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Abstract: This paper presents a complete implementation of the Principal Component 

Analysis (PCA) algorithm in Field Programmable Gate Array (FPGA) devices applied to 

high rate background segmentation of images. The classical sequential execution of 

different parts of the PCA algorithm has been parallelized. This parallelization has led to 

the specific development and implementation in hardware of the different stages of PCA, 

such as computation of the correlation matrix, matrix diagonalization using the Jacobi 

method and subspace projections of images. On the application side, the paper presents a 

motion detection algorithm, also entirely implemented on the FPGA, and based on the 

developed PCA core. This consists of dynamically thresholding the differences between the 

input image and the one obtained by expressing the input image using the PCA linear 

subspace previously obtained as a background model. The proposal achieves a high ratio of 

processed images (up to 120 frames per second) and high quality segmentation results, with 

a completely embedded and reliable hardware architecture based on commercial CMOS 

sensors and FPGA devices. 
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1. Introduction  

One of the main research areas in the field of computer vision is the automatic description of the 

features of a given scene [1,2]. The greater demand made by the performance of image processing 

algorithms, together with improved spatial resolution and the increased rate of images per second from 

the new CMOS sensors, means that the need for computational power is continuously increasing. If 

real time performance is to be achieved, the need to reduce algorithm execution time is even greater, 

requiring the incorporation of an operating system in the processor capable of executing deterministic 

tasks, which in turn increases the cost of the products and makes it more difficult to program. 

It is usual for the platforms chosen to carry out these algorithms based on sequential programs, in 

which the only improvements currently available consist in applying multi-threading programming 

techniques so the power of the new multicore processors may be used. However, from a performance 

point of view these processing architectures are not so efficient in many applications like the digital 

processing of images, which normally requires a high number of operations to be handled at the bit 

level as quickly as possible, by processing in parallel a small number of input samples. Due to the 

sequential architecture of conventional computers, a notorious amount of operations cannot be 

performed concurrently. Another issue is the amount of data processed in each instruction, which is 

limited by the type and width of used communication bus and the image capture board. For this reason, 

when a large amount of data must be handled, the system performs slowly. This has given rise to 

solutions that make use of coprocessor systems that handle low level preprocessing tasks, where the 

amount of data to be processed is high but the operations to be carried out are simple [3]. Our proposal 

is to create a hardware platform for a specific purpose (designed specifically for one application), as it 

can produce excellent results working in an ad-hoc low-cost platform. In fact the FPGA used to 

validate the proposal could be considered as a FPGA with medium/low features (Xilinx V2P7).  

The detection of both static and moving objects within a captured area is one of the more common 

tasks undertaken by many computer vision applications. Movement analysis is involved, among other 

things, in real time applications such as navigation and tracking and obtaining information about static 

and moving objects within a scene [4]. Movement analysis, which is closely related to the image 

transfer rate from the video sensor, is fundamental for addressing topics such as image sequence 

reconstruction, video compression, fixed image capture and multi- resolution, techniques, etc.  

Within the field of image processing previous works have partially developed the processing 

algorithm of PCA using programmable devices. In [5] for example, all of the PCA is implemented on 

the FPGA, however the calculation of eigenvalues is implemented on a PC due to it is mathematically 

too complex to be implemented on the FPGA. In [6] on the other hand, a variant of PCA called a 

Modular PCA, applied to face recognition, has been implemented on an FPGA, as this version of PCA 

has a much lower volume of mathematical operations than the conventional PCA algorithm. In [7] a 

system based on FPGA is proposed for detecting objects known a priori by comparing their 

eigenvectors. However, as far as the authors know no work has been found on the detection of moving 

objects employing PCA that uses FPGAs as the processing element. It is important to point out that in 

none of the works found is PCA implemented exclusively on FPGAs, due mainly to the heavy data 

dependence and complex mathematical operations involve within PCA. The data dependences cause 

several hazards which make difficult the implementation of efficient pipeline systems. On the other 
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hand, the mathematical operations needed by PCA algorithm, are not usual operations used for other 

algorithms (e.g., solving eigenproblems). Due to this fact, new specific mathematical cores have been 

designed for this algorithm. 

These situations make difficult to segment/divide the hardware processing of the different parts of 

PCA. For this reason, executing PCA is normally divided between an FPGA and a PC or 

microprocessor [5], so that normally an ad-hoc HW/SW partition of the system is made, without 

adequately exploring the design space (HW/SW co-design methods). 

