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Abstract: An electro-quasistatic analysis of an induction micromotor has been realized by 

using the Cell Method. We employed the direct Finite Formulation (FF) of the 

electromagnetic laws, hence, avoiding a further discretization. The Cell Method (CM) is 

used for solving the field equations at the entire domain (2D space) of the micromotor. We 

have reformulated the field laws in a direct FF and analyzed physical quantities to make 

explicit the relationship between magnitudes and laws. We applied a primal-dual 

barycentric discretization of the 2D space. The electric potential has been calculated on 

each node of the primal mesh using CM. For verification purpose, an analytical electric 

potential equation is introduced as reference. In frequency domain, results demonstrate the 

error in calculating potential quantity is neglected (<3‰). In time domain, the potential 

value in transient state tends to the steady state value.  
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1. Introduction 

Electromagnetic laws were formulated ab initio using global quantities, such as charge, current, 

electric and magnetic flux, electromotive and magnetomotive force. Kirchoff’s network equations 

were also stated using global quantities, potential and current. 

After Maxwell’s publication, electromagnetic laws have been commonly written using differential 

equations. Because differential formulation is restricted to homogeneous regions—material 

homogeneity—heterogeneous domains are broken in homogeneous subdomains plus jump conditions. 

The discrete formulation of differential equations requires a discretization method, such as finite 

difference, finite element, boundary element, among others. 

As an alternative, a direct Finite Formulation (FF) of the electromagnetic laws based on global 

variables accepts material discontinuities, as is the case of the micromotor interface region, which is 

the surface of the resistive metal sheet of the mobile part of the micromotor in contact with the air (see 

Figure 1). In a direct FF [1–3], an algebraic system of equations is directly written, avoiding the 

discretization process. The corresponding numerical method is known as the Cell Method (CM) [4–6]. 

The present paper applies this method to the simulation and analysis of an electrostatic  

induction micromotor. 

Figure 1. Linear electrical induction micromachine. 

 

The main benefit of CM is the remarkable simplification of its theoretical formulation, and 

therefore, the obtained equation system. The CM algebraic equation system is equivalent to the 

obtained in FEM using affine approximation of the electric potential inside of the triangle mesh. CM 

simplification is because physical laws of the electrostatic induction micromotor are expressed directly 

by a set of algebraic equations. However, in FEM, the algebraic equations are obtained after a 

discretization process using differential equations. Thus, CM requires two steps less than FEM to 

obtain the same algebraic system of equations. 

The fundamental principle of CM is the use of finite or global measurable quantities. In the 

micromotor analysis, we use the voltage along a line instead of the electric field in a point. Therefore, 

we don’t use those quantities that are defined through a mathematical limit process as standard 

operations of gradient, curl and divergence. Note that a mathematical limit process involves 
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operational difficulties in some conditions—such as discontinuities in the electrical field in the 

interface, due to the superficial conductivity. They are not adequate for numerical processing. Because 

of this, FEM involves two additional steps: first, Green’s theorem is applied; and second, the first 

order interpolation function of Whitney elements is used. The last step introduces a tangential 

continuity of the field magnitudes in the edge of the elements and, however, allows discontinuity in the 

normal component. The constitutive equations in CM formulation have a deep geometric interpretation 

based in the geometry of primal and dual meshes. This interpretation facilitates the incorporation of 

two types of physical properties, volumetric and superficial with electrical conductivity. 

Nowadays, the design and implementation of a micromotor using MEMS technology is a great 

challenge [7–9]. For this purpose, we have developed some tools based on FF to simulate the 

electromagnetic fields of an electrostatic induction micromotor. In [10], we introduce the analytical 

equations for an electrostatic induction micromotor. References [11–15] provide state-of-the-art 

contributions in discrete electromagnetism and electrostatic formulation. In [12], its authors apply CM for 

computing the capacitance of a transmission line in presence of non homogeneous media. Reference [13] 

deals with a general application of CM to solve both isotropic and anisotropic electrostatic problem.  

In [12,13], the dielectric is characterized by a constitutive permittivity matrix––volumetric property––; 

the electric conductivity is neglected at the whole domain. 

In this work, for an electrostatic micromotor, the superficial conductivity at the interface of the 

mobile part plays a key role. In addition, we consider a volumetric conductivity at the mobile part. 

Figure 1 illustrates both superficial and volumetric conductivity, σS and σb, respectively. As a 

consequence, time dependent terms are considered in our finite formulation problem, and therefore, we 

carry out both frequency and transitory analysis.  

