmms
&&&& λ+−+−−=ˆ            (36) 

Multiplying both sides of Equation (35) with the sliding variable ss, it can be written as: 

ssssssss sGDsBxssxAsuGss sgnˆ)1( 1η∆−∆+∆−∆−∆−= &&  

ssssss sssxsxsu 1minmin
ˆ)1( ηδγβαδ −+++−≤ &          (37) 

If the robustness parameter η1 is selected as: 

( ) ]ˆ1[
1

2min

min

1 ηγβαδ
δ

η ++++−≥ xxu s
& , 02 >η        (38) 

Then the Equation (37) results in: 

02 <−≤ sss sss η&              (39) 

That means the system stability can be achieved by choosing an appropriate robustness gain 

constant η1. In addition, the control law us(t), Equation (34), can guarantee the system output  

error convergence. 
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6. Experimental Results 

In order to investigate the performance of the proposed controller, the following experiments were 

performed. The sampling frequency was chosen as 1,000 Hz. The following control parameters are 

chosen for the functional approximation based adaptive sliding-mode controller: the sliding surface 

parameter λ is chosen as 230 and 220 for the X axis and Y axis, respectively. The robustness parameter 

η can be estimated based on Equation (28). It is selected as 23,000 and 25,000 for the X axis and Y 

axis, respectively. In order to improve the control law chattering behavior, the sgn(s) function in 

Equation (17) is replaced by the saturation function sat(s/ф) with a boundary layer thickness ф = 0.1 

and 0.05 for X axis and Y axis, respectively. The nominal value of the control gain bm is selected  

as 78.24 for X axis and 16.8 for Y axis, respectively, based on the estimation model, Equations (5)  

and (6). The weighting matrix Qf of the Fourier series function coefficients is set as a small constant 

matrix Qf = 0.01 [I] to increase the converging speed. The first fifteen terms of the Fourier series 

functions are chosen as the functional approximation basis functions. 

Based on the system identification model, Equations (5) and (6), the parameters Am = 0.7202  

and 0.2815, Bm = 0.3588 and 0.4079, and Gm = 78.24 and 16.8, are employed to design the model 

based sliding-mode controller for X axis and Y axis, respectively. The converging parameter, η2, of the 

sliding surface reaching condition, Equation (38), is chosen as 700 and 800 for X axis and Y axis, 

respectively. The parameter λs which influences the converging slope of the sliding surface was chosen 

as 70 and 80 for X axis and Y axis, respectively. The values of these control parameters are not critical 

for practical implementation. 

Case A: The Circular Trajectory Tracking 

In this case, a 2 cm diameter circular contour is designed for the two-dimensional motion control. 

This circular contour can be generated by the accumulation of the angles as a function of time for the 

X axis and Y axis. The experimental result for the tracking response of the X-Y table is shown  

in Figure 5.  

Figure 5. X-Y table displacement (case A). 
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It can be observed that a good tracking response can be obtained for the X-Y table for the reference 

circular contour by using the proposed FAT based adaptive sliding controller. The displacements of X 

axis and Y axis are plotted in Figures 6(a) and 6(b), respectively.  

Figure 6. The displacements of (a) X axis and (b) Y axis (case A). 

 

Figure 7. The tracking error of (a) X axis and (b) Y axis (case A). 
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The dashed line shows the reference circular contour signal, the solid line depicts the tracking 

response by using the proposed FAT based adaptive sliding controller and the dotted line denotes the 

tracking response by using a traditional model-based sliding-mode controller. The tracking errors of 

the X axis and Y axis are shown in Figures 7(a) and 7(b) for comparison. The solid line exhibits the 

tracking error by using the proposed FAT based adaptive sliding controller and the dotted line denotes 

the tracking error by using a traditional model-based sliding-mode controller. It can be observed that 

the maximum X axis tracking errors are 0.21 mm and 0.017 mm for the model-based sliding-mode 

controller and the proposed FAT based adaptive sliding controller, respectively. The maximum Y axis 

tracking errors are 0.42 mm and 0.028 mm for the model-based sliding-mode controller and the 

proposed FAT based adaptive sliding controller, respectively. The root mean square (RMS) values of 

the tracking error for X axis are 0.1351 mm and 0.0169 mm for the model-based sliding-mode 

controller and the proposed FAT based adaptive sliding controller, respectively. The RMS values of 

the tracking error for Y axis are 0.2991 mm and 0.0202 mm for the model-based sliding-mode 

controller and the proposed FAT based adaptive sliding controller, respectively.  

Case B: The Window Contour Trajectory Tracking 

In this case, a window contour, shown in Figure 8, was designed for the two-dimensional motion 

control. This window contour can be generated by the accumulation of the angles as a function of time 

for the X axis and Y axis. The experimental result on the tracking response of the X-Y table is shown 

in Figure 8. It can be observed that a good tracking response can be obtained for the reference window 

contour by using the proposed FAT based adaptive sliding controller.  

Figure 8. X-Y table displacement (case B). 

 

 

The X axis and Y axis displacements are plotted in Figures 9(a) and 9(b), respectively. The dashed 

line exhibits the reference window contour signal, the solid line depicts the tracking response by using 

the proposed FAT based adaptive sliding controller and the dotted line denotes the tracking response 
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by using a traditional model-based sliding-mode controller. The tracking error of X axis and Y axis are 

shown in Figures 10(a) and 10(b) for comparison. The solid line exhibits the tracking error by using 

the proposed FAT based adaptive sliding controller and the dotted line denotes the tracking error by 

using a traditional model-based sliding-mode controller.  

Figure 9. The displacements of (a) X axis and (b) Y axis (case B). 

 

Figure 10. The tracking error of (a) X axis and (b) Y axis (case B). 
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It can be observed that the maximum tracking errors of the X axis are 0.2 mm and 0.013 mm for the 

model-based sliding-mode controller and the proposed FAT based adaptive sliding controller, 

respectively. The maximum tracking errors of the Y axis are 0.15 mm and 0.024 mm for the  

model-based sliding-mode controller and the proposed FAT based adaptive sliding controller, 

respectively. The root mean square (RMS) values of the tracking error for X axis are 0.0532 mm  

and 0.0055 mm for the model-based sliding-mode controller and the proposed FAT based adaptive 

sliding controller, respectively. The RMS values of the tracking error for Y axis are 0.067 mm  

and 0.0069 mm for the model-based sliding-mode controller and the proposed FAT based adaptive 

sliding controller, respectively.  

7. Conclusions 

The piezoelectric actuating system has non-linear characteristics and time-varying behavior. It is 

difficult to design a model-based controller for this micro-positioning system. A model-free functional 

approximation based adaptive sliding controller was developed and successfully employed to control a 

piezoelectrically actuated X-Y table system. The stability of the proposed controller is guaranteed by 

means of the Lyapunov theorem. The control performances of the proposed FAT based controller and a 

model-based sliding-mode controller were compared in this study, too. Only 15 terms of Fourier series 

functions are used to approximate the nonlinear time-varying function for designing a sliding-mode 

controller and achieving good control performance. The tracking error can be reduced to less  

than 0.017 mm and 0.028 mm for the X axis and Y axis with two different tracking trajectories. The 

tracking error is much better than that of the traditional sliding-mode controller. The proposed 

approach can thus be effectively applied to control a piezoelectrically actuated system. 
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