One of the main contributions of this work is the FPGA implementation of the complete PCA 

algorithm on reconfigurable hardware; indeed it is the first work in the literature to do so. Classic 

sequential execution of different parts of the PCA algorithm has been parallelized. This parallelization 

has led to the development and implementation of seldom used alternatives for the different stages of 

PCA. One example is the calculation of eigenvalues and eigenvectors, matrix multiplication in 

hardware or calculation of a dynamic threshold for detecting moving objects. This latter issue is 

another major contribution of the paper because the information generated by PCA is used to detect 

moving objects. In this work, PCA is implemented on an FPGA to detect moving objects within a 

scene, based on the PCA algorithm. To achieve this, a specifically designed intelligent camera has been 

implemented based on a CMOS sensor and an FPGA [8]. Thanks to the design and implementation of 

this new proposal it can be used in any situation requiring an autonomous system (without PC).  

The other sections of this paper are as follows: Section 2 sets out the mathematical foundations of 

the PCA algorithm applied to image processing; Section 3 describes the platform design; Section 4 

presents the implementation in VHDL of the PCA algorithm on an FPGA; and finally, Sections 5 and 6 

set out the results and present the conclusions respectively. 

2. The PCA Algorithm 

Principal Component Analysis (PCA) is a method that is used in different fields, such as statistics, 

power electronics or artificial vision. The main feature of PCA is the reduction of redundant 

information, retaining only information that is fundamental (principal components).  

Artificial vision is a good example of a field where the PCA technique can be applied directly, as an 

image contains a large number of highly correlated variables (pixels). Therefore, applying the PCA 

technique to image processing allows us to reduce the redundant information of the initial variables 

and determine the degree of similarity between two or more images by analyzing only the basic 

features within the transformed space. This last feature is of interest as far as the detection of new 

objects within the scene is concerned.  

2.1. Obtaining the principal components of an image 

The PCA algorithm can be applied to images using the following steps [9,10]: 

1. Capturing M images to construct a reference model of the scene. We identify each of M 

references image by NN
i

I , with Mi ,...1  and where it is assumed that the spatial 

resolution of the images is N x N.  

2. Each image is represented as a column vector of the dimensions N 
2
 × 1 
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3. Calculating the mean image from the M reference images : 12 N
Ψ  given for:  
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where Ii,j is the j ( 2,...,1 Nj  ) element of Ii image. 

 

4. Form a matrix MN 
2

A  (3) whose columns are the vectors ΨIΦ  jj  (2):  
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A Φ Φ  (3) 

5. Obtaining the covariance matrix, 
22 NN C  from the matrix A (4):  

T

M
AAC 

1
 (4) 

6. Obtaining the associated eigenvalues and eigenvectors of the matrix C. Given that matrix A  

is of the size MN 2  and generally MN 2 , to reduce the number of operations that must be 

performed, the eigenvalues and eigenvectors of  AA T  are calculated (5): 

VλVAA  IT  (5) 

where MMV  is the matrix of the eigenvectors of AA T . The eigenvalues of C match up 

with those of AA T  while the eigenvectors of C are obtained from (6):  

VAU   (6) 

7. Obtaining the principal eigenvalues. From the eigenvalues obtained in point 6 the most 

significant eigenvalues t are selected, using for example, the criteria the normalized root 

mean square error (RMSE) [10,11] given by (7), that is the eigenvalues of greatest value 

( t  ...21 ):  
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 (7) 

where P is the percentage of necessary eigenvalues required to achieved the most significant 

eigenvalues t. 

 

The transformation matrix tN
t


2

U  is given by (8) where  tuuu ,...,, 21  are the eigenvectors 

associated to the eigenvalues t  ...21 :  

 tt ,...,, uuuU 21  (8) 

An important issue is the quantification of the value M , which is the number of captured reference 

images used to build the background. Theoretically, it is a good idea to employ a high M value that 

allows different lighting conditions of the same scene to be considered. However the use of a high M 

number implies a significant increase in computational load and memory storage. The features of 

external memory in which background images will be loaded, will determinate the size of M . Due to 

this fact, the bus width of used external memory (128 bits) and according to the results shown in [12] 

in our case, it has been chosen size of 8M  associated to the same scene without moving obstacles 

and under soft natural lighting variations. Thanks to this size and CMOS features, it is possible to read 

from the sensor 8 pixels in each clock period.  

