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Abstract: A model based on PCA (principal component analysis) and a neural network is 
proposed for the multi-fault diagnosis of sensor systems. Firstly, predicted values of 
sensors are computed by using historical data measured under fault-free conditions and a 
PCA model. Secondly, the squared prediction error (SPE) of the sensor system is 
calculated. A fault can then be detected when the SPE suddenly increases. If more than one 
sensor in the system is out of order, after combining different sensors and reconstructing 
the signals of combined sensors, the SPE is calculated to locate the faulty sensors. Finally, 
the feasibility and effectiveness of the proposed method is demonstrated by simulation and 
comparison studies, in which two sensors in the system are out of order at the same time. 

Keywords: multi-fault diagnosis; principal component analysis; signal reconstruction; 
fault detection; fault isolation 

 

1. Introduction 

Since the principal component analysis (PCA) model can effectively reduce the dimension of input 
data, extract useful information and improve the efficiency of data analysis, it has been widely used in 
pattern recognition, signal processing, data compression, fault monitoring and many other fields [1-4]. 
The PCA model has been studied in depth in the field of fault diagnosis, especially in some 
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complicated systems [4-7]. With the development of neural networks, some PCA diagnosis models 
based on artificial neural networks such as the Error Back Propagation (BP) neural network [8], the 
radial basis function (RBF) neural network [9,10] and the self organizing mapping (SOM) neural 
network [11] have been extensively studied in recent years. However, all the current fault diagnosis 
models aim at studying single-fault sensor systemd and rarely discuss multi-fault diagnosis (which is a 
common issue in the practical application). In addition, regarding the mentioned neural network PCA 
models, the structures are complicated, the parameters are difficult to design and the convergences are 
not so perfect. All of these hamper the practical use of the models. Compared to single-fault sensor 
diagnosis system, the real-time demand for multi-fault sensor diagnosis is higher and the calculations 
are more complicated, and consequently the PCA fault diagnosis method has rarely been applied to 
multi-fault sensor systems. 

A rapid PCA fault diagnosis model for multi-fault sensor diagnosis systems based on a credit 
assigned cerebellar model articulation controller (CA-CMAC) is presented in this paper. As a result of 
the rapid convergence characteristics of the CA-CMAC, the real-time characteristics of the PCA fault 
diagnosis model are improved. The faulty sensors can be isolated by reconstructing the combined 
sensors’ signals, and thus a rapid diagnosis of multi-fault sensor systems is realized. 

This paper is organized as follows. In Section 2, the conventional CMAC algorithm and CA-CMAC 
are introduced. The proposed PCA-based multi-fault sensor system diagnosis model is presented in 
Section 3. To illustrate the effectiveness of the proposed method, a simulation example is given in 
Section 4 and a comparison study is shown in Section 5. Finally, some concluding remarks are made in 
Section 6. 

2. CMAC Algorithms 

2.1. Conventional CMAC Algorithm 

The CMAC neural network algorithm [12,13], which is built by imitating the behavior by which 
cerebella control human limbs, was proposed by Albus. It is a local approximating network with 
characteristics such as linear structure, simple algorithm, rapid learning speed and capability of dealing 
with uncertain knowledge. Also it has a generalization capacity. The basic idea of CMAC is storing the 
learning data (knowledge) in the overlapped memory cells (memory space). It contains two operations. 
The first is to output the network results, and the second is to adjust the weights (stored knowledge).  

Its basic structure is shown as Figure 1, S is n-dimensional input space, A is the address of memory 
cells and w is the stored weights in memory cells. Each input si activates the unit of memory space A to 
A*. The sum of connected weights which A* corresponds to is the output:  
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                                                         (1) 

In Equation (1), aj is the memory cell activation flag. For the activated units, aj = 1, otherwise,  
aj = 0. For weight learning and adjusting of the network, supposed S is a state, wj(t) in Equation (1) is 
the weight stored in the j-th memory cell after k-th iteration. In conventional CMAC algorithm, errors 
are distributed to all the activated units averagely, so wj(k) can be updated as follows: 
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In Equation (2), sy  is the desired outputs of state S, ∑
=

−
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j
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)1(  is the actual outputs of state S, α 

is a learning constant and m is the number of activated memory cells in some state. Only the weights of 
memory cells that have been activated will be updated. 