The analyzed micromotor is a simple linear electrostatic induction micromachine constituted by two 

parallel plates—mobile part and stator—isolated by a dielectric [8]. The distance between plates  

is 6 µm. Figure 1 summarizes the operation mode of the micromachine. Table 1 shows the 

nomenclature and Table 2 presents the physical and geometrical parameters of the micromachine. Our 

work is focused in the linear micromachine due to the great simplicity of analytical equations. The 

linear micromachine is the unfolding of a rotating electric micromachine. Consequently, the 

conclusions obtained for the linear micromachine are directly generalized to the rotating one [16]. 

The paper is organized as follows. Section 2 contains the reformulation of the field laws in a direct 

FF for the micromotor. Initially, we introduce global variables by analyzing physical quantities in 

order to make explicit the maximum of information. Both topological and constitutive equations are 

explained in detail. Then, we present the final global equation of the electrostatic induction 

micromotor. In Section 3, we provide an analytical equation of the electric potential—global 

variable—at the interface of the micromotor. For verification purpose, electric potential values are 

calculated by solving field equations with CM. Both frequency and time domain comparisons are 

introduced. Finally, Section 4 provides conclusions of the work. 
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Table 1. Nomenclature. 

Symbol Name Unity 

a Height of the air gap m 
b Height of insulator m 
k Number of waves per metre - 
l Length m 
j Imaginary unity - 

fJ  Current density A/m2 

S Slip - 
t Thickness m 
v Linear speed of mobile part m/s 
V Interelectrodic potential V 
V0 Supply potential V 
εa Electric permittivity of the air F/m 

εb 
Electric permittivity of the 

insulator 
F/m 

εeff Effective permittivity F/m 
φ Electric scalar potential V 
ω Angular frequency of the signal  Hz 
σa Electric conductivity of the air S/m 

σb 
Electric conductivity of the 

insulator 
S/m 

σS Superficial electric conductivity 1/Ω 
σeff Effective Conductivity S/m 
Φb Potential at the interface V 

Table 2. Physical and geometrical parameters of the micromachine. 

Symbol Name Value Unit 

L Length of the structure 44 μm 
hm Height of the metal sheet 0.01 μm 
a Height of dielectric 2 3 μm 
b Height of dielectric 1 10 μm 
k Number of waves per meter 2π/L μm−1 

v Linear speed of mobile part 0 μm/s 
f Temporal frequency of excitation 2.6 × 106 Hz 

V0 Maximum value of excitation 200 V 

2. Finite Formulation for the Micromotor 

The reformulation of field laws in a direct FF begins with an analysis of physical quantities. 

Physical measurements deal with global variables against field variables. In differential formulation, 

field variables are utilized because the notion of derivative refers to a point function. Contrariwise, 

global variables refer to a system, at a space or time element—global variables concern to oriented 

geometrical elements like points, lines, surfaces, volumes and time elements like instant and interval. 
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According to FF, global variables are also classified into configuration, source, and energy 

variables [1]. The configuration variables describe the configuration of the field without the 

intervention of the material parameters. The source variables describe the source of the field without 

involving the material parameters. The energy variables are the product between a configuration and 

source variable. 

CM requires the use of a pair of oriented cell complexes, one dual to each other, endowed with 

inner orientation (see I,J,K cell in Figure 2) and outer orientation (see 1,2,3,...,11 cell in Figure 2). 

Figure 2 illustrates the corresponding dual cell complexes. They were obtained from the barycentric 

subdivision [11]. 

Figure 2. Dual barycentric subdivision. 

 

According to electromagnetism FF, the first principle [3] says that the configuration variables are 

naturally associated with space and time elements of a primal cell complex endowed with inner 

orientation, while the source variables are associated with space and time elements of a dual cell 

complex endowed with outer orientation. The second principle [3] says that in every physical theory 

there are physical laws that link global variables referred to an oriented space-time element with others 

referred to its oriented boundary. 

2.1. Topological Equation of the Micromotor in Discrete Form 

The field equation of the micromotor is enforced, on the cell complexes, in exact discrete form by 

using incidence matrices G, C and D. They are denoted as edges-nodes, faces-edges, and volumes-faces, 

respectively, for the oriented primal cell complex. Let matrices G
~ , C

~  and D
~  denote the node-edges, 

edges-faces, and faces-volumes, respectively, for the oriented dual cell complex. These matrices are 

viewed as discrete counterparts of the differential operator gradient, curl, and divergence [5,12,14]. 

The following equations represent the counterparts of the differential Maxwell´s laws. 