According to the results shown in [12] in our case, a size of 8M has been chosen. Once the 

transformation matrix tU  has been obtained, the next step is to determine whether in a newly captured 

image of the scene new objects have appeared. To do this the following steps must be performed: 

1. Projection onto the transformed space. The first step is the projection onto the transformed 

space using (9):  

       j ) ( j
T
t

T
t ΨIUΦUΩ   (9) 

where 1 t
Ω  is characterized by a vector of dimension t  ( T

t ],...,,[ 21 Ω ), where each 

component i  represents the contribution of each eigenvector in the representation of jI .  

 

2. Recovering the projected image. Once the image has been projected onto the transformed 

space using (9), then 12ˆ  N
Φ is recovered using (10):  

      ˆ
j ΩUΦ  t  (10) 

3. Determining the existence of new objects in the scene. Finally, the captured image is 

compared with the recovered image, thus obtaining what is termed the error recovery. If the 

result of the comparison is above a determined threshold )( MDTh  it implies the presence of 

new objects in the scene (11): 
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scene in the objects new are  thereˆ

scene in the objects new no are  thereˆ





MDjj

MDjj

Th

Th

ΦΦ

ΦΦ
 (11) 

The threshold MDTh  is a dynamically obtained value that is adjusted according to the conditions 

of the scene.  

4. Spatial localization of the detected object. To detect the presence of new objects it is only 

necessary to apply expression (11). However, if we want to know in which part of the scene 

the new object has appeared a localization method must be found.. With the aim of reducing 

the effect of noise, the value of each pixel of the captured image and that of the recovered 

image is averaged with that of the adjacent pixels by means of a mask of qq  elements. As 

a result a matrix known as an average distance map is obtained (
22 NN

V
MD ), where 

every one of its elements )( , iw corresponds to the Euclidean distance between the 

corresponding average pixels of the original and recovered image (12).  

 

 

 

Once the VMD  has been obtained, the next step is to threshold the map so that the new objects can 

be found easily. To do this, a new binary image is built  BW  where each element is the result of a 

comparison between each VMD pixel and a MDTh threshold (13):  

 

  MDwiwiwii

MDwiwiwii

ThBW

ThBW





ΦΦ

ΦΦ

ˆ   if     0

ˆ   if  255




 (13) 

3. Description of the Architecture  

The system proposed is based on a high speed CMOS sensor (up to 500 images per second with a 

maximum resolution of 1,280 × 1,024 [13]) and an FPGA in which a novel design has been 

implemented for managing and capturing the images from the sensor, as well as executing the PCA 

algorithm. The system implemented on the FPGA is separated into the following logical blocks as 

shown in Figure 1 with green color: 

 CMOS sensor controller: This block is responsible for implementing image demands to the 

CMOS sensor such as parameterizing its internal registers according to the desired 

configuration (images per second, exposure time, etc.).  

 Image capture controller: the purpose of this block is to allow the user to select an area of 

interest within the image from the CMOS sensor.  

 External memory controller: the system is equipped with a 128 MB, SDRAM memory bank 

that is external to the FPGA. Images from the CMOS sensor are stored in this bank.  

 Communications Controller with the PC: this block controls the communication between the 

FPGA and the PC. This is used to transmit commands and results.  

 Head Controller: This block is responsible for synchronizing the entire system so that 

everything works correctly and at maximum speed.  

iwiwiw ,,. Φ̂Φ   Nw ,....2,1  Ni ,....,2,1  (12) 
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 PCA algorithm: This block implements the PCA algorithm and its implementation is the 

most important contribution of this work. 

Figure 1. Block diagram of the internal architecture of the FPGA. 
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4. Implementing PCA on FPGAs 

The mathematical complexity of the operations of the PCA algorithm presented in Section 2 

(calculation of eigenvectors, matrix multiplication, square roots, etc) makes it impractical to implement 

them directly on reconfigurable hardware. The proposal and selection of different hardware structures 

and computing alternatives in order to obtain an efficient solution to resolve these operations on 

FPGAs is essential for the PCA implementation and, thus, constitutes one of the major contributions of 

this paper. This section presents the hardware solution found which permits the PCA algorithm to be 

implemented on an FPGA. Figure 2 shows a block diagram of the PCA algorithm implemented on the 

FPGA, grouping the different modules into three stages: generation of eigenvectors (light yellow),  

on-line (light orange), and object detection (light pink). The three phases in which the PCA algorithm 

is divided are now described.  

