
Sensors 2010, 10, 361-373; doi:10.3390/s100100361 
 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 
Article 

Binary Fingerprints at Fluctuation-Enhanced Sensing 

Hung-Chih Chang 1, Laszlo B. Kish 1,*, Maria D. King 2 and Chiman Kwan 3 

1 Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 
77843-3128, USA; E-Mail: hungchih65@gmail.com  

2 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123, 
USA; E-Mail: mdking@neo.tamu.edu  

3 Signal Processing, Inc., 13619 Valley Oak Circle, Rockville, MD 20850, USA;  
E-Mail: chiman.kwan@signalpro.net 

* Author to whom correspondence should be addressed; E-Mail: Laszlo@ece.tamu.edu. 

Received: 8 December 2009; in revised form: 23 December 2009 / Accepted: 28 December 2009 / 
Published: 5 January 2010 
 

Abstract: We have developed a simple way to generate binary patterns based on spectral 
slopes in different frequency ranges at fluctuation-enhanced sensing. Such patterns can be 
considered as binary "fingerprints" of odors. The method has experimentally been 
demonstrated with a commercial semiconducting metal oxide (Taguchi) sensor exposed to 
bacterial odors (Escherichia coli and Anthrax-surrogate Bacillus subtilis) and processing 
their stochastic signals. With a single Taguchi sensor, the situations of empty chamber, 
tryptic soy agar (TSA) medium, or TSA with bacteria could be distinguished with 100% 
reproducibility. The bacterium numbers were in the range of 2.5 × 104-106. To illustrate the 
relevance for ultra-low power consumption, we show that this new type of signal processing 
and pattern recognition task can be implemented by a simple analog circuitry and a few 
logic gates with total power consumption in the microWatts range. 

Keywords: fluctuation-enhanced sensing; semiconducting metal oxide sensors;  
nano-sensors; ultra-low power sensor systems 
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1. Introduction 

Bacterium detection and identification has an important role in medical, agricultural, 
environmental, defense, etc. applications. Analyzing their odor [1,2] has good prospects because of 
high speed, low cost, wide availability, good sensitivity and selectivity, while solid-state electronic 
noses [3-7] can be applied. 

Recently, we have carried out an experimental study [8] with commercial Taguchi sensors to test 
the shape of the power density spectrum of the stochastic component of their signal as a pattern to 
recognize bacteria. The power density spectrum S( f )  of the spontaneous fluctuations of the sensor 
signal is one of the easiest and natural tools for Fluctuation-Enhanced Sensing (FES) of chemicals  
[9-20]. While it is reasonably simple to generate it from the measured data, it contains significant 
sensing information and it has been shown to enhance sensitivity by a factor of 300, or more [14,16]. It 
is also relatively straightforward to construct a theory to explain its behavior [18-20].  

In the present paper, we show a new method to generate binary patterns from measured spectra, an 
ultra-low power implementation of such a system including a simple Boolean logic circuit as a 
microprocessor-free pattern recognizer, see Sections 2, 3 and 6, respectively.  

In order to demonstrate the feasibility of the method and the nature of binary patterns, we conducted 
relevant experimental tests/evaluations where we have used some of the spectra published in paper [8] 
and spectra from new measurements.  

2. Binary Patterns for Low Power Consumption  

To achieve ultra-low power consumption, we must avoid the usage of microprocessors and 
extensive data processing. The sensor signal must be processed in the simplest possible way, 
presumably with analog circuitry, and the pattern recognition must be a deterministic process based on 
a few simple logic decisions. 

Figure 1. Illustration of nα  and β  for logarithmically equidistant sub-band boundaries. 
S( f )  is the power density spectrum of the fluctuations of the sensor signal. 

 
 

Let us make the following notations: nα  (local slope) is the average local slope of the power 
density spectrum S( f )  in the n-th frequency sub-band and β = αn / N∑  is the average of nα  over the 

entire measurement band, see Figure 1 as an illustration for logarithmically equidistant sub-band 
boundaries. The boundaries of sub-bands can be equidistant or any convenient settings. These 
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quantities can easily be generated by a low number of operational amplifiers and filters, see Figures 2 
and 3. 

The deviation nΔ  of the local slope is defined for each sub-band as the difference between nα  and 

β in the following equation: 

nn Δ=− βα  (1)

The sign nσ  of the local deviation nΔ  will be binary bit related to that sub-band: 

)signum( nn Δ=σ  (2)

The quantity   σ n  is a binary pattern that indicates if αn is larger or smaller than β  in the n-th sub-
band of the spectrum. The advantage of the quantity  σ n  is that it provides a single bit information 
about the spectral pattern. In the case of N non-overlapping frequency bands, the nσ  ( Nn ,...,1= ) 

quantities represent N bit information obtained from a single sensor. Then a simple, deterministic, fast 
and low-power pattern recognizer can easily be constructed by applying a Boolean logic rule to 
identify/distinguish the particular spectral patterns with their relevant set of the nσ  bits.  