Gauss law:  

 Q=ψD
~~~

 (1) 

where ψ~  is the electric flux vector associated to the dual faces and Q
~  the electric charge vector 

associated to the dual volumes. 
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Faraday law (for quasi–electrostatic conditions): 

 0CU  (2) 

 GV=U   (3) 

where V is the electric potential associated to the primal nodes and U the voltage vector associated to 

the primal edges. 

Charge conservation law: 

 0
~~~~

=
dt

d
D+ID


 (4) 

where I
~  is the electric current vector associated to the dual faces. 

The duality between the oriented primal and dual space cell complexes leads, in general, to the 

following relationships [14,17]: 

 TG=D ~
 (5) 

 TC=C
~

 (6) 

 TD=G
~

 (7) 

2.2. Constitutive Equation of the Micromotor in Discrete Form 

While field equations in direct FF describe the physical laws exactly, the constitutive equations 

describe the physical laws approximately. For the micromotor the integral potential and flux state 

variables, which are allocated on two different cell complexes, are related to each other by the 

constitutive material equations. These equations are matrix equations. They contain the average 

information of the material and grid dimension [6,11,12,18–20]. 

Since Equations (1)–(4) only contain topological information, the discretization error comes from 

the discrete constitutive material equations. 

Volumetric properties—volumetric conductivity and permittivity—and superficial properties—

superficial conductivity—are considered constitutive equations of the micromotor. Therefore, two 

classes of cells for the discrete constitutive material equations rise. For a bidimensional form, the 

volume cell and face cell are transformed in face cell and edge cell, respectively. 

The constitutive equations for a simple primal–dual cell (see Figure 3), are as follows: 

 ee
σ

e UM=I
~

 (8) 

 ee
ε

e UM=ψ~  (9) 

The expressions for the face element are: 

  Te
321

~~~~    (10) 

  Te IIII 321

~~~~   (11) 

and for the edge element: 

  Te UUUU 321  (12) 
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e

V
M  and e

V
M  are the volumetric conductivity and the permittivity matrices, respectively: 

  eeeeee
σ C+B+AσS=M

V

~
1/3  (13) 

  eeeeee
ε C+B+AεS=M

V

~
1/3  (14) 

Ae, Be and Ce depend on geometry of the primal cell and are expressed as follows: 

 













xx

yye

II

II
A

23

23

1 0

01
 (15) 

 













xx

yye

II

II
B

13

13

2 0

01
 (16) 

 













0

01

12

12

3 xx

yye

II

II
C  (17) 

Δ1, Δ2, and Δ3 expressions are: 

 xyyx IIII 32321   (18) 

 xyyx IIII 31312   (19) 

 xyyx IIII 21213   (20) 

(I1x , I1y), (I2x , I2y) and (I3x , I3y), are vectors associated to the primal edges: 

    kjkjyx yyxxII  ,, 11  (21) 

    kikiyx yyxxII  ,, 22  (22) 

    jijiyx yyxxII  ,, 33  (23) 

where (xi, yi) are the coordinates associated to the nodes of the triangle of reference (see Figure 3). eS
~

 

is expressed as follows: 

 



















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













3

2

1

33

22

11

~

~

~

~~

~~

~~

~

S

S

S

SS

SS

SS

S

yx

yx

yx
e  (24) 

The permittivity and conductivity tensors are: 

 









22

11

0

0




 e  (25) 

 









22

11

0

0




 e  (26) 

where U1, U2 and U3 are the voltage associated to the edges I1, I2 and I3 (see Figure 3),respectively; 

1
~ , 2

~ , 3
~  and 1

~
I , 2

~
I , 3

~
I  are the electric flow and the electric intensity associated to the surfaces 1

~
S , 

2

~
S  and 3

~
S , respectively, of the simple dual cell (see Figure 3). 
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e

S
M  is the superficial conductivity matrix, and it is expressed as: 

 
e

e
S

e
e

l

σt
=M

S  (27) 

where e
Sσ  is the superficial conductivity and el  is the length of an element (i, j). 

