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Abstract: Research on the coral-eating crown-of-thorns starfish (CoTS) has waxed and waned over
the last few decades, mostly in response to population outbreaks at specific locations. This review
considers advances in our understanding of the biology and ecology of CoTS based on the resurgence
of research interest, which culminated in this current special issue on the Biology, Ecology and
Management of Crown-of-Thorns Starfish. More specifically, this review considers progress in addressing
41 specific research questions posed in a seminal review by P. Moran 30 years ago, as well as exploring
new directions for CoTS research. Despite the plethora of research on CoTS (>1200 research articles),
there are persistent knowledge gaps that constrain effective management of outbreaks. Although
directly addressing some of these questions will be extremely difficult, there have been considerable
advances in understanding the biology of CoTS, if not the proximate and ultimate cause(s) of
outbreaks. Moving forward, researchers need to embrace new technologies and opportunities to
advance our understanding of CoTS biology and behavior, focusing on key questions that will
improve effectiveness of management in reducing the frequency and likelihood of outbreaks, if not
preventing them altogether.
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1. Background

Crown-of-thorns starfish (CoTS; Acanthaster spp., excluding A. brevispinus) are renowned for
their ability to devastate coral reef ecosystems [1]. This is primarily because local densities of CoTS
can increase from normally very low densities (<1 starfish per hectare) to extremely high densities
(>1000 starfish per hectare) during periodic population outbreaks (e.g., [2]). Moreover, CoTS are one
of the largest and most efficient predators on scleractinian corals [3]. Whereas most other individual
coral-feeding organisms (e.g., Chaetodon butterflyfishes, and Drupella snails) cause only localized
injuries or tissue-loss [4,5], adult CoTS can kill entire corals, including relatively large colonies. High
densities of CoTS will, therefore, cause rapid and extensive short- to long-term coral depletion.
In French Polynesia, for example, high densities of CoTS caused systematic coral loss around the
entire circumference of the island of Moorea, killing > 96% of coral between 2005 and 2010 [6].
More broadly, outbreaks of Acanthaster spp. are a major contributor to sustained declines in coral cover
and degradation of coral reefs at many locations throughout the Indo-West Pacific [7–9].

While there has been considerable research, and a large number of scientific articles (>940) focused
on Acanthaster spp., extending back to the 1960s [10,11], research interest and funding has waxed and
waned through this period (Figure 1). In Australia, a disproportionate number of research papers
on CoTS have followed the initiation of each new wave of outbreaks (in 1962, 1979, 1993 and 2009),
with apparent declines in publications as outbreaks subside. The main exception to this pattern was
in 1979 to 1992, where the number of papers published on CoTS was lower than expected even after
the initiation of the outbreak in 1979, whereas publication output was highest in 1992, immediately
prior to the start of the third documented wave of outbreaks. The high number of publications in
1992 (46 publications) was partly due to two separate special issues on Acanthaster spp. [12,13], as well
as an explicit recognition of the need to study CoTS during non-outbreak periods [14,15]. Scientific,
management and political interest in CoTS did decline towards the end of the third documented
wave of outbreaks in the early 2000s (Figure 1), with increasing concern about climate change and
coral bleaching deflecting some attention from CoTS outbreaks. There has however, been a sustained
increase in the number of scientific studies and publications on CoTS from 2010–2017 (Figure 1).
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Figure 1. Interannual variation in the number of crown-of-thorns starfish (CoTS) publications relative 
to the start of successive outbreaks on Australia’s Great Barrier Reef (as indicated by vertical red 
lines). The annual number of publications was determined based on a Web of Science search  
(topic = “Acanthaster” or “crown-of-thorns” and “Australia”), which was then detrended  
(showing the deviance from a linear regression between annual number of publications and year from 
1965 to 2016) to account for increases in the number of publications through time. NB. Number of 
papers for 2017 is projected, based on number of papers published to end of April, 2017. 

The purpose of this review is not to provide a comprehensive overview of CoTS biology or 
research, which are already available elsewhere [1,21,22], but to consider major advances  
(and apparent failings) in CoTS research over the past few decades. Our assessment of research 
progress is based on a critical judgment of the extent to which research (including original research 
presented within this special issue) has addressed the knowledge gaps highlighted by a seminal 
review in 1986 [21]. Ongoing research interest in Acanthaster spp. is largely driven by persistent 
controversy around the cause(s) of outbreaks and corresponding management actions [1].  
This special issue (Biology, Ecology and Management of Crown-of-Thorns Starfish) reflects the latest 
resurgence in scientific interest and research on Acanthaster spp., unequivocally focused on better 
understanding the initiation and spread of outbreaks, as well as refining the capability and capacity 
for effective management. The papers presented in this special issue address: (i) environmental 
drivers of fertilization and early development [23,24]; (ii) larval nutrition, larval development and 
implications for the ‘nutrient enrichment hypothesis’ [25–29]; (iii) predation and implications for the 
‘predator removal hypothesis’ [30–32]; (iv) factors influencing settlement [27,30]; (v) dispersal and 
genetics [33]; (vi) longevity, growth, and size-and-age relationship [34,35]; (vii) movement [36]; and 
(viii) control and management [16,37].  

Aside from research to address current issues related to the effective management of CoTS 
outbreaks, there have also been some fundamentally new directions for CoTS research in the last 
decade, enabled by advances in research methods and analytical capabilities. Therefore, this review 
also considers some of the foremost new directions for CoTS research, related to (i) systematics and 
biogeography, (ii) genetic and genomic sampling, (iii) ecological modelling, and (iv) projected effects 
of environmental change. Notably, genetic sequencing of CoTS populations from throughout their 
geographic range (Red Sea to the eastern Pacific) has resolved that there are several distinct  
species [38,39]; Acanthaster planci, which is restricted to the northern Indian Ocean, is readily 
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Figure 1. Interannual variation in the number of crown-of-thorns starfish (CoTS) publications
relative to the start of successive outbreaks on Australia’s Great Barrier Reef (as indicated by vertical
red lines). The annual number of publications was determined based on a Web of Science search
(topic = “Acanthaster” or “crown-of-thorns” and “Australia”), which was then detrended (showing the
deviance from a linear regression between annual number of publications and year from 1965 to 2016)
to account for increases in the number of publications through time. NB. Number of papers for 2017 is
projected, based on number of papers published to end of April, 2017.
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There is greatly renewed interest in Acanthaster spp. for two reasons. Firstly, renewed outbreaks
of CoTS are occurring on the Great Barrier Reef (GBR), Australia, combined with unprecedented
outbreaks at many locations throughout the Indo-Pacific [1]. Secondly, outbreaks of CoTS remain
a major contributor to sustained decline in coral cover at many reefs throughout the Indo-Pacific
(e.g., [16,17]) and scientists and managers alike recognize the critical need to halt and reverse this
decline. Preventing and/or containing CoTS outbreaks is generally considered to be one of the most
feasible management actions to reduce rates of coral mortality (e.g., [7]), thereby improving the capacity
of reef systems to cope with threats due to climate change and other anthropogenic disturbances [18].
Despite persistent knowledge gaps regarding the ultimate cause(s) of outbreaks, and the considerable
time and cost required for effective management of established outbreaks, outbreaks of CoTS are one
of the principal causes of major coral loss (along with severe tropical storms and mass coral bleaching)
that are amenable to direct and immediate intervention [7]. De’ath et al. [7] suggested that preventing
outbreaks of Acanthaster spp. on the GBR could in itself reverse sustained declines in coral cover.
The same is probably true for other reef regions, where outbreaks of CoTS are among the major causes
of acute coral loss [9,17,19,20].