Figure 1. Basic structure diagram of a CMAC. 
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2.2. CA-CMAC Algorithm 

In the conventional CMAC algorithm, the errors are averagely distributed into all the activated 
memory cells. We know that the weights of CMAC has included the former learned knowledge after  
k-1 times of iteration, however not each addressed hypercube has the same learning experience, which 
leads to the differences in the reliability of each addressed memory cell weight and each addressed cell 
has a different contribution to errors. That’s to say, the same credit assignment should not exist in the 
m memory cells. If these differences are ignored and all the memory cells acquire the same amounts of 
errors, the errors produced by the state that has not been learned will cause “corrosion” to the former 
learned information, and in the network learning process, the desired data can only be gained after 
many learning cycles. 

In order to improve the learning efficiency of CMAC and avoid the “corrosion” effect, the errors 
should be distributed in accordance with the memory cells’ credibility. However, no effective methods 
have been developed to decide which cell should take more responsibilities for the current errors. In 
other words, no good methods have been proposed to decide the credibility of the memory cells’ 
weights. The only available information are the current weights updating times. The more the numbers 
of updating for memory cells are, the more reliable the stored values are. As a result, the learning 
numbers of memory cells are regarded as its credibility. The credibility is higher if the weights’ 
amendment is smaller. Supposed f(j) is the learning number of j-th memory cell and m is the number of 
activated memory cells in some state, the idea of CA-CMAC is that adjusting errors must be in 
contrast with the learning numbers of activated memory cells, that is, 1/m in Equation (2) can be 
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3. The Proposed Multi-Fault Sensor System Diagnosis Model Based on PCA 

3.1. Principle of PCA and Signal Forecasting Model 

PCA is a statistical analysis technique that can deal with relevance of data. It can reduce the 
dimensions of original variable X, bring effective information in original variable to the full and realize 
efficient compression of data. Suppose an original variable X = [X1,X2,…,Xm]T is an m-dimensional 
random vector and the mean average of each component is zero, that is, E(Xi) = 0, (I = 1,2,…,m), its 
covariance matrix can be given by: 
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In Equation (4), aij = E(XiXj) is the covariance of Xi and Xj. A is a positive matrix, and λ1 ≥ λ2 ≥…≥ λm 
≥ 0 are supposed as the eigenvalues of it. P is an orthogonal matrix, PTAP = Λ, Λ = diag(λ1, λ2,…,λm)  
(Λ is a diagonal matrix). If Y = PTX, then E(YYT) = E[PTYYTP] = PTE[XXT]P = Λ, that is, 
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λ
. Therefore, Yi is irrelevant to Yj. If X is a normal random vector, Yi and Yj are also 

independent. λi = E(Yi
2). The traces of similar matrix are equal, then we can get the equation: 
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where λ1 + λ2+…+ λm is the average energy of X. Supposed a is a constant between 0 and 1,  
βi = λ1/(λ1 + λ2 +…+ λm), an integer s is choosed to satisfy the equation: β1 + β2 +…+ βs ≥ a. The 
proportion of energy brought by Y1,Y2,…,Ys has exceeded a. Therefore Ys+1,Y s+2,…,Ym can be regarded 
as random disturbance. Generally, because PCA model can effectively reduce the dimension of input 
data, s is less than m and Y1,Y2,…,Ys are the components of Y1,Y2,…,Ym whose significance level is a. 
Each principal component concentrates the common features of all the components in random variable 
X. Obviously, inverse transformation can be expressed as follows:  

PYX =                                                                          (7) 
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According to the theory of principal component analysis, the orthogonal matrix P and principal 
component matrix Y can be obtained by orthogonal transformation of historical data X before k times,  
Y = PTX. In addition, according to the eigenvalues of the covariance matrix of X, we can find the 
former s principal components Y1,Y2,…,Ys whose significance level is a. They can represent the 
common features of all the components in the random vector X, so they should be given priority to be 
modeled and forecasted.  

The former s  principal components Y1,Y2,…,Ys can be forecasted by CA-CMAC neural network to 
get principal components Yi’ (I = 1,2,…,s). According to the equation X’ = PY’, we can get the 
sensors’ predicted values X’ that is after k cycles. The specific sensor signal forecasting model is 
shown in Figure 2. 