The components of the vectors associated to the dual surfaces 1

~
S , 2

~
S  and 3

~
S  (see Figure 3), are: 

  xbyb PPtS 111 ,
~

  (28) 

  xbyb PPtS 222 ,
~

  (29) 

  xbyb PPtS 333 ,
~

  (30) 

where t stands for the thickness of the model,  ybxb PP 11 , ,  ybxb PP 22 ,  and  ybxb PP 33 ,  are vectors at the 

barycentric of the reference triangle: 

    yyxxybxb PbPbPP
~

,
~

, 1111   (31) 

    yyxxybxb PbPbPP
~

,
~

, 2222   (32) 

    yyxxybxb PbPbPP
~

,
~

, 3333   (33) 

The centers  321

~
,

~
,

~
bbb  of the edges 1, 2, and 3, respectively, are the coordinates: 

   






 


2
,

2
, 11

jkjk
yx

yyxx
bb  (34) 
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




 
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2

,
2
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yx

yyxx
bb  (35) 

   






 


2
,

2
, 33

jiji
yx

yyxx
bb  (36) 

Point P
~

 is defined as:  

   






 


3
,

3

~
,

~ kjikji
yx

yyyxxx
PP  (37) 

2.3. Final Global Equation of the Micromotor 

We obtain the local fundamental matrix by substituting in (4) the local constitutive Equations (8) 

and (9) and Gauss law (1), were U is expressed by means of (2) and (3): 

 0=
dt

dV
GMG+VGMG

e
eeeTeeeeT

  (38) 

where Ge is the incidence matrix of one element and is expressed as follows: 
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011

101

110

3

2

1







I

I

I

kji

Ge      (39) 

and: 

  Tkji
e VVVV   (40) 

For computational purpose, processing cells one by one is convenient. To obtain the global 

fundamental matrix all the local fundamental matrices on the reference cell are assembled (see Figure 3). 

Figure 3. Simple primal-dual cell for assemble process. 

 

For a bidimensional formulation, in case of triangular elements under the hypothesis of uniform 

field and using a dual mesh with barycentric subdivision, the resulting matrix for one element is 

symmetric. Moreover, this matrix is coincident with the element matrix obtained with finite elements 

with affine approximation of the electric potential within the triangle [4,12]. Therefore, the resulting 

system of equations is coincident. To solve Equation (38), we have applied the following boundary 

conditions, one travelling wave on top, 0 V at bottom; and periodic boundary conditions on the left and 

right side (see Figure 1). 

3. Results 

3.1. Discrete Field in Frequency Domain 

First, Equation (38) is transformed to the frequency domain. Then, the operator jω substitutes to the 

operator t / . In this way, Equation (38) is expressed in the following form:  

 0=GVMjwG+GVMG TT
  (41) 

Next equation represents the analytical electric potential at the interface of the micromotor [10]. 

This is the reference equation for the FF verification. 
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ωSj)

σ

ε
+(

ωSj
ε
ε

+
σ
σ

(ka)

V
=Φ

eff

eff

eff

a

eff

a

b

1
sinh

0  (42) 

where: 

     kσ+σkb+kaσ=σ Sbaeff cothcoth  (43) 

    kbkε+kakε=ε baeff cothcoth  (44) 

We have calculated the potential at the interface, applying CM and the analytical equations, for five 

different values of the conductivity. The mismatch between the results obtained using analytical 

equations and the CM are neglected, as can be seen in Table 3. Figure 4(a) and 4(b) show the CM 

results of the potential for a superficial conductivity of 1/(1800·106) 1/Ω. Figure 4(a) and 4(b) 

represent the imaginary and real components of the scalar electric potential, respectively. Figure 4(a) 

also illustrates the primal and dual mesh.  

Table 3. Interface electrical potential. 

Conductivity 
1/Ω 

Analytical solution 
V 

CM 
V 

Error 
% 

1/(50·106) 21.6688 21.6947 −0.119 
1/(100·106) 37.7909 37.7259 0.172 
1/(200·106) 53.6311 53.5904 0.075 
1/(600·106) 64.2738 64.2748 −0.001 

1/(1800·106) 65.8906 65.9102 −0.029 

Figure 4 (a). Graphical representation of imaginary potential for a superficial conductivity 

of 1/(1800·106) 1/Ω. (b). Graphical representation of real potential for a superficial 

conductivity of 1/(1800·106) 1/Ω. 

 
(a) 



Sensors 2010, 10                            

 

9112

Figure 4. Cont. 

 

 
(b) 

 

Figure 5 represents the potential at the interface versus the conductivity. Typical maximum 

discrepancies are lower than 0.1%. 

 

Figure 5. Graphical representation of maximal potential at the interface versus superficial 

electric conductivity. 

 
 

We have also calculated the electric field at the interface. CM results and analytical solution results 

are illustrated in Table 4 and Figure 6 for a superficial conductivity of 1/(600·106) 1/Ω. The error 

between the results obtained using analytical equations and the CM is neglected. 