The purpose of this review is not to provide a comprehensive overview of CoTS biology
or research, which are already available elsewhere [1,21,22], but to consider major advances
(and apparent failings) in CoTS research over the past few decades. Our assessment of research
progress is based on a critical judgment of the extent to which research (including original research
presented within this special issue) has addressed the knowledge gaps highlighted by a seminal
review in 1986 [21]. Ongoing research interest in Acanthaster spp. is largely driven by persistent
controversy around the cause(s) of outbreaks and corresponding management actions [1]. This special
issue (Biology, Ecology and Management of Crown-of-Thorns Starfish) reflects the latest resurgence in
scientific interest and research on Acanthaster spp., unequivocally focused on better understanding
the initiation and spread of outbreaks, as well as refining the capability and capacity for effective
management. The papers presented in this special issue address: (i) environmental drivers of
fertilization and early development [23,24]; (ii) larval nutrition, larval development and implications
for the ‘nutrient enrichment hypothesis’ [25–29]; (iii) predation and implications for the ‘predator
removal hypothesis’ [30–32]; (iv) factors influencing settlement [27,30]; (v) dispersal and genetics [33];
(vi) longevity, growth, and size-and-age relationship [34,35]; (vii) movement [36]; and (viii) control
and management [16,37].

Aside from research to address current issues related to the effective management of CoTS
outbreaks, there have also been some fundamentally new directions for CoTS research in the last
decade, enabled by advances in research methods and analytical capabilities. Therefore, this review
also considers some of the foremost new directions for CoTS research, related to (i) systematics
and biogeography, (ii) genetic and genomic sampling, (iii) ecological modelling, and (iv) projected
effects of environmental change. Notably, genetic sequencing of CoTS populations from throughout
their geographic range (Red Sea to the eastern Pacific) has resolved that there are several distinct
species [38,39]; Acanthaster planci, which is restricted to the northern Indian Ocean, is readily
distinguishable from the Pacific species (A. cf. solaris) based on color, as well as a general lack
of spines along the aboral distal portion of the arms (Figure 2). Overall, there are at least four
distinct and geographically separated species [38,39], though most of the research and knowledge
of CoTS biology and ecology comes from research in the western Pacific on A. cf. solaris. However,
species-specific differences in behavior and biology may account for geographic variation in the
occurrence of outbreaks, and their impacts on reef ecosystems [1]. Thus, there is a definite need for
comparative studies across multiple species of Acanthaster, testing for differences in key demographic
rates (e.g., growth and reproductive output) as well as feeding rates and dietary preferences.
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Figure 2. Distinct species of crown-of-thorns starfish: (a) Acanthaster planci from northern Indian Ocean
(Photo taken by M. Pratchett in Maldives), (b) Acanthaster cf. solaris from the Pacific (Photo taken by
C. Caballes in Guam).

2. Advances in CoTS Research

It has been 30 years since the publication of a comprehensive review titled, “The Acanthaster
Phenomenon” by Moran [21]. Moran [21] reported that crown-of-thorns starfish are probably the
single most studied species (or species complex) on coral reefs, and yet there were many knowledge
gaps that directly hampered effective management of population outbreaks. Accordingly, Moran [21]
presented a list of 41 questions considered fundamental to understanding the causes and consequences
of outbreaks. These questions were intended to guide research through the subsequent years and
decades to improve both understanding and management of outbreaks of Acanthaster spp. They were
presented within three broad categories (Larvae and Juveniles—21 questions, Adults—11 questions,
and Effects on Communities and Processes—3 questions) together with a further six overarching
questions. To assess the advances (or lack thereof) in our understanding of the biology of CoTS over
the last three decades, as well as causes and consequences of outbreaks, we review progress against
each of these 41 research questions, specifically highlighting the contributions of research articles
presented in this issue. Where relevant, questions have been grouped together under a single section
heading to minimize repetition.

2.1. Questions 1 and 3 (Larvae and Juveniles)—Are high nutrient conditions needed for the enhanced survival
of larvae in the field? Can larvae develop and settle under ‘non-bloom’ nutrient conditions in the field? If so,
can high densities of larvae be sustained under these conditions?

While receiving considerable attention, these questions are LARGELY UNRESOLVED.
One of the foremost hypotheses proposed to account for outbreaks of CoTS, the larval starvation

hypothesis, is predicated on a link between rates of effective larval development and availability of
suitable prey (mostly unicellular phytoplankton; e.g., [40–43]). Early studies by Lucas [40] suggested
that rates of development and survivorship increased with increasing algal concentrations. Moreover,
Okaji [41] demonstrated that CoTS larvae grew faster and had a higher survivorship with increasing
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chlorophyll-a (chl-a) levels (>2 µg chl-a L−1), suggesting that enrichment of nearshore waters and
phytoplankton assemblages would lead to increased densities of A. cf. solaris larvae [44,45]. Conversely,
field-based experiments conducted by Olson [46], using an apparatus designed to rear larvae in situ,
suggested that larvae grew well under low chl-a conditions. However, these results were potentially
confounded by contamination and retention of phytoplankton within the experimental apparatus,
resulting in higher than expected chl-a concentrations [41]. Nevertheless, in situ studies of larval
development and survival, with simultaneous sampling of environmental parameters (e.g., cell-counts,
chl-a, organic carbon content), are still needed.

Recent experimental studies have shown that elevated chlorophyll concentrations may not be
necessary for CoTS larvae to complete development (reviewed in [47]). Laboratory experiments by
Wolfe et al. [43,47] demonstrated high larval survival and settlement success across a broad range
of nutrient levels, and most importantly, below the lower threshold levels previously suggested by
Fabricius et al. [45]. The robust nature of larvae, even in oligotrophic conditions, may be driven
by increased investment in provisioning of eggs by well-fed adults [25,48] and the morphological
plasticity of larvae to respond to changes in the availability of exogenous prey [25,49]. Furthermore,
there appears to be an upper threshold for optimal larval survival and development, whereby very
high levels of nutrients have been shown to be deleterious to larval development for CoTS, and
larval growth and development are maximized at close to normal background concentrations of
chl-a [27,43]. Larval survival and size at set intervals (4, 7, and 10 days after fertilization), as well as
settlement rate and size of newly settled juveniles after 18 days were significantly lower for treatments
with the highest phytoplankton concentration (100,000 cells per mL; 10 µg chl-a per L) compared to
intermediate food levels (10,000 cells per mL; 1 µg chl-a per L) [43]. Mortality rates for larvae under
high algal concentration (100,000 cells per mL; 10 µg chl-a per L) were significantly higher from very
early in larval development, compared to low (1000 cells per mL; 0.1 µg chl-a per L) and intermediate
(10,000 cells per mL; 1 µg chl-a per L) food levels [27]. Taken together, these results suggest that chl-a
levels between 0.4 and 1.0 µg per L may be the optimal range for larval survival and development.