Figure 2. Signal forecasting model based on PCA. 
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In CA-CMAC neural network training, the inputs of CA-CMAC are the historical values of the 
principal components Yi (i = 1,2,…,s) at the time of (k-4, k-3, k-2, k-1), and the desired output is the 
value of principal components Yi (i = 1,2,…,s) at the time k. Here the desired output can be also the 
historical value at time k-1, then the inputs of CA-CMAC are historical values at the times (k-5, k-4,  
k-3, k-2), so many training samples can thus be obtained. 

Compared with the 5-BP neural network in [8], the 2-RBF network [9,10] and the SOM neural 
network in [11], the CA-CMAC neural network in Figure 2 has many advantages such as simple 
structure and high signal forecasting accuracy. Its rapid calculating speed can meet the real-time needs 
of fault diagnosis systems. In this paper, PCA forecasting model is applied to the detection and 
isolation of multi-fault sensor system. 



Sensors 2010, 10   
 

 

246

3.2. Detection and Isolation of a Multi-fault Sensor System Based on PCA 

(1) Detection of Faulty Sensors 

When the sensor system is out of order, a fault can be detected according to some deviation 
between the actual measured data samples and the predicted values of a statistical model. That is, we 
can determine whether the system is out of order by the squared prediction error (SPE) between the 
measured values and normal predicted values of sensors. The estimated error vector is expressed as: 

)(ˆ)()( kXkXke −=                                                                   (8) 

where e(k) is the error vector of each sensor at k time, sensor measured values at k time are  
X(k) = [X1(k), X2(k),…,Xn(k)]. The reconstructed predicted values at k time 
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SPE value of sensor system at k time can be expressed as follows: 
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Under normal circumstances, )(ˆ kX approximately equals X(k) and the error e(k) is small, then the 
SPE value is small too. However, the actual measured values will deviate greatly from the predicted 
values reconstructed based on PCA when a sensor or more are out of order. Then Es will increase 
significantly. The variation curve of SPE can be obtained according to Equation (9). If the SPE value 
increases suddenly at some point, it shows that sensor system is out of order at that moment. 
Regulation of fault detection is defined as: 
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In Equation (10), δα is the fault threshold of SPE. 

(2) Sensor Fault Isolation Algorithm in Multi-fault Cases 

Once the fault of sensor system is monitored, we must find the source of fault accurately in order to 
exclude the faulty sensors quickly, then the normal values of faulty sensors can be replaced by the 
predicted values of the model to ensure that the system can operate normally. For the problem of 
single-fault sensor isolation, a method of linear variable reconstruction for sensor fault isolation has 
been proposed by Dunia [4,5]. On this basis, we propose an isolation algorithm for multi-fault sensors, 
fault isolation algorithm of “combined sensors reconstruction”. Specifically, we reconstruct single-
sensor signals and multi-sensor signals respectively and replace the sensor signals of actual measured 
values with the reconstructed values. SPE is calculated by Equation (11), and we can determine which 
sensor is out of order by the hopping of SPE curve. 
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① Reconstruction and Isolation of Sensor Signals 

When the sensor system is out of order, the reconstructed value of each sensor at k time can be 
obtained by the measured data before k time based on PCA signal reconstructed model, 

)](ˆ,),(ˆ,),(ˆ),(ˆ[)(ˆ
21 kXkXkXkXkX nj= . Among the sensors’ actual measured values, we just 

reconstruct the signals of j-th sensor at k time and define the actual measured values as follows: 

1 2
ˆ( ) [ ( ), ( ), , ( ), , ( )]( 1, , )j nX k X k X k X k X k j n= = ⋅⋅⋅⋅⋅⋅ , then we can get the following equation from 

Equations (8) and (9): 
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Here )(kSPE j  represents the )(kSPE  value after reconstructing the j-th variable. If only one 
sensor is out of order in the system, once the measured values of faulty sensor are reconstructed, 

)(kSPE j  will be less than the threshold as the fault has been be excluded by reconstruction. If the 
faulty variable is not reconstructed, )(kSPE j  will still be influenced by the fault and more than the 
threshold. Accordingly, we can isolate the faulty sensor simply. However, if more than one sensor is 
out of order, we can not ensure the SPE value is less than the threshold by reconstructing only one 
faulty sensor signal. That is to say, we can not determine the faulty sensors specifically and have to 
carry out a “combined sensors reconstruction”. 