All these tasks can be realized without the use of power hungry devices such as microprocessors, 
other types of sequential logic, or analog-digital converters. In Section 3, we show a simple realization 
with analog circuitry of power consumption in the microWatt range and in Section 7, based on 
experimental patterns, a Boolean pattern recognition logic in the nanoWatt/picoWatt regime, see also 
Section 8. 

3. An Ultra-Low-Power Realization of the Scheme 

The proposed system for ultra-low-power consumption, see Figure 2, includes three major parts: 
Sensor, Analog circuits to generate the binary patterns and a Boolean Logic circuit. The system 
described here uses equidistant sub-band boundaries: uniform bandwidths with non-overlapping  
sub-bands. 

Figure 2. Major building blocks of the low-power sensing system. 

 
 
In Figure 3, the outline of the Analog Unit is shown. The preamplifier amplifies the stochastic 

component of sensor signal. The spectral slope estimator is the combination of a small number of 
amplifiers, filters and rectifiers. The binary patterns are generated by a set of comparators.  
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Figure 3. Details of the Analog Unit of the sensing system with 6 bit resolution shown in 
Figure 2, see the text for explanation. 

 
 

A simple realization of the analog electronics to estimate the local slope nα and global slope β  can 

be seen in the Spectral slope estimator part of Figure 3. In this realization, for fingerprints of N bit 
resolution, we will need N + 1 sub-bands. To obtain the local slope αn  of each sub-band, first we 
rectify and then smooth the noise by a low-pass filter at the output of each band-pass filter in order to 
estimate the mean-square amplitude Un

2 (t)  there. Then we estimate the average slope in the 

frequency band ( fn − fn−1) / 2{  ;  ( fn + fn+1) / 2} as: 

αn =
Un

2 (t) − Un−1
2 (t)

( fn − fn−1)2  (3) 

To estimate nα  from the mean-square voltages, see Equation 4, differential amplifiers are used, see 
Figure 3. To obtain the magnitude of ∑−= nN αβ 1  the nα values obtained above are averaged with 
an adder with amplification of 1/N. Finally, the comparators compare the magnitude of nα  and β  and 
generate the bit nσ  for all sub-bands. The Boolean logic circuit will identify the pattern of bits nσ  

(n =1,..., N) . 
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4. Experiments with Bacteria and Heated Semiconducting Metal Oxide Sensors 

To demonstrate the feasibility of the new method, the number of bits required for the identification, 
the simplicity, and the low power consumption of such a system, we carried out experiments with 
bacteria and commercial Taguchi sensors. Note, commercial Taguchi sensors must be heated thus they 
consume a lot of power, however, nanoparticle film alternatives are often much more sensitive and do 
not need heating during sensing [21,22].  

Thus, whenever the new method described in this paper is to be used for ultra-low power 
applications, nanoparticle sensors or similar room-temperature devices will be needed to fully utilize 
the low power consumption of the electronics. 

4.1. Sample Preparation 

Here we briefly summarize the sample preparation steps. For more details, see [8]. As Gram negative 
pathogenic vegetative bacterium surrogate, mid-log phase cultures of E. coli K12 MG1655 (E. coli 
Genetic Resources at Yale CGSC, New Haven, NE) were grown in Luria Bertani (LB) medium [23] at  
37 °C. The cells were harvested at 2,880 g for 9 minutes and resuspended in 5% Phosphate Buffer Saline 
(PBST, pH 7.4) to 109 CFU/milliLiter concentration. Aliquots (100 μL) of the E. coli cell suspension were 
spread in appropriate dilution on Difco Tryptic Soy Agar (TSA) plates (Becton Dickinson Co., Sparks, 
MD), and incubated overnight at 37 °C [23]. 

As Gram positive (Anthrax) surrogate, 50 mg of lyophilized Bacillus atrophaeus (aka Bacillus 
globigii, BG) (U.S. Army Edgewood Proving Ground, Edgewood, MD) was resuspended in 5 mL of 
sterile deionized water and centrifuged at 2,880 g for 9 min to remove traces of the culture medium. 
The supernatant was aspired and the pellet was resuspended in 10 mL of sterile deionized water. 
Aliquots (100 μL) of the stock Bacillus subtilis were spread in appropriate dilution on TSA plates and 
incubated overnight at 30 °C [23]. 

As reference, sterile TSA plates containing identical (27 mL) amounts of the medium without 
bacteria were also prepared.  