4.1. Generating the eigenvectors 

The first phase of the PCA algorithm is the generation of the eigenvectors of the reduced 

transformation matrix tU . This first phase includes five stages:  

 

1. Calculating the mean of the M  images 




  12N
Ψ  and the matrix MN 

2

A  (3).  

2. Obtaining the covariance matrix MMT C (5). 

3. Calculating the eigenvectors of the matrix MMV  and the posterior matrix of the reduced 

eigenvectors tM
t

V . 

4. Obtaining the eigenvectors of the matrix tN
t


2

U  from MM
t

V  where Mt  . 
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5. Calculating the norms of matrix eigenvectors.  

Figure 2. Block diagram of the PCA algorithm implemented on an FPGA. 
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4.1.1. Calculating the mean of the M  images  Ψ  

The hardware architecture that has been developed for this module stores the captured M  images in 

an SDRAM external memory. The block shown in Figure 3 has been implemented on the FPGA, 

where the 8M   images are stored in different memory components (B1). Once the eight pixels have 

been extracted, one for each image, the mean calculation process is initiated using a set of cascade 

adders (see B2 Figure 3). As this process takes three clock cycles and the aim is for the system to be as 

segmented as possible, the eight extracted pixels are inserted into a delay unit consisting of flip-flops 

that synchronizes the subtraction process of each pixel with that of the corresponding mean (B6).  

4.1.2. Obtaining the covariance matrix ( )T
C  

Generating T
C  from matrix A , means the product of two matrices AA T , must be produced on an 

FPGA, which entails a complex process. In the case of the PCA the aim is to multiplex the matrix 

multiplication module using it to: generate the covariance matrix, generate the eigenvector matrix 

( tU ), project an image onto the transformed space and recover the projected image. Different 

approaches to the matrix multiplication have been analyzed and developed by the authors [14]. After 

this study, an ad-hoc matrix multiplier system based on a semi-systolic array proposed by the authors 

in [14] has been chosen because the maximum performance for PCA is achieved with this approach 

thanks to the possibility to reuse the system for the different types of matrix multiplication that PCA 

needs. 
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Figure 3. Block diagram of the proposed circuit for calculating the mean  Ψ  of the M 

captured images. 
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4.1.3. Calculating the eigenvectors of the matrix ( )V  

The computation of eigenvalues and eigenvectors represents the greatest computational burden on 

the PCA algorithm. Different techniques have been proposed for obtaining the eigenvalues of a matrix 

using specific hardware, all of them based on recurrent methods that look to diagonalize the  

matrix [15,16]. Once the matrix has been diagonalized, the eigenvalues coincide with the values of the 

diagonal. The method proposed in [17] is the most interesting as it allows parallel processing hardware 

structures to be implemented [18]. For this reason, the solution developed in this work is based on the 

Jacobi method. A previous article by the authors [19] describes the architecture developed.  

4.1.4. Obtaining the eigenvectors of the matrix ( )tV  

The first step in determining the most significant t  eigenvectors is to arrange the eigenvalues and 

their associated eigenvectors in either ascending or descending order. This step is necessary as the 

Jacobi method does not generate the eigenvalues in order. To determine t , the largest t  eigenvalues are 

found and then their associated eigenvectors are selected depending on how much bigger than the 

eigenvalues that have been obtained the user wants them to be (7). In this work, bubble sort has been 

used as the sorting algorithm [20].  
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4.1.5. Obtaining the eigenvectors of the matrix 
tU  

To obtain the matrix
tU , according to (6), the matrix A  must be multiplied by

tV . To do this, once 

again the semi-systolic array presented in [14] is used.  

4.1.6. Calculating the norms of the eigenvectors 

The eigenvectors obtained in the previous stage do not possess a unit module so they must be 

normalized (14) tnU  according to (15): 

 
2

2

1

N

j

i

n u


  i, j
  tj ,...,1  (14) 
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tn

nnn

uuu
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U
U  ....  
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1    t

tnnn  1

21 ,...,,norms  (15) 

To implement in hardware the arithmetical operations shown in expressions (14) and (15) is 

extremely complex as a consequence of the square root, and it also uses a large amount of resources. 