② Reconstruction and Isolation of Multi-Sensor Signals 

Suppose that among the n sensors to be diagnosed, m sensors are out of order. The signals from m 
sensors are reconstructed randomly at each time based on the PCA model. The actual measured values 
of the m sensors at k time are replaced with the reconstructed values: 
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The )(, kSPE ji  are calculated after reconstructing m sensors’ signals according to Equations (8) and 
(9). If the 2)(, aji kSPE δ≤ , the reconstructed m  sensors are all out of order. Consequently, the 
isolation of multi-fault sensors can be realized. However, if 2)(, aji kSPE δ>  is established, the faulty 
sensors are not isolated completely and combined reconstruction should be done until the result is in 
accord with 2)(, aji kSPE δ≤ . The maximum numbers of combined reconstruction are m

nC . 

4. Simulation Study 

4.1. Sensors Model 

The simulation system is composed of four sensors and the output signals are defined as: 
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where ei (i = 1,2,3,4) is an independent white noise variable distributed between [-0.1,0.1], t is a 
variable defined between [-1,1] and Δt = 0.005. In the simulation, 400 training data points are adopted. 
It is assumed that two sensors are out of order. According to the proposed algorithm, n = 4, m = 2. 

4.2. Multi-fault Sensor Diagnosis Based on PCA 

(1) Sensor Fault Detection 

According to the signal prediction model based on PCA, the principal component matrix Y of 
historical data matrix X = (x1, x2, x3, x4) can be obtained by orthogonal transformation, so do the first 
two principal components Y1,Y2 whose significance level α is 0.9941. Subsequently, the principal 
components Y1’, Y2’ at k time are forecasted by the principal components Y1, Y2 at the time of (k-4, k-3, 
k-2, k-1). At last, the estimated values )ˆ,ˆ,ˆ,ˆ(ˆ

4321 xxxxX =  of X can be obtained by inverse orthogonal 

transformation. 
The SPE value under normal circumstance is shown in Figure 3, which shows that the SPE value is 

in a relatively stable state and less than fault threshold (δα = 0.04). Thus the sensor data under normal 
circumstance can be forecasted well by PCA model. 

Figure 3. SPE value without fault. 
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To illustrate the process of fault detection, in this paper, 400 sampling points are used. For variable 

x1, a fault is added, which is 14% of its variation range between 150 and 400, and for variable x4, an 
added fault is 24% of its variation range between 300 and 400. Then the SPE is calculated and the 
distribution curve is obtained according to Equation (9).  

Figure 4 is the SPE value of the system when both x1 and x4 have a fault. Obviously, starting from 
the 150th sampling point, the SPE value suddenly increases and is more than the fault thresholdδα. 
Consequently it can be determined that one sensor is out of order at that time according to the principle 
of fault detection. At the time of 300th sampling point, the SPE value displays another jump, and it 
shows another sensor is out of order at that time. Accordingly, it can show that not only the sensor 
system is out of order, but also two sensors (that is m = 2) have a fault through the number of jumps of 
the SPE value from Figure 4. 
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Figure 4. SPE value with fault. 
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(2) Multi-Sensor Fault Isolation 

In order to isolate the faulty sensors, in this paper, we adopt the method of reconstructing sensors 
two by two as m = 2. That is, x1x2, x1x3, x1x4, x2x3, x2x4, x3x4 are reconstructed respectively. After the 
reconstruction, if the SPE value of system is less than the fault threshold δ α, then the two 
reconstructed sensors at this time are the faulty sensors. The 2,1SPE  value after x1 and x2 reconstructed 

is shown in Figure 5. Then other combinations of variables are reconstructed. Figure 6, Figure 7, 
Figure 8, Figure 9 and Figure 10 show the values of 3,1SPE ， 4,1SPE ， 3,2SPE ， 4,2SPE ， 4,3SPE  

after reconstructing x1x3, x1x4, x2x3, x2x4, x3x4 respectively. 