The use of Proteomonas sulcata in both Wolfe et al. [43] and Pratchett et al. [27] was criticized by
Brodie et al. [29] because of the very low chl-a concentration of this phytoplankton species. In addition,
the high cell numbers (~100,000 cells per mL) are unlikely to occur in the field; even under flood
conditions, algal cell numbers rarely exceed 1000 cells per ml [50]. Similarly, nutrient enrichment of
natural seawater used in larval feeding experiments presented in Fabricius et al. [45] had maximum
cell numbers of 4400 cells per ml (equivalent to ~5.2 µg chl-a per L in their study). As these numbers
illustrate, it is unfortunate that the “nutrient hypothesis” (or “terrestrial runoff hypothesis”) is currently
expressed in terms of chl-a concentration. Although chl-a concentration is easy to measure, chl-a content
varies widely among species and is not necessarily reflective of the nutritional value of the algae.
Further studies need to focus on energy content (or at least organic carbon content) of food organisms
(see [26]). Debate continues as to whether terrestrial runoff promotes primary outbreaks on the
GBR [44,45] and/or plays an important role in fuelling subsequent secondary outbreaks [1,29].

One of the foremost limitations in understanding purported links between nutrient enrichment,
increases in phytoplankton abundance or changes in phytoplankton composition, and the increased
survivorship and settlement of Acanthaster spp. is the lack of systematic monitoring of relevant
variables. On the GBR, for example, we lack the necessary information to explicitly compare nutrient
availability and phytoplankton assemblages among reefs considered important for initiating primary
outbreaks, versus those that support secondary outbreaks or are generally unaffected by CoTS
outbreaks. It is also now understood that the algorithms used in the GBR to estimate chl-a from
satellite remote sensing, in particular the MODIS satellite with the Aqua sensor, can give inaccurate
and biased results; and therefore, usage should be avoided for absolute measures of chl-a [51]. In situ
monitoring of nutrients, phytoplankton assemblages, and CoTS larvae, to relate size, abundance, and
condition of larvae to local biological and environmental parameters (e.g., [49,52]) in the lead up to the
next outbreak of A. cf. solaris on the GBR, would clearly establish whether CoTS larvae can develop
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and settle even in the absence of nutrient plumes and phytoplankton blooms. This would go a long
way to resolving the extent to which sustained but gradual improvements in catchment management
and water quality are an effective mechanism for limiting future outbreaks. In addition, new genetic
methods (eDNA, next generation sequencing) to identify larvae [53,54] and potentially characterize
phytoplankton abundance and community structure in the same water parcel provide opportunities to
investigate the connection between nutrient inputs and changes in the quantity and quality of food for
the larvae.

2.2. Question 2 (Larvae and Juveniles)—Do these types of conditions (i.e., high nutrient conditions and
associated phytoplankton blooms) occur frequently in the field? If so, do they coincide with observed
spawning periods and how long do they occur?

These questions are Largely Unresolved.
Spatial and temporal coincidence between high nutrient conditions and enhanced survivorship

of CoTS larvae in the field would lend significant support to the larval starvation hypothesis [45,55].
However, establishing these links is complicated by aforementioned controversies about levels of food
availability necessary to ensure development and survival of CoTS larvae (Section 2.1), as well as the
inability to directly assess larval densities and survivorship in the wild. Fabricius et al. [45] argued that
interannual variation in the cumulative annual discharge from the Burdekin river (one of five major
rivers that discharge into the GBR) corresponds with the initiation of outbreaks of A. cf. solaris after
allowing for inevitable lags in the timing of floods (and corresponding increases in larval densities)
versus first reports of elevated densities of adult starfish in 1962, 1979, 1993 and 2009. However, the
lag between major flood events and corresponding outbreaks of A. cf. solaris ranges from 2–5 years,
possibly due to limitations in detecting the specific onset of outbreaks [1]. Moreover, major flood
events may or may not initiate outbreaks, depending on the availability of coral food resources [25,48],
the timing of floods relative to specific spawning periods and developmental rates for A. cf. solaris [45]
and whether larval food supply is, in fact, a major limiting factor.

While there is a definite need for further research to resolve interannual variability in the
specific pattern and occurrence of spawning by A. solaris on the GBR relative to particular flood
events [52], the general onset of reproduction and larval development (December–March) broadly
coincides with periods of heavy rainfall and increased likelihood of flooding [29]. Moreover,
flood plumes and phytoplankton blooms occur frequently, almost annually within certain areas
of the GBR (almost annually) and can persist for weeks to months [29]. These floodwaters provide
increases in nutrient concentrations, especially from within heavily modified catchments with intensive
agriculture [45,50]. However, it is the confluence of nutrient enrichment from flood plumes and
relatively clean offshore waters that enable the proliferation of phytoplankton, potentially explaining
why outbreaks of A. cf. solaris predominantly occur on mid-shelf reefs. If, however, phytoplankton
blooms sufficient to sustain elevated densities of CoTS larvae occur almost annually, this cannot explain
why initial outbreaks (primary outbreaks) occur relatively infrequently and at specific locations in
the northern GBR [1]. Rather, persistent nutrient enrichment may be important in sustaining the
proliferation and spread of outbreaks (secondary outbreaks) once they have become established at
discrete reef locations [29]. If food is limiting, however, we might expect successive waves of outbreaks
to peter out, especially in areas of the central GBR, which have lowest nutrient inputs (but see [56]).

Wooldridge and Brodie [57] explicitly acknowledge that high nutrient conditions and associated
phytoplankton blooms occur quite commonly during summer in the northern GBR, but do not
always initiate outbreaks of A. cf. solaris. At Green Island, for example chl-a concentrations
exceeded 0.80 µg chl-a per L for prolonged periods at least six times between 1969 and 1998, though
outbreaks developed only twice, in 1979 and 1993. Elevated nutrients may therefore, be a necessary
precursor for outbreaks to become established, but there are other conditions that must also be
met. Modelling studies by Wooldridge and Brodie [57] suggested that it is interannual variation in
levels of larval retention (see [58]) that may explain when, and perhaps where, primary outbreaks
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become established. Importantly, hydrodynamic conditions would have promoted high levels of
self-recruitment, rather than dispersal of larvae among widely separated reefs, in years prior to
outbreaks arising in 1979 and 1993 [57]. However, it is yet to be tested whether primary outbreaks are
directly attributable to iterative increases in population size, due to high levels of self-recruitment [59].
As stated previously, increased monitoring of relevant metrics for food availability is needed alongside
fine-scale spatial and temporal sampling to document the initiation and spread of CoTS outbreaks.

2.3. Question 4 (Larvae and Juveniles)—How important is diet in influencing the survival of larvae? Is survival
more dependent on the diversity rather than density of food species? What other factors influence the survival
of larvae?

The first two components are MOSTLY RESOLVED, but larval survivorship is yet to be studied in
field settings (Section 2.12).

The abundance of specific phytoplankton is much more important than overall abundance
of phytoplankton (and corresponding chl-a concentrations) for promoting rapid development and
survival of CoTS larvae. Larvae of A. cf. solaris feed predominantly on mid-sized phytoplankton
(e.g., dinoflagellates and pennate diatoms >5 µm) [40,60–62], whereas tropical coral reef waters are
generally dominated by picoplankton (e.g., pelagic cyanobacteria—Synechococcus and Prochlorococcus
<2 µm), which typically make up >50% of total primary production in oligotrophic waters (e.g., [63–65]).
As such, total chl-a concentrations may grossly overestimate food availability for CoTS larvae. Elevated
nutrients due to terrestrial runoff and upwelling do promote increased dominance of phytoplankton
species with larger cell sizes [65–67], potentially benefitting CoTS larvae, but it is nonetheless necessary
to sample phytoplankton assemblages directly (rather than relying on chl-a concentrations) to assess
the conditions that promote larval survival and the onset of outbreaks.