To avoid calculating the square root when calculating ˆ
jΦ  it is only necessary to express this matrix in 

accordance with the squared norm, as shown in (16): 

 

 

 

4.2. The on-line stage 

If there is a new object in the captured image, with respect to the reference scene, it is determined 

during the on-line stage. For this to be done, the new captured image is projected onto the transformed 

space so that it can be recovered later and studied to determine whether or not there is a new object in 

the scene. To do this the following steps are followed: 

 

1. Subtraction of the mean of the present image: If jI is the captured image, jΦ  is obtained.  

2. Projecting jΦ  onto the transformed space and obtaining jΦ̂ : With the aim of reaching the 

maximum concurrence possible when executing (16), first the j
T
t ΦU   product is performed 

and this result is divided by the squared norms (
 

2norms

ΦU j

T

t 
), and finally 

 












 


2
norms

ΦU
U

j

T

t

t  

product is performed.  

3. Determining the recovery error: In this final stage, the degree of similarity between jΦ  and 

jΦ̂ is evaluated.  

Figure 4 shows the VHDL encoded modular design of this on-line stage. With respect to the internal 

workings of the system shown in Figure 4, this starts when a new vector image jI  is captured and later 

stored in the external memory so that the system has an initial latency of one image. As explained 

2
ˆ

norms

ΦUU
ΦUUΩUΦ

j

T

tt

j

T

tntntnj


  (16) 
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earlier, once jΦ has been obtained the next step is to produce the j
T
t ΦU  . To do this, the semi-systolic 

array for matrix multiplication is used [14]. It is important to point out at this point that the execution 

time of the Matrix Multiplier depends on the number of significant eigenvalues ( t ). In accordance with 

the percentage of significant eigenvalues (see (7)), a value of t  equals 6 has been decided upon. This 

reduction introduces a recovery error ( ) (17), after analyzing 1,000 images it could be seen that the 

induced error is approximately 1%:  

 




2

1

2ˆˆ
N

i
jjjj ii

ΦΦ  (17) 

Figure 4. Block diagram of the modules of the design in VHDL of the on-line stage of the PCA.  
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Once the first results from the j
T
t ΦU  product have been obtained, the next step is to divide these 

results by norms
2
. As each component of j

T
t ΦU   is generated in one clock cycle, given that they are 

output by the semi-systolic array, they are divided by the corresponding squared norm. 

To perform the division operation on an FPGA, there are basically two possibilities: either design a 

division unit specifically for that purpose, or use a coordinate rotation digital computer (CORDIC) 

algorithm [21]. In this work the latter option has been chosen, as it consumes fewer resources than the 

former. Dividing two numbers is feasible in CORDIC if it is used in vectorization mode with a linear 

coordinate system [22]. To do so, a division module based on a parallel CORDIC architecture has been 

implemented. 

When the first component of the division has been obtained, the next step to be performed in (16) is 

to obtain jΦ̂ . Once again, to perform this fourth matrix multiplication, the semi-systolic array 

described in [14] is used.  

4.3. Detecting new objects in the scene 

This section presents the solution developed for implementing an identification of new objects from 

the error recovery ( ) system in reconfigurable hardware (17). It proposes the building of an error 

recovery map or Map of Distances ( MD ) that will permit the new objects to be located spatially. The 

size of this map of distances will coincide with the size of the image, where each of its positions is the 

pixel to pixel Euclidean distance between jΦ̂ and jΦ . A new Map of Distances ( VMD ) will be built in 

order to reduce the noise effect. The final detection of moving obstacles will be obtained using the 
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dynamic threshold MDTh (11). Calculating MDTh  presents difficulties as it must be adaptable and its 

value depends on both the features of the scene under analysis and the lighting conditions. For this 

reason, in this section we present a new method for dynamically calculating the threshold that 

minimizes the false detection of new objects within the scene of interest. Figure 5 shows a block 

diagram of this proposal for detecting objects from jΦ̂  and jΦ  (green blocks). Next the hardware 

solution implemented in each block of Figure 5 is presented. 

Figure 5. Proposal for the system consisting of the construction of the MD, detection of 

new objects and the updating of the background model.  