4.2. Experimental Setup [8] 

The data shown below were measured on a single commercial Taguchi sensor SP32 (Figaro Inc.) 
after the new sensor was preheated ("burned-in") in laboratory air for several days with the nominal 
heating voltage until its stochastic signal component (resistance fluctuations) developed a stable power 
density spectrum Sr ( f ) . In addition, to enhance the sensitivity and selectivity of the sensor, the 
Sampling-and-hold (SH) method, see [8,10], was used. At the SH protocol the sensor is heated for a 
short time, and then the heating (and gas flow) is turned off and, after the sensor has cooled down, the 
measurement is done [8,10].  

The measurement system [8] is shown in Figure 4. The sensor and the sample were in a grounded 
stainless steel sensor chamber of one Liter volume. The sample in a Petri-dish was located 5 cm below 
the sensor. A DC bias through the sensor converted its resistance fluctuations into voltage fluctuations 
that were amplified by a low-noise preamplifier and their power density spectra were evaluated by a 
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dynamic signal analyzer in the frequency range of 100 Hz–100 kHz. The voltage spectra were 
transformed back to power density spectra Sr ( f ) of the fluctuations of sensor resistance [8-10]. 

Figure 4. Outline of the experimental setup.  

 

4.3. Types of Samples  

The situations tested in these experiments were: empty chamber; TSA; TSA + E. coli at different 
bacterium numbers; TSA + Anthrax-surrogate; finally TSA + E. coli + Anthrax-surrogate. Here empty 
means no sample; TSA represents the culture medium: tryptic soy agar; E. coli means the harmless 
laboratory strain MG1655 as a surrogate for the pathogenic vegetative bacteria Escherichia coli; and 
Anthrax stands for the Anthrax-surrogate bacterium, the spore forming Bacillus subtilis. The samples 
with maximal bacterium number had one million bacteria.  

Between different sample measurements, the chamber was flushed by synthetic air for 3 minutes. 
To see the reproducibility of the spectra, the measurements with each sample were repeated  
at least twice.  

5. Binary Pattern Extracted from Experiments 

In the figures below, for the sake of better visibility of the differences by the naked eye, the 
normalized power density spectrumγ( f ) is used:  

2
)()(

s

r

R
fSff ×

=γ  (4) 

where Rs  is the actual sensor resistance. Note, for the binary patter generation describe in Section 2, 
both the original and the normalized spectra yield the same result. 

For simplicity, we measured the average slopes in six sub-bands with logarithmically equidistant width 
by fittings of the )( fγ  plotted as a log-log plot by Origin software. The sub-bands were 100−333 Hz for 
bit B1, 0.333–1 kHz for bit B2, 1−3.3 kHz for bit B3, 3.3−10 kHz for bit B4, 10−33 kHz for bit B5 and 
33–100 kHz for bit B6. The binary pattern used for driving the logic circuit is found to have the 
following characteristics: 
(1) Good reproducibility: Examples are shown in Figures 5–8: measurement data obtained with 
independently prepared samples at different dates. The spectra in Figures 5–7 yield identical patterns 
shown in Figure 8. 
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Figure 5. Normalized power density spectra of the resistance fluctuations of the sensor 
SP32 measured in the sampling-and-hold [8,10] working mode. Each sample had one 
million bacteria. The alias "Anthrax" stands for Anthrax surrogate Bacillus subtilis. 

 

Figure 6. Reproducibility of the experimental data shown in Figures 5 with new samples. 
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Figure 7. Reproducibility of the experimental data shown in Figures 5-6 with new samples. 

 

Figure 8. The spectra in Figures 5-7 yield the same 6-bits pattern. 

 

 

(2) Inability to differentiate between the two types of bacteria: the applied sensor and the simple 6 bit 
pattern generation we used for these tests were unable to differentiate between the two bacteria, while 
they were able to differentiate between all the other cases (empty, TSA, bacteria). This fact originates 
from the particular settings of pattern generation because the differences between spectra with 
different bacteria could be distinguished by naked eye. However, we find this situation satisfactory 
because our goal was not to present a fully featured/optimized system but to show how much can be 
achieved with just a simple, ad-hoc, demo version of a 6 bits system. 
(3) Robustness against variations of the bacterium number, see Figure 9. This characteristic was 
unexpected with Taguchi sensors, which are nonlinear devices, but it could be expected with linear 
sensors. The most probable reason why we still experienced this property with our sensor is the linear 
response of nonlinear systems against small perturbations; a situation relevant for Taguchi sensors. 
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The measurement conditions to test the impact of bacterium numbers were as follows. Six different 
bacterium numbers of E. coli were used: 2.5 × 104, 5 × 104, 105, 2.5 × 105, 5 × 105 and 106. The 
normalized power density spectra and the binary patterns are shown in Figures 9 and 10, respectively.  