Very few studies have specifically considered the feeding selectivity of CoTS larvae, other than
showing that there is strong size selectivity. Okaji et al. [68] demonstrated that clearance rates of larval
feeding were significantly lower for smaller phytoplankton (1–2 µm) compared to phytoplankton with
larger cell sizes (4–5 µm), even when smaller phytoplankton were overwhelmingly dominant. Also,
heterotrophic bacteria appear to have a negligible role in larval nutrition [69]; though CoTS larvae are
able to assimilate and utilize dissolved organic matter (DOM) in the water column [60,70], as well as
coral-derived organic matter, such as mucus and associated microorganisms [28]. Mellin et al. [26]
tested for selective feeding by CoTS larvae among phytoplankton species of similar size (>5 µm).
CoTS larvae consistently preferred algal species with the highest energetic content (Chaetoceros,
Dunaliella) over microalgae with lower energy content (Pavlova lutheri, Phaeodactylum tricornutum),
which would presumably lead to higher growth rates and elevated survival of CoTS larvae, though this
was not tested. Although algal species used in that study have been commonly used in aquaculture
and are within the size-range preferred by CoTS, these species are not naturally present at high
concentrations on the GBR (except for Chaetoceros spp.). It is important therefore, to establish feeding
selectivity for algal species that are particularly dominant during flood events (e.g., Skeletonema; [50])
and DOM, as well as testing for variation in larval growth and survivorship with changes in the
availability of specific prey types.

The extent to which development and survival rates of CoTS larvae are constrained by exogenous
food availability is equivocal, and somewhat dependent on several other factors (e.g., maternal
provisioning of larvae, and vulnerability to predation). Caballes et al. [48] demonstrated that differences
in the nutritional condition of female A. cf. solaris, based on contrasting diets (e.g., Acropora versus
Porites), have a major bearing on the growth and performance of their progeny. Well-fed females
provision their offspring with increased levels of endogenous energetic reserves, which not only
allows larvae to withstand prolonged periods of starvation, but also enables them to grow larger
and feed more efficiently [25,49]. Larval survivorship in the wild will also be limited by competition,
predation and environmental constraints on development (see Sections 2.13 and 2.14). If higher food
concentrations also benefit predators of CoTS, this has the potential to suppress larval survival and
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outbreaks [71]. There are no empirical data on rates of predation for CoTS larvae in the wild, and
such information will be very difficult to obtain, though CoTS larvae are certainly vulnerable to
predation [72].

2.4. Question 5 (Larvae and Juveniles)—Do certain physical conditions occur in the field that cause the
increased survival of larvae? Do these conditions act in conjunction with any other factors?

These questions are LARGELY RESOLVED, though there is scope for more work on synergistic
effects of climate-induced changes in physical conditions.

The specific physical conditions that promote larval development and survival for Acanthaster spp.
has received a great deal of attention (e.g., [40,73]) and there has been a recent resurgence in research on
the environmental tolerances of CoTS larvae aimed at establishing the vulnerability of Acanthaster spp.
to ocean warming and acidification [24,74–76]. Temperature is widely regarded as the foremost abiotic
factor influencing development rates and survivorship of planktonic larvae [77], and Acanthaster spp.
are sensitive to extreme temperatures at all stages of their life-cycle [24,61]. Fitness of CoTS larvae
is generally highest at 26–30 ◦C [24,76]. There is increasing evidence that CoTS larvae are adversely
affected when exposed to temperatures ≥ 30 ◦C [75], suggesting that ocean warming suppresses
population outbreaks at low latitudes. Projected effects of ocean warming are further compounded by
constraints on fertilization and larval development due to ocean acidification [24,74,75], though it is
possible that Acanthaster spp. could acclimate or adapt to changing environmental conditions [78].

Aside from temperature, salinity is considered to have an important influence on reproductive
success for Acanthaster spp. [24,79]. While echinoderms are generally very sensitive to changes
in salinity, Lucas [79] showed that larval survival was 3-fold higher at 30‰ salinity compared to
ambient conditions. If so, temporary declines in salinity could further enhance the beneficial effects of
nutrient inputs, during flooding [44,55]. However, Caballes et al. [24] showed that rates of fertilization,
gastrulation and cleavage were generally high between 30‰ and 34‰ and declined significantly at
salinities <30‰.

2.5. Question 6 and 7 (Larvae and Juveniles)—How long do [CoTS] larvae spend in the plankton before settling?
What is the maximum period of time they can spend in this phase and yet still be able to settle? How far can
[CoTS] larvae be dispersed in the field?

These questions are LARGELY RESOLVED.
The time that larvae spend in the plankton, or planktonic larval duration (PLD), is constrained by

the minimum pre-competency period, which is the necessary time for larvae to complete development
before being capable of settling, and the maximum competency period, which is maximum time that
larvae can spend in the plankton and still be capable of effective settlement [27]. The minimum
time taken for CoTS to develop into late-stage brachiolaria larvae, which are assumed to be
competent to settle, is just 9 days [80], though actual settlement has never been documented <14 days
post-fertilization [46]. At the other end of the spectrum, Pratchett et al. [27] recorded settlement among
larvae of A. cf. solaris up to 43 days post-fertilization. However, settlement rates peaked at 22 days for
optimal (intermediate) food levels and declined through time due to limited survivorship >30 days
post-fertilization and reduced settlement competency of surviving larvae [27].

While CoTS larvae may settle in as little as 9–14 days after fertilization, their maximum
competency period and capacity for long-distance dispersal is largely unknown. The maximum
recorded longevity for CoTS larvae is 50 days [27], and could be even longer under conditions of limited
food availability and if deprived of opportunities to settle. However, CoTS larvae are planktotrophic
and must maintain certain levels of energetic reserves to complete metamorphosis and settlement [27].
Moreover, rates of larval mortality in the wild are likely to be even higher than have been documented
in experimental studies (e.g., due to predation), such that few larvae are likely to persist beyond
30 days, let alone 50 days. Assuming average daily rates of natural mortality for echinoderm larvae
(~0.16 per day; [81]), CoTS larvae will have a survival probability of approximately 0.82% after 30 days,
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and 0.03% after 50 days. For the most part, CoTS larvae are expected to be dispersed only 10 s–100 s km
between reefs [82], if not entrained within the confines of their natal reef [83,84]. Genetic sampling of
CoTS populations demonstrated that there is effective connectivity (reflective of ecological significant
levels of larval dispersal) between reefs separated by <1000 km [33,85,86]. However, there tends
to be very strong genetic differentiation of CoTS populations among geographic provinces [87,88],
not to mention distinct species in different ocean basins [39], suggesting that there is extremely limited
connectivity, and therefore, negligible larval dispersal, at distances of >1000 km.

2.6. Question 8 and 14 (Larvae and Juveniles)—What factors are important in causing dispersal [of CoTS
larvae]? Do larvae tend to settle on those reefs from which they were propagated or do they generally recruit to
reefs other than the parent reef?

The first component is WELL RESOLVED, but there is limited empirical information regarding
rates of dispersal versus retention.