ĵ
Recovering Image

Captured Image
j
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4.3.1. Constructing the Map of Distances (MD) and the Map of average Distances (MDV) 

The Map of Distances MD is obtained from (18), i'  being the square of the Euclidean distance 

between each component jji Φ  and jji Φ̂ˆ   2,...,1 Ni  (for images of the size NN  ):  

2
ˆ'

ii jji   2,...,1 Ni   (18) 

Working with the square of the Euclidean distance rather than the Euclidean distance (17), 

facilitates the design of hardware associated with this function, as it avoids the need to perform the 

square root operation. As such, to obtain MD only requires one subtraction and one multiplication 

operation, so that with an adder/subtraction block and a multiplier connected in cascade the segmented 

execution of (18) can be performed. 

Once the initial components of MD have been generated, the generating of the map of average 

distances ( VMD ) can be started. The use of a mask of q × q components is proposed that averages the 

pixels adjacent to MD, applying a 2D low-pass filter. The components that make up the map 

VMD are Nwiwvi
,..,1, ;' ,  . 

To provide a compromise value to the size of mask q, different sizes applied to different maps MD  

have been simulated; all of them are fixed point encoded. The size chosen for q is 3, given that it 

provides the algorithm with a certain degree of robustness and reliability, and few hardware resources 

are required.  

To implement the averaging function with masks of q × q (3 × 3) on the adjacent pixels the 

corresponding convolution function is implemented [23]. To select the best alternative for hardware 

implementation, several proposals for convolutions have been designed [23], evaluating at all times the 

execution time as well as how much of the FPGA’s internal resources are consumed.  
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To perform the convolution between a matrix and a generic mask, nine multiplication operations 

and eight accumulation operations must be performed for each resulting component. However, when 

all the coefficients of the mask have been identified, as happens in our case, another way of performing 

the convolution is according to (19), whereby one that reduces the number of multiplications to one. In 

this way, to obtain each 
wiv ,

'  component of the VMD , it is necessary to perform a nine component sum 

backlog and one multiplication for the equivalent factor in fixed point:  

 1,1,11,11,,1,1,1,11,1 '''''''''9/1'
,   wiwiwiwiwiwiwiwiwiv wi

  (19) 

 

Figure 6. Example of histogram construction of the maximum of the columns for an 

average map of distances ( VMD  ). 

1,
'

N
v

1,1
'v

2,1
'v

3,1
'v

4,1
'v

5,1
'v

N
v

,1
'

1,2
'v

2,2
'v

3,2
'v

4,2
'v

5,2
'v

N
v

,2
'

1,3
'v

2,3
'v

3,3
'v

4,3
'v

5,3
'v

N
v

,3
'

1,4
'v

2,4
'v

3,4
'v

4,4
'v

5,4
'v

N
v

,4
'

1,5
'v

2,5
'v

3,5
'v

4,5
'v

5,5
'v

N
v

,5
'

2,
'

N
v

3,
'

N
v

4,
'

N
v

5,
'

N
v

NN
v

,
'

MDV

1,
'max

iv

2,
'max

iv

3,
'max

iv

5,
'max

iv

Niv ,
'max

Histogram of the 

maximum of the 

columns for 

MDV

u 2u 3u 4u

…… …

f·u(f-1)·u(f-2)·u

4,
'max

iv

VMX

 

4.3.2. Detecting objects from the VMD  map 

Once the map of average distances ( VMD ) has been obtained, the next step is to analyze the map to 

evaluate whether or not there are new objects in the scene of interest. To do so, a threshold ThMD is 

obtained, which, when applied to VMD  makes it possible to perform the segmentation and as a 

consequence detect the presence of new objects. The value of ThMD must be dynamic as its value must 

adapt, amongst other factors, to changes in light within the scene. In order to obtain this dynamic ThMD 

different alternatives have been proposed, [12,24,25]. Our proposal calculates the histogram (with f 

intervals) of the maximum Euclidean distances of each column of the VMD  (Figure 6) and then obtains 

the dynamic threshold ThMD from the histogram. This algorithm, implemented on an FPGA, generates 

excellent results, as will be seen later in the results section.  
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Analyzing the information supplied by the histogram on the maximums of the VMD  columns, it can 

be seen how most of the maximum Euclidean distances represented are concentrated in the lower 

intervals. However, when a new object appears in the scene being studied, the maximum Euclidean 

distances of the VMD  columns where the object is located are expressed by a valley in the histogram. If 

there is no new object in the scene, then the valley does not appear. On the basis of this last feature of 

the histogram, to threshold VMD  it is necessary to find the value of ThMD that makes it possible to 

discriminate between the new object and the background. The minimum value of ThMD needed to 

correctly detect new objects must be the same as the value of the histogram interval that contains the 

valley associated with the new object.  