Figure 9. Variations of the normalized power density spectrum at different bacterium numbers. 

 

Figure 10. Variations of the binary pattern at different bacterium numbers. Bit B5 is not 
reliable therefore that bit should not be used for pattern recognition, see the Boolean logic 
in Section 6. 

 
 

The binary pattern in Figure 10 can also identify three conditions: empty, TSA and TSA + bacteria 
(E. coli). When the bacterium number decreases from 106 to 2.5 × 104, the bits remained the same 
except bit B5 (relevant to sub-band 10 k~33 kHz). As a consequence, bit B5 should not be used in the 
Boolean logic for pattern recognition, except perhaps as extra information about the bacterium 
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number. However, the rest of the bits provide sufficient information to identify the different types of 
samples: empty, TSA and TSA + bacteria (E. coli). 

6. Boolean Logic Circuit for Pattern Recognition with Ultra-Low Power Need 

The obtained bit patterns are shown in Table 1. As we have shown above bit B5 is not robust 
against variations in the bacterium number thus we can consider it as an invalid bit unless we want to 
use that for the indication of bacterium number of E. coli. Thus a simple 5-bits Boolean logic circuit 
driven by pattern bits 1-4 and 6 can identify the different situations. The Boolean logic circuit in 
Figure 11 has a two-bits output where only 3 of the four possible states are used to display the 
recognized pattern: empty, TSA, or TSA + bacteria (either E. coli or Anthrax). 

Table 1. The logic input of the Boolean logic circuit generated from Figure 10. Zero stands 
for σn = −1 and 1 stands forσn =1. 

  Bit B1 Bit B2 Bit B3 Bit B4 Bit B5 Bit B6 
Empty 0 1 1 1 N/A N/A 
TSA 1 0 0 0 N/A 0 
TSA+bacteria 1 0 0 0 N/A 1 

 
The output of the Boolean logic at the different situations is shown in Table 2. The output 1,0 is not 

shown because it is invalid. 

Table 2. The output of the Boolean logic circuit at the different situations. 

  
Output of Binary logic

Bit 1 Bit 2 
Empty 0 0 
TSA 1 0 
TSA+ Bacteria 1 1 

 
From Table 1 and Table 2, the following Boolean logic equations can be extracted: 

4321   1Bit BBBB ⋅⋅⋅=  (5) 

Bit 2 =  B1 ⋅ B2 ⋅ B3 ⋅ B4 ⋅ B6  (6) 

The Boolean logic circuit to realize Equations 5, 6 is shown in Figure 11. 
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Figure 11. The Boolean logic circuit to realize the binary pattern recognition for the 
sampling-and-hold sensor SP32. 

 
 

When this Boolean logic circuit is realized by CMOS logic gates, its static power consumption is in 
the nano/picoWatt regime. In addition, this circuit consumes some extra power for a short time 
(nanosecond) while it switches when the situation of agents change. Due to the rarity of such events, 
the power consumption in the Binary logic is basically due to the leakage current of transistors. At 
practical situations, these powers required by the logic circuitry are negligible. 

7. Power Consumption of the Whole Sensing System 

As a result of avoiding digital computation and using analog processing with the simple logic 
decisions instead, the main advantage of our system is its simplicity and ultra low power consumption. 
The analog circuits dominate the power consumption of this system and that is relatively small due to 
the low-frequency operation (<100 kHz). In [24] a more sophisticated analog circuitry for a different 
sensing approach is shown, including a wireless unit (known to be power hungry), with only 3 μW 
total power dissipation. Thus we can safely claim that the power dissipation of our analog circuitry is 
in the μW range or below. In comparison, a laptop computer based pattern recognizer, which would be 
able to run the same task, would dissipate around 20−50 Watts.  

8. Summary  

In this work we have reported an exploratory study to generate and test highly distinguishable and 
robust types of binary patterns from power density spectra obtained at fluctuation-enhanced sensing of 
bacterial odors. We have shown a way how these binary patterns can be generated by an analog 
circuitry of ultra-low power consumption and used to drive a Boolean logic based pattern recognizer 
with negligible power consumption. We demonstrated these findings by single-sensor experiments 
recognizing bacteria with 100% success rate and zero false alarm rates. 

Concerning an important question asked by a Referee about discriminating gram-positive and gram-
negative bacteria, the answer is that this method is sensing the odor of the bacteria. If these sets 
represent some characteristic odor components then classification can be possible. Otherwise, the only 
way is to teach the system (construct the binary logic) to recognize each specific bacterium. 
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