CoTS larvae are, for the most part, passively dispersed by ocean currents [89]. Therefore,
the primary factors that influence dispersal are (i) how long larvae can persist while still retaining
the capacity to settle (see Section 2.5) and (ii) oceanographic conditions, specifically, the strength and
direction of water movement, during spawning and larval development [85]. On the GBR, the extent to
which larvae are retained and settle on their natal reefs (self-recruitment), rather than being dispersed,
has been modelled for at least one small sub-region and may vary among years with changes in ocean
current velocities driven by El Niño Southern Oscillation (ENSO) [57]. However, it is not clear whether
such effects exist in other regions at other phases of the ENSO cycle, particularly those that are putative
seed areas for outbreaks. Weak or variable along-shore currents, which occur during neutral phases of
the Southern Oscillation Index (SOI) may promote strong larval retention or very limited dispersal,
which is fundamental to the progressive accumulation of CoTS within a given location and is likely to
give rise to primary outbreaks [57,59]. In contrast, strong directional (southerly) along-shore currents
associated with strong El Niño or La Niña conditions will increase the likelihood of inter-reef dispersal,
which could lead to proliferation of outbreaks once they become established [57]. These ideas are
however, based on temporal autocorrelation in the initiation of outbreaks, rather than explicit empirical
data on rates of self-recruitment versus larval dispersal.

High rates of self-recruitment by Acanthaster spp. may be reinforced by conspecific chemo
attraction of settling larvae towards feeding aggregations of adult CoTS [2,30]. In static choice
chamber experiments, Cowan et al. [30] showed that CoTS larvae were significantly attracted to
adult conspecifics, which could lead to elevated rates of settlement on reefs already infested with high
densities of CoTS. While settling in the presence of adult conspecifics may seem maladaptive due to
ultimate competition for coral prey, this strategy may limit predation by sessile invertebrates [61,90]
leading to overall increases in larval survivorship. However, the spread of population outbreaks,
determined based on field surveys [56,91,92] and modelling [56,58,82–84,93,94] shows that at least
some larvae must be dispersed and settle on non-natal reefs, regardless of the presence of adult CoTS.

Improvements in hydrodynamic models, combined with advances in computational power
and new methods for analyzing patterns of particle dispersal, are providing increasingly resolved
and tractable models to inform patterns of initiation and spread for CoTS outbreaks [58,82,93,95,96].
However, these models are potentially very sensitive to the precise timing of spawning and the
relevant speed and direction of currents, and predictions arising from these models need explicit
testing based on extensive spatial and temporal sampling to resolve the occurrence and timing of
outbreaks. Alternatively, genetic approaches may be used to explicitly resolve actual connections
among discrete populations to validate dispersal patterns. However, using genetics to track the spread
of outbreaks has proved difficult for CoTS due to the low levels of genetic differentiation apparent
when using existing markers [33,97,98]. On the GBR, for example, genetic sampling during outbreaks
has failed to resolve any structure [33,97], indicating rapid expansion in population size from multiple,
undifferentiated latent populations. Similarly, studies elsewhere in the Pacific have identified largely
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homogeneous populations within specific reef systems [86,99,100], though CoTS generally exhibit
substantial regional, archipelagic genetic structuring [88], reflective of limited large-scale dispersal.
Greater resolution in genetic structure among outbreak populations, enabling greater insight into the
source and spread of outbreaks, may be possible using more extensive and comprehensive sampling
(e.g., single-nucleotide polymorphisms or SNPs), but these are yet to be tested for any Acanthaster sp.

2.7. Question 9 (Larvae And Juveniles)—Is there a positive correlation between larval density, recruitment
density, and adult density?

Given previous limitations in sampling larvae and recruits, this question has not been addressed
and is UNRESOLVED.

High densities of CoTS larvae and high recruitment will intuitively lead to increased densities
of adult CoTS, and are a fundamental precursor to manifest rapid population outbreaks (mostly,
secondary outbreaks). However, the more important question is whether it is the local densities of
larvae (larval supply) or effective rates of recruitment that generally limit adult densities? There are
also important, and as yet unresolved issues, about how far and how fast CoTS can move within
and among reef habitats after they have settled (Section 2.18), which will determine relevant scales
of recruitment limitation. Most hypotheses that seek to explain the initiation of CoTS outbreaks
assume that larval supply is generally limiting, such that outbreaks arise due to increased reproductive
success and/or larval survivorship [1]. However, the inability to quantify larval supply, settlement,
and recruitment has so far prevented explicit testing of such assumptions. New methods aimed at
measuring these processes are being developed and tested [34,53] and will not only provide new
opportunities to test questions pertaining to recruitment limitation, but may also provide an early
warning system for detecting new and renewed outbreaks.

The relationship between adult densities of Acanthaster spp. and their corresponding reproductive
output versus local densities of larvae or juveniles (stock-recruitment relationships) is important for
understanding the role of adult biology and behavior in initiating outbreaks, as well as informing the
effectiveness of population regulation based on culling of adult starfish. Given the high fecundity of
individual CoTS [101], larval production is likely to asymptote at relatively low adult densities [102,103]
such that larval production may be largely insensitive to changes in adult abundance above a certain
threshold. If so, this would mean that local densities would need to be reduced to very low levels
before adult culling would have any meaningful impact on reproductive output and the progression of
outbreaks. Moreover, the distribution and proximity of spawning starfish may be more important than
adult densities in determining reproductive success (though it would be expected that there must be
some relationship between these factors). Babcock and Mundy [104] showed that A. cf. solaris achieve
remarkably high rates of fertilization even when spawning male and female starfish were separated
by >30 m. However, fertilization success is fundamentally dependent on spawning synchrony,
which appears to be triggered via intrinsic cues (pheromones) and will therefore, be most effective
when starfish are aggregated [52]. Still, it is unclear whether Acanthaster spp. actively aggregate to
spawn, and what environmental cues induce spawning.

Recent modelling of fertilization success in CoTS suggests that both density and aggregation are
important to reproductive success at low densities with a threshold density for enhanced reproductive
success of 3 starfish per hectare when individuals are moderately aggregated [105]. Reproductive
success increased linearly above this density. At the highest levels of density and aggregation
fertilization success for individuals did not increase due the increases in unsuccessful polyspermic
fertilizations although population level zygote production did continue to increase [105]. The reduced
fertilization success at high levels of aggregation may in part explain the relative lack of aggregation
by CoTS at the time of spawning [106].
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2.8. Question 10 (Larvae and Juveniles)—Where do larvae occur in the water column? Does their position vary
throughout their planktonic period? What factors are responsible for determining their position?

These questions are LARGELY UNRESOLVED and important for understanding the environmental
and nutritional conditions to which larvae are exposed during their development.

In laboratory cultures, hatched gastrulae of A. cf. solaris swim upward and remain close to the
surface (negative geotaxis) throughout much of the formative period of their development [61]. Larvae
then become negatively buoyant at the late brachiolaria stage and actively orientate towards the bottom
in search of potential settlement substrates [41]. It is assumed therefore, that CoTS larvae are likely to
be largely concentrated in surface waters in the wild. Accordingly, CoTS DNA have been detected in
near-surface plankton tows along 320 km of coastline in the northern GBR [53]. Similarly, plankton
tows at 7 m below the surface along reefs in southern Japan have also yielded high concentrations of
advanced-stage brachiolaria larvae [107]. CoTS larvae are also capable of swimming, albeit at limited
speeds (~0.4 mm per second), via ciliary movement that causes the body to rotate on its long axis [61].
The horizontal transport of CoTS larvae has typically been considered a passive process that is mainly
mediated by currents [58,87,89]. However, current velocity and direction can vary with depth, so the
vertical position of larvae and larval behavior in response to thermoclines, haloclines, or pycnoclines
will have important implications for distance and direction of larval transport (e.g., [108–111]). Explicit
field sampling is still required to ascertain the specific position of CoTS larvae at different stages
throughout their development and under varying conditions; but this may now be possible with the
development of new genetic quantification methods [54].