Figure 5. SPE value with sensors 1, 2 reconstructed. 
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Figure 6. SPE value with sensors 1, 3 reconstructed. 
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Obviously, after x1x4 are reconstructed, the SPE value of sensor system is less than the fault 
threshold. While after reconstructing other combinations, the SPE value of sensor system is still more 
than the fault threshold, which means the fault has not been excluded. Accordingly, it shows that the 
faulty sensors are x1 and x4. That is, sensor 1 and sensor 4 are both out of order and sensor 1 and  
sensor 4 are the faulty sensors. In Figures 3 to 10, K is the time variable (sampling time), the unit of 
SPE is the same as the unit of sensor output variable. 

Figure 7. SPE value with the sensors 1, 4 reconstructed. 
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Figure 8. SPE value with sensors 2, 3 reconstructed. 
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Figure 9. SPE value with sensors 2, 4 reconstructed. 
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Figure 10. SPE value with sensors 3, 4 reconstructed. 
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5. Comparison among Ca-Cmac, Conventional Cmac and Bp Network 

To illustrate the advantage of CA-CMAC neural network adopted in PCA model, take the 
mentioned PCA model as an example to study the learning effect of the conventional CMAC,  
CA-CMAC and BP neural networks. CMAC and CA-CMAC use the same network structure. The 
number of input states is 4, while the number of output states is 1. The BP neural network uses a three-
layer network (input layer, hidden layer and output layer), and the number of nodes for each layer is 4, 
6 and 1, respectively. The hidden layer node is a sigmoid function, while the output layer node is a 
linear function. When comparing the convergence rate of PCA with different neural networks, we use 
mean square error (MSE) to describe convergence of neural network:  
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where Ysimuk is the output of network, Ytargk is the expected value and N is the number of samples. 

Figure 11. MSE decline curve in the training course of predicting the principal component 1. 
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The curve in Figure 11 describes the MSE decrease with learning cycles in the training process of 
predicting principal component 1. From curves of MSE, it is obvious that the convergence rates of 
CMAC and CA-CMAC are much faster than that of the BP neural network. 

The data in Table 1 is the MSE of principal component 1 varying with the cycles in the training 
process of the three different neural networks. From Table 1, it shows that the convergence rate of CA-
CMAC is much faster than that of the BP network, and it is also faster than the CMAC network. Then 
it can meet the need of the real-time characteristics of a fault diagnosis system. 

For each group training data of input and output, all connected weights in the BP neural network 
should be adjusted, and its calculation demands are increased; in addition, the BP neural network 
adopts a gradient descent algorithm, so the calculation speed is slow. On thre other hand, the CMAC is 
a local neural network. It adjusts only part of the weights and adopts the simple δ algorithm. Its 
convergence rate is much faster than BP network and the local minimum does not exist, so it has an 
obvious advantage in training accuracy and training time. In addition, compared to the conventional 
CMAC, the conception of credit assignment is introduced to CMAC, so the CA-CMAC can avoid the 
“corrosion” effect, the correcting errors are distributed in accordance with the cell credibility, then the 
update of weight is much more rational and effective, the learning time decreases greatly and the real-
time characteristic of online learning is improved under the condition of the same  
approximation accuracy. 

Table 1. MSE values by using different neural networks to train principal component 1. 

Neural 
Network 

Training Cycle 
0 1 2 3 4 5 

BP 2.77223 2.67898 0.52841 0.21499 0.03188 0.02098 
CMAC 2.90312 0.29E-02 0.54E-02 0.51E-02 0.30E-02 0.12E-02 
CA-CMAC 2.90312 0.31E-04 0.51E-04 0.31E-04 0.10E-04 0.21E-05 
Neural 
Network 

Training Cycle 
6 7 8 9 10 11 

BP 0.01487 0.01156 0.00580 0.00391 0.00316 0.00282 
CMAC 0.34E-03 0.66E-04 0.55E-05 0.23E-06 0.25E-05 0.29E-05 
CA-CMAC 0.29E-06 0.24E-07 0.79E-09 0.30E-09 0.74E-09 0.64E-09 

6. Conclusions 

In this paper, a rapid PCA diagnosis model based on CA-CMAC for multi-fault diagnosis is 
proposed. Simulation results show that the faulty sensors can be isolated by the method of “combined 
reconstruction”. CA-CMAC provides a noticeable improvement in learning speed and accuracy in 
comparison to the conventional CMAC and BP neural networks. The proposed algorithm is practical 
and effective. 
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