The hardware to perform the threshold is shown in Figure 7. Each block in Figure 7 is described 

below: 

 Block 1: this block is responsible for calculating the maximum of each column of the map of 

distances VMD . Internally it consists of a single register that stores the maximum value and 

a comparator that evaluates whether the new data is bigger or smaller than the stored 

temporal maximum. 

 Block 2: After calculating the maximums of the columns of the VMD , Block 2 is responsible 

for building the histogram of the maximums of the columns. It is executed in parallel with 

Block 1 once the maximum of the first column has been obtained. Every time a maximum is 

obtained the histogram interval that belongs to that maximum must be looked for and its 

accumulator increased by 1.  

 Block 3: This module, which is executed when Block 2 generates the first data, is responsible 

for calculating the maximum values of the histogram (VMX of Figure 6). This block works as 

follows: every time the maximum of a column is obtained in Block 2, a new value is added 

to the corresponding histogram interval and the number of the histogram interval with the 

maximum accumulated value is updated. At the same time, in Block 3 the increased value is 

evaluated to see whether it is the largest. If it proves to be so, then it is stored so that it can 

be compared with the following output from Block 2 and its memory address, which gives 

the location of the new maximum, generated by Block 2 is also stored. 

 Block 4: Finally, this component is responsible for looking for valleys in the histogram once 

Block 2 and Block 3 have finished. 

To find a valley, a hardware block has been designed to check the memory of Block 2, which 

contains the histogram of the maximums of the columns of VMD . The counter starts from the address 

stored in Block 3, that is to say, the address of the histogram interval with the maximum accumulated 

value. To find a valley, it is only necessary to find a value in the memory that is bigger than the one 

stored in the position before it. If no local minimum exists the system will increase the threshold 

(checking the intervals defined by the histogram) until it considers that the threshold is situated in the 

extreme interval and then classifies all the pixels in the image as belonging to the background. The 

number of histogram intervals ( f ) has been empirically set at 10, as with this value the developed 

proposal works correctly.  
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Figure 7. Block diagram on an FPGA of the dynamic threshold calculating system for 

detecting new objects. 
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5. Results  

This section sets out the results obtained in detecting new objects with a FPGA running PCA 

algorithm. All the images presented in this work have been captured by an “intelligent camera” 

described in [8].  

From a quantitative point of view, in calculating the execution time of the entire proposal presented 

in this work (TPCA_TOTAL) from the moment the first M  images are captured, the total time consumed is 

given by (20), with Table 1 giving a description of each of the times in (20):  

OBJMEMIMAGEUW RGENTOTALPCA TLTTT  ___
 (20) 

Table 1. Description of the partial times of TPCA_TOTAL. 

TGEN_WR

_U 

Time the FPGA takes to generate and write in SDRAM the eigenvectors of the 

matrix tU . 

TIMAGE Time employed in capturing a new image and its subsequent writing in SDRAM. 

LMEM Latency of the SDRAM memory, from the time it gives the order to read an image 

until the first data is received.  

TOBJ Time consumed in detecting new objects after the recovered image ( jΦ̂ ) has 

been obtained from the transformed space 

 

When it comes to calculating the number of complete clock cycles employed by TPCA_TOTAL, the 

value obtained is not constant as it depends on the number of significant eigenvectors, the size of the 

matrix and the number of Jacobi algorithm iterations, as explained in [19]. Adjusting the expression 

(20) for six eigenvectors (worst case), capturing eight images (256 × 256 pixels) to build a reference 

model ( 8M ), an internal data width of 18 bits ( 18n ) and 23 iterations for the Jacobi algorithm the 

value obtained in clock cycles is: 

CLKCAMERACLKTOTALPCA TTT 269395131076 __   (21) 
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where TCLK_CAMERA is the signal period of the CMOS sensor’s clock and TCLK the FPGA’s master 

clock. Clock Camera is generated by the FPGA using a DCM (digital clock management) block. 