2.9. Question 11 and 13 (Larvae and Juveniles)—Where do larvae settle in the field? Is it in shallow or deep
water on reefs? Are there particular areas on reefs which are more suitable for settlement than others?
Do they settle in high densities?

There have been significant insights on patterns and rates of settlement by specific, localized
studies (e.g., [112]), but these questions are MOSTLY UNRESOLVED.

One of the foremost controversies surrounding settlement patterns for Acanthaster spp. is the
extent to which larvae settle in deep-water (>20 m) versus shallow reef environments. Although earlier
reports suggested that settlement occurred in shallow reef environments [2,113] and high densities of
newly settled and juvenile Acanthaster spp. have never been recorded in deep water (>20 m depth),
the deep-water recruitment hypothesis [114] has gained a lot of attention. CoTS larvae were suggested
to settle mainly in deep water, at the base of reef slopes [114] because (i) highest rates of settlement
and metamorphosis occurred on coral rubble encrusted with the sciaphilic crustose coralline algae
(CCA), Lithothamnium pseudosorum, which was found predominantly in deep water habitats (but are
also common in caves, crevices and overhangs in shallow water; S. Uthicke, personal observation);
(ii) late-stage brachiolaria larvae are negatively buoyant and are expected to be concentrated along reef
margins, such that larvae will ultimately fall out in deep water [83]; (iii) few newly settled (0+ year class)
starfish have historically been found in shallow reef environments; and (iv) on some reefs (e.g., Davies
Reef in the central GBR), high densities of adult CoTS were initially detected moving up from deep
water [114]. To test whether Acanthaster spp. preferentially settle in shallow (<5 m depth) or deep-water
habitats (>20 m depth), standardized settlement collectors (e.g., [115]) should be deployed across a
range of depths, and this research is currently underway. It is possible however, that CoTS larvae
settle across a broad range of depths, but settle preferentially in areas that provide best access to food
and shelter. Alternatively, they may settle indiscriminately among habitats, but have vastly different
rates of post-settlement survival depending on local abundance of prey, shelter, and/or predators
(Section 2.11).

Field-based studies on patterns of CoTS settlement are largely focused on the detection of newly
settled CoTS, rather than explicitly measuring settlement rates in different habitats (but see [115]).
Even so, understanding the habitat preferences of newly settled CoTS has been greatly constrained
by the small size and cryptic nature of newly settled individuals [112,114]. Until recently, few newly
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settled (0+ year class) A. cf. solaris had ever been detected on the GBR [11,114,116]. At Suva Reef
in Fiji, however, high densities of very small (10–32 mm in diameter) A. cf. solaris were detected in
July 1984 [112]. These individuals were presumed to have settled en masse in January 1984, but were
not detected until they were ≥6 months old. Even so, the newly settled (0+ year class) starfish were
mainly found on the encrusting coralline algae, Porolithon onkodes, on the underside of rubble and
coral blocks [112], suggesting that they had settled in the area and habitat in which they were found.
Significant densities of newly settled A. cf. solaris were found immediately behind the exposed reef
crest, in very shallow habitat dominated by rubble and intact skeletons of robust corals dislodged
during cyclones and tsunamis [112]. Newly settled CoTS were also sighted off the reef slope on the
windward side of Suva Reef (6–8 m depth), indicating that their distribution extended subtidally [112].
At Iriomote Island, Japan, Habe et al. [117] detected highest densities (0.82 individuals per m2) of
newly settled CoTS on reef slopes (6.0–9.3 m depth), and lowest densities (0.06. individuals per m2) on
the reef flat (0.8–1.2 m).

During recent opportunistic sampling on the GBR, Wilmes et al. [34] collected 3532 juvenile
A. cf. solaris ranging in size from 3 to 64 mm in diameter. Sampling was conducted across 64 reefs
throughout the course of 2015, with searching concentrated on visible patches of CCA on dead
corals or coral rubble. Newly settled (0+ year class) starfish were collected from a range of depths
(up to 15 m depth) and habitats. However, collections were mainly intended to inform growth models
(see Section 2.16) and so limited information was collected regarding the specific habitat conditions
and exact densities. Despite limited success in the past [116,118], current work by Wilmes et al. [34]
demonstrates that 0+ year juveniles can be effectively sampled in the field, and much more sampling
is required to establish variation in rates of settlement across different reef areas, depths and habitats.
There are also methods available for measuring settlement rates of Acanthaster spp. using settlement
collectors constructed from high surface area plastic biospheres [115], which will be important to
differentiate where larvae settle versus where they survive and are actually recorded several months
after settlement (Sections 2.9–2.11). Previous constraints on the use of settlement collectors were the
time and effort required to manual sort and visually detect newly settled CoTS, though modification
of genetic sampling protocols used for larval detection [53,54] may overcome such constraints.

2.10. Question 12 (Larvae and Juveniles)—Do larvae tend to settle on a particular type of surface? What factors
are important in determining the type of surface chosen by larvae for settlement?

These questions are LARGELY RESOLVED.
Settlement preferences of Acanthaster spp. are dictated by both physical and biological habitat

structure. Larvae settle preferentially in habitats with fine-scale topographic complexity, so that
the larvae are completely hidden within the carbonate matrix, or among coral rubble, prior to
metamorphosis [80]. Ormond and Campbell [119] demonstrated that skeletons of dead Acropora
hyacinthus were among the most preferred settlement substrates, probably owing to the fine-scale
complexity provided by individual calices and branchlets. Conversely, CoTS will rarely settle on glass
or ceramic tiles [119–121]. However, CCA is a strong settlement inducer, and biological stimuli may
override physical microhabitat preferences [120]. Observations of newly settled A. cf. solaris in the
field [34,112,122], have revealed a strong and consistent association with CCA, which is expected given
that newly settled starfish feed almost exclusively on coralline algae [61,112,123].

Settlement experiments conducted under laboratory conditions [27,42,43,61,121,124] reaffirm that
CCA is important for inducing CoTS settlement. When examined microscopically, the surface of CCA
is roughly textured—this fine scale topographic complexity can provide a tactile stimulus for larvae
to settle [80]. Conversely, Johnson et al. [121] argued that a tactile stimulus was unlikely given that
settlement was high on live CCA as opposed to physically similar, but boiled, bleached, or autoclaved
CCA fragments. They also observed high rates of settlement among larvae that were physically
separated from CCA using a mesh, suggesting that settlement may be chemically mediated [121].
However, bioassays with common marine invertebrate settlement inducers, γ-amino butyric acid
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(GABA) and potassium chloride (KCl) at different concentrations, did not induce settlement and
metamorphosis in CoTS larvae [121]. Antibiotic treatment of highly inductive shards of CCA
significantly reduced settlement to low levels, indicating that settlement may be mediated by chemical
cues produced by epiphytic bacteria [121]. Settlement was inhibited in the absence of bacteria and
larvae always settled on sections of CCA thalli that had high densities of bacteria, but not where
epiphytic bacteria were sparse [121,125]. However, surface bacteria were not inductive when isolated
from soluble algal compounds, suggesting that bacteria require the algal substrate to produce inductive
compounds or that compounds from both the bacteria and CCA are required to induce settlement [125].
It appears that both tactile and chemical stimuli may play a role in determining settlement preferences,
though further field sampling is required to establish the extent to which these preferences determine
settlement patterns in the wild (e.g., [119]).