CM convergence has been guaranteed with the refining of the meshes of the micromotor as can be seen 

in Table 5. The interfacial electric potential has been obtained for a conductivity of 1/(1800·106) 1/Ω. 
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Table 4. Electric field in the steady state at the interface in z = 0. 

Conductivity 
1/Ω 

Analytical solution 
V/m 

CM 
V/m 

Error 
% 

1/(50·106) 3094307 3102000 −0.248 
1/(100·106) 5381641 5389700 −0.149 
1/(200·106) 7658503 7665400 −0.090 
1/(600·106) 9178278 9182800 −0.049 
1/(1800·106) 9409100 9419900 −0.114 

Figure 6. Electric field for a superficial conductivity of 1/(600·106) 1/Ω. 

 

Table 5. Effect of the mesh in the convergence. 

Number of 
nodes 

Number of 
elements 

Analytical solution 
V 

CM 
V 

Error 
% 

2353 4704 65.89 65.91 0.030 

613 1224 65.89 66.02 0.197 

284 566 65.89 66.20 0.470 

170 338 65.89 66.40 0.774 

3.1. Discrete Field in Time Domain 

In order to perform numerical calculations in time domain it is necessary to discretize the time axis for 

Equation (38). The θ-method of integration [21–23] is widely used to calculate transient fields [24]. The 

accuracy of this method is usually lower or equal to second order methods. The θ-method is easily 

implemented and it has found wide application in transient analysis. 

Equation (38) is an Ordinary Differential Equation (ODE) system [24] and it has the form: 

  tf=NV+
t

V
M




 (45) 

M and N are as follows: 

 GMGM T
  (46) 

 GMGN T
  (47) 

where f(t) function represent the boundary conditions. In this method the time axis is divided into 

intervals Δt. The θ–method applied to solve Equation (45) is written as: 
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       nnn1+n
n+n tfθ+θf(t)=Vθ+θVN+

Δt

VV
M 


 11 1

1  (48) 

where index n and n + 1 refer to quantities V at time t and t + Δt, respectively. Various choices of 

parameter θ lead to different classical methods. By θ = 1 the differential equation is solved by implicit 

Euler method, θ = 0 uses explicit Euler, θ = 0.5 is Crank–Nicholson method, etc. [25]. In this paper we 

considerate θ = 1. 

Figure 7 illustrates the transient state for the interface at z = 0 and z = L/2, i.e., point A and B in 

Figure 1, respectively. At t = 0 the initial conditions for the electric potential is V = 0 for all the 

domain. The total time for the transient analysis is 14 cycles of the applied potential with a maximum 

value of 200 V. The time step used in θ-method is T/40 s, where T is the signal period of the applied 

potential (see Table 5). Note that the computed potential at the interface in transient state, tends to the 

value obtained in steady state, 65.9 V. Figure 7 shows that for the same instant, the potential 

magnitude at the points A and B is equal, but with opposite sign. 

Figure 7. Transitory state of the potential at the interface in points A and B. 

 

Figures 8–10 show the potential distribution at the interface for three time instants: t1 = 1.92·10−7 s, 

t2 = 4.81·10−7 s and t3 = 3.85·10−6 s, respectively. As the transient analysis evolves, the maximum value 

approaches to the value that will be reached in permanent state, as can be seen in Figure 10. We must 

also consider that in the first cycles of the signal, the traveling wave changes its aspect until it reaches 

the definitive sinusoidal shape that is represented in Figure 10. 

Figure 8. Transitory state of the micromotor: potential distribution at the interface for instant t1. 
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Figure 9. Transitory state of the micromotor: potential distribution at the interface for instant t2. 

 

 

Figure 10. Transitory state of the micromotor: potential distribution at the interface for instant t3. 

 

4. Conclusions 

As an alternative to the differential formulation of the electromagnetic laws, we have rewritten the 

field laws of an electrostatic induction micromotor in a direct finite formulation. For solving field 

equations in direct finite formulation, we applied the Cell Method (CM) and obtained a relationship 

between volumetric and superficial material properties at the interface of the micromotor. The 

micromotor was analyzed in both time and frequency domain. The electric potential global variable—

configuration variable—has been calculated. For comparison purpose, an analytical solution of the 

electric potential is utilized as reference. Comparisons against analytical solutions of the electric 

potential demonstrated the cogency of our proposal. In frequency domain, the error between analytical 

and CM is less than 0.3‰—for a primal mesh of 2,353 nodes and 4,704 elements. In addition, 

transient analysis in time domain has been carried out using θ-method. Electric potential at the 

interface of the micromotor tends to the steady state value validating our approach, also. 
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