Thanks to this element and a bank register managed for a FSM (finite state machine), both clocks 

working rightly. To obtain a ratio of the number of images the system processes, if the CMOS sensor’s 

clock (TCLK_CAMERA) is 66 MHz and the FPGA’s master clock is 100 MHz (frequency reached once the 

entire system has been implemented) a minimum of 121 images of 256 × 256 pixels have been 

processed per second. This ratio increases notably if any of the following situations occur: 

 Number of significant eigenvectors ( t ) under four. In this case the number of matrix 

multiplication operations (6), (9) and (10) are notably reduced. In this way the new 

TPCA_TOTAL value would reach an equivalent image per second ratio of 189.  

 Selective actualization. Cadence is another very important factor that conditions the number 

of images processed per second when updating the eigenvectors of the matrix (background 

model). If the eigenvalues of the matrix are not continuously updated, but between one 

update and another b  images pass, the new ratio of images per second obtained is shown in 

Figure 8.  

Figure 8. Ratio of images achieved per second with 1b . 
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 As may be seen from this figure, from 100b  onwards, independent of the number of 

significant eigenvectors, the system reaches its maximum value at around 250 images per 

second for 3t  and around 190 for 4t . This is because the system segmentation is at its 

most efficient at this number of images. In Table 2 a summary of the final amount of 

resources consumed by the different blocks implemented on the Xilinx FPGA is presented. It 

is important to point out that due to the limited resources of the FPGA every attempt has 

been made to optimise the design at all times, with the aim of reducing the use of internal 

resources. Thanks to this, from a number of BRAM (block RAM) components and slices 

point of view, it has been possible to implement the entire system on a medium to low range 

FPGA like the Xilinx XC2VP7.  
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Table 2. Summary of all the resources consumed by the entire developed system on a 

XC2VP7. 

Area (Slices) BRAM Multipliers fCLKMAX 

4225 (86%) 40 (91%) 43 (98%) 112,4MHz 

 

With respect to the frequency of the FPGA clock, according to the reports generated by the 

implementation tool, a maximum value of 1,124 MHz for the entire FPGA is assured. However, the 

master frequency chosen for our design is 100 MHz as from this value all the other necessary 

frequencies can be generated (the camera and external memory frequencies). 

As for the real results obtained, Figure 9 shows images captured with the developed platform [8] 

with an initial resolution of 1,280 × 1,023 reducing their size to 256 × 256 by applying a binning 

process on the FPGA. This sequence was captured in the grounds of the University of Alcala where the 

distance between the objects to be detected, in this case people and the camera, is 25 meters.  

Figure 9. Sequence of images captured to determine new objects. 

img1 img2 img3 img4

img5 img6 img7 img8

 

img1 img2 img3 img4

img5 img6 img7 img8

 

 

Figure 10 shows the detection that was performed. The proposed design has been tested with a bank 

of 1,000 images captured under moderate lighting conditions in outside environments. The accuracy 

achieved in the test was remarkable (around 97% of true matches). Despite the promising results for an 

embedded architecture, it is widely known that when using PCA for modelling strong illumination 

changes in the intensity values of the image require a high amount of PCA vectors to train the 

background. Besides, due to the fact that illumination changes are non-linear variations of the intensity, 

the PCA subspace cannot model such variations properly, which could increase the number of false 

detections. In a near future the proposal can be easily applied to other colour spaces, such as the light 

invariant space proposed in [26], which maps a RGB image to a scalar image where same surfaces 

under different illuminations are mapped to the same intensity value.  
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Figure 10. Sequence of images detected to determine a new object from those captured in Figure 9. 

 

 

6. Conclusions 

This work presents a new image capture and processing system implemented on FPGAs for 

detecting new objects in a scene, starting from a reference model of the scene. To achieve this, the 

Principle Component Analysis (PCA) technique has been used. The main objective is to parallelize it 

in order to achieve a concurrent execution which will enable processing speeds of around 120 images 

per second to be reached. This processing speed, including all stages included in the PCA technique 

(calculating eigenvalues and eigenvectors, projection and recovery of images to/from the transformed 

space, obtaining map of distances, etc.) responds to the requirements of many applications, where the 

goal is the detection of new objects in the scene, even in those cases where, for a variety of reasons, 

(changes in lighting for example) a continuous update of the background model is required. The 

proposed solution is a significant improvement on other hybrid solutions based on the use of a PC and 

an FPGA [5]. The complete integrated development of the PCA algorithm on an FPGA was a task that 

until now had not been achieved or performed, at least according to our thorough review of related 

work done on this topic. Thanks to the designed solution new applications with PCA algorithm could 

be implemented for new proposals or applications.  
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