2.11. Question 15 (Larvae and Juveniles)—Do juveniles tend to be in shallow or deep water on reefs? Does this
location vary depending on whether or not the reef has recently suffered an outbreak of adults?

Given limited effective sampling of recruits, these questions are LARGELY UNRESOLVED.
The distribution of juvenile CoTS will be largely dictated by patterns of larval settlement

(see Section 2.9), though these patterns may be greatly altered and obscured by differential rates of
post-settlement mortality and movement [126]. Mortality rates for newly settled (post-metamorphosed)
juvenile CoTS are unknown, but are expected to be very high due to the combination of predation,
disease, and food limitation ([126]; Section 2.12). In terms of moderating the distribution and
abundance of juvenile CoTS, the key question is whether rates of mortality vary spatially (e.g., among
habitat types or with depth). Keesing and Halford [126] suggested that known predators on very small
CoTS occur in particularly high abundance among dead coral rubble, though it is also possible that high
complexity of these habitats moderates actual predation rates. Conversely, predators associated with
coral-rich habitats may represent an even greater threat to survival of juvenile CoTS [30]. There will
also be an inherent tradeoff between the risk of predation and the necessary settlement cues and
food resources that will determine the extent to which juvenile CoTS are associated with different
habitat types [30]. Another key factor that will potentially influence the survival and therefore relative
abundance of juvenile CoTS in different habitats is the availability of suitable prey, and corresponding
effects on the size and growth of individuals (Section 2.15).

The locomotor capacity of A. cf. solaris is size-dependent [127], such that very small CoTS move
very slowly [61] and are unlikely to venture far from where they settle [126]. With sustained directional
movement, which is unlikely given their generally cryptic behavior and limited energetic reserves,
newly settled CoTS could travel only 5 m per week. As juvenile CoTS transition from feeding on CCA
to coral, it is to be expected that their distribution and habitat-associations will also change. Notably,
coral feeding juveniles are predominantly found in areas with moderate to high cover of scleractinian
corals [112,116], whereas newly settled individuals targeting CCA will tend to be more abundant in
habitats with low coral cover. In Fiji, for example, high densities of newly settled A. cf. solaris were
first detected immediately behind the exposed reef crest in habitat with very limited coral cover [112].
The following year, the same cohort of starfish was concentrated along the reef crest, feeding on
abundant coral within this zone [112,128]. There has not however, been equivalent sampling in other
areas to establish the generalities of these ontogenetic shifts in habitat use. It is also very likely that the
distribution of juvenile CoTS will be affected by depletion of coral prey by high densities of adults.
Moran [21] suggested that juvenile starfish predominate in shallow-water habitats on reefs subject to
outbreaks because large adults generally avoid habitats subject to high levels of wave action and surge.
During the initiation of outbreaks, however, CoTS larvae may settle at the base of reef slopes and then
gradually move to shallow reef environments as they grow and mature ([21,121]; see Section 2.9).
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2.12. Question 16 (Larvae and Juveniles)—What are the mortality rates of larvae and juveniles in the field?

Field-based rates of survivorship/mortality are LARGELY UNRESOLVED, and represent a major
limitation in understanding the population dynamics of Acanthaster spp.

While there is some preliminary information regarding mortality rates of CoTS larvae and
juveniles from laboratory and experimental studies, estimating natural mortality rates for CoTS
throughout the formative stages of their life history (Figure 3) is extremely challenging. In culture,
concentrations of CoTS larvae steadily decline with time [25,27,43,48], indicative of significant rates
of intrinsic larval mortality [81], which depend on food availability (Section 2.1) and food quality
(Section 2.3). Mortality rates recorded for larvae in laboratory cultures are substantial [43]. However,
there is increasing evidence that both larvae and juveniles are vulnerable to predation (Section 2.13),
which will further increase rates of mortality. Pratchett et al. [27] showed that larval survivorship and
settlement rates were highest for larvae maintained at intermediate food levels, while higher and lower
levels of food availability resulted in higher mortality rates and delayed development. The recent
feeding history and nutritional condition of maternal gamete sources of larvae may also interact with
larval diet to affect larval survival, growth, and development [25].

The factors affecting survival during the settlement and metamorphosis are still poorly
understood. Rearing of larvae in laboratory conditions and settlement assays show high mortality
rates during settlement and metamorphosis [27,43,61,126]. Yamaguchi [61] suggested that ~50% of
larvae are consumed by epibenthic fauna during settlement (see also [30]). However, settlement assays
on CCA that were carefully cleaned of epifauna still resulted in mortality rates as high as 84% during
settlement [126], which suggests that the physiological condition of competent larvae may influence
intrinsic mortality rates. More recent laboratory assays have shown that larval nutritional history
influences mortality rates during settlement [27,43]. The availability of suitable microhabitats for
settlement (Section 2.10) may also influence mortality rates [126]; for example, mortality rates increased
abruptly in larvae that have not settled after 30 days [27]. Minor changes in mortality rates before
and during settlement can potentially have a significant impact on the eventual adult population size,
particularly over the course of several generations, especially given that a single female starfish can
produce over 100 million eggs in a single year [101]. Further investigations of factors influencing
mortality rates during these critical phases, under natural conditions, are warranted.

Mortality rates of post-settlement juveniles are likely to be influenced by predation, food
availability, and disease [129]. Keesing and Halford [130] recorded significant daily mortality rates
(~6.5%) for small juveniles (~1-mm diameter) in the field. Mortality rates appear to decline with
size, whereby mortality rates for ~3-mm and ~5-mm juveniles were 1.24% and 0.45% per day,
respectively [130]. Visual predators (e.g., reef fishes) have also been implicated as a source of
mortality due to the cryptic and nocturnal behavior of juvenile CoTS. However, in a field experiment
where laboratory-reared juvenile starfish were placed in an area with suspected fish predators
present, Sweatman [131] found that losses attributable to predation were low (0.13% per day)—much
lower than the mortality rate due to predation (1.5% per day) predicted to have an impact on
population regulation [132]. These field studies highlight the importance of epibenthic predators
(e.g., [30]) in regulating population sizes during the post-settlement stage [133]. The influence of
food availability may be more pronounced once CoTS shift their diet from CCA to coral, since
herbivorous juveniles are unlikely to be food limited in the field (Section 2.14). Food availability and the
conditions of juvenile CoTS may also influence susceptibility to predation [126] and disease [112,128].
Using hypothetical rates of post-settlement mortality, Keesing and Halford [126] argued that small
changes in post-settlement mortality can have a disproportionate effect on the population size of
adult starfish.
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2.13. Question 17 (Larvae and Juveniles)—Is predation important in determining the density of larvae and
juveniles? What are the main predators of each stage?

These questions are LARGELY UNRESOLVED.
Early field observations [11] and laboratory experiments [135] suggested that CoTS larvae are

unpalatable to planktivorous fishes, such that predation was considered to exert limited influence
on larval mortality. CoTS larvae contain steroidal saponins, which may have specific anti-predatory
functions, as demonstrated by experimental assays showing planktivorous fishes discriminating
against saponin-impregnated food pellets [136]. However, more recent experiments have found that
planktivorous fishes readily consumed CoTS larvae [72]. Predation on larvae by scleractinian corals [2],
predaceous zooplankton [137], and fishes [11] may therefore be an important determinant of larval
survivorship. There have not, however, been any studies aimed at estimating predation or mortality
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rates of CoTS larvae in the field, and the relative contributions of different groups of predators is
unknown. Cowan et al. [72] showed that planktivorous damselfish may be capable of consuming
sufficient numbers of CoTS larvae (up to 158 larvae per hour) to effectively suppress larval settlement,
especially when starfish are in low abundance. This level of predation may be sufficient to prevent the
onset of outbreaks. However, reef-based predators are likely to be overwhelmed by extremely high
densities of larvae [72], accounting for the propagation of outbreaks once they become established.

Unlike larvae, newly settled CoTS have long been considered to be extremely vulnerable to
predation [21,138]. Indeed, the highly cryptic and generally nocturnal habits of newly settled
Acanthaster spp. are considered to be adaptations to moderate natural predation rates. Keesing
and Halford [126] demonstrated that epibenthic predators were the major source of mortality for
captive reared A. cf. solaris that were deployed to field environments within boxes filled with freshly
collected rubble. Predation rates were estimated to be 5.05% per day for 1-month old A. cf. solaris,
which declined to 0.85% per day for 4-month old starfish [130]. These results suggest that epibenthic
predators may be a major factor in regulating local densities of Acanthaster spp. However, natural
predation rates may be moderated by selective settlement within microhabitats with relatively few
benthic predators [30]. Cowan et al. [30] demonstrated that competent larvae of A. cf. solaris were able
to detect some predators in the substrate and preferentially settled in microhabitats without predators,
where possible. Variation in the abundance of benthic predators may therefore, influence settlement
patterns of A. cf. solaris, even if they do not cause significant predation mortality in newly settled
CoTS [30].

2.14. Question 18 (Larvae and Juveniles)—Apart from predation what other factors are important in causing the
mortality of juveniles (e.g., disease, lack of nutrients)?

This question is LARGELY UNRESOLVED.
Food limitation and constraints on the physiological condition of juvenile CoTS will have

consequences for survivorship, though the ultimate factors responsible for mortality will be predation
and/or disease. Disease was shown to contribute to mass-mortality of juvenile CoTS in Fiji, which was
attributed to an undescribed sporozoan pathogen (intracellular parasite), which ultimately resulted
in the extirpation of the entire cohort [128]. The general susceptibility of juvenile CoTS to disease is
largely unknown, but likely depends on the conspecific densities and individual condition, which in
turn may be influenced by availability of specific prey. While certain coralline algae may promote
higher growth or survivorship (Section 2.15), crustose coralline algae are considered to be ubiquitous
within potential settlement habitats [139–141]. Therefore, it is expected to be coral prey that ultimately
constrains the growth and survivorship of juvenile CoTS. In the absence of suitable coral prey, juvenile
CoTS may continue to feed on a CCA for >2 years [123,126], though timely transition to coral prey leads
to marked increases in growth. In the wild, it is expected that CoTS that have limited access to coral
prey will experience high rates of mortality [126], though this is yet to be explicitly tested (Section 2.12).
If newly settled CoTS can withstand temporary or localized depletion of coral prey by continuing
to feed on coralline algae, these latent populations may proliferate following the recovery of coral
populations and assemblages, potentially accounting for the sudden onset of population outbreaks.

2.15. Question 19 (Larvae and Juveniles)—What type of food do juveniles eat in the field? do they show any
feeding preferences?

Feeding preferences of juvenile CoTS are POORLY RESOLVED, but the question also needs to
be REPHRASED to focus on the fitness consequences associated with differential access to preferred
versus non-preferred prey (see Section 2.16).

Newly-settled Acanthaster spp. have been reported to feed on a wide variety (at least
12 different species) of coralline algae [112,117,122], including Lithothamnium pseudosorum and
Porolithon onkodes [125,142], though the fitness consequences of settling and feeding on differential
species of coralline algae have not been considered. Johnson et al. [121] suggested that the most
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preferred coralline algae is L. pseudosorum but this was based on settlement (rather than feeding)
preferences. Higher growth and survival rates as a result of feeding on the preferred species of
coralline algae may be fundamental in understanding settlement preferences, as well as accounting for
spatial and temporal variation in population dynamics.

Coral-feeding juvenile Acanthaster spp. do exhibit pronounced feeding preferences as shown by a
recent laboratory study [143]. In this study, juvenile A. cf. solaris that were given the choice between
eight species of coral (Acropora formosa, A. millepora, A. tenuis, Pavona cactus, Echinopora lamellosa,
Pocillopora damicornis, Stylophora pistillata and Porites lutea) and preferred Acropora tenuis while avoiding
S. pistillata, E. lamellosa and P. lutea [143]. While these laboratory studies show that juvenile CoTS do
have distinct feeding preferences, field surveys of feeding preferences of juveniles (based on feeding
scars on corals upon collection of juveniles; sensu [144]), are needed to evaluate the ecological impact of
feeding by juvenile CoTS in the field, where prey choices are likely to be influenced by a wide variety
of different factors [21]. For example, juvenile CoTS (1+ year old; mean size ~35 mm) sampled from
Green Island and Fitzroy Island (Great Barrier Reef) were consistently observed feeding on bushy
scleractinian corals such as Acropora echinata and Stylophora mordax [11], which may reflect preference
for complex habitats to evade predators rather than inherent feeding preferences.

2.16. Question 20 (Larvae and Juveniles)—Wow fast do juveniles grow in the field? Is it similar to that recorded
in the laboratory? How important is diet in determining the growth rate of juveniles?

General patterns of juvenile growth are WELL RESOLVED, but it is unknown whether different
species of coralline algae significantly influence growth of algal-feeding juveniles.

Growth rates of Acanthaster spp. vary with ontogeny, but can also vary in response to
environmental conditions (e.g., temperature), food availability and conspecific densities [123]. On the
GBR, growth rates of newly-settled (0+ year) A. cf. solaris increase exponentially from 0.03–0.04 mm per
day at 1-month to 0.11–0.22 mm per day at 12-months [34], which is comparable to laboratory-based
growth estimates for A. cf. solaris [123]. Growth rates further accelerate after 12-months or as soon
as individuals switch from feeding on CCA to scleractinian corals and peak at 20–30 mm per month
when A. cf. solaris are ~100–200 mm diameter for both wild and captive individuals [61,123].

Broad changes in diet (from coralline algae to coral) and overall prey availability have a major
impact on growth rates for juvenile CoTS [61,123]. Most notably, growth is relatively slow during the
algal-feeding phase, but accelerates after switching to coral prey [41,61,112,117,123,145]. Accordingly,
Lucas [123] showed that A. cf. solaris constrained to feeding on CCA for 2 years were up to 20 times
smaller than counterparts from the same cohort provided with access to coral prey. Given that growth
and survival of newly settled juveniles may represent a critical bottleneck to recruitment, more work is
required to understand the relative importance of different types of coralline algae. After switching to
coral prey, growth rates certainly vary according to availability of different coral prey; laboratory-reared
juveniles maintained on an exclusive diet of Acropora formosa grew at 12.0 mm per month compared
0.1 mm per month for those maintained on a diet of Porites lichen [126]. Difference in growth rates may
be due to variable nutritional content of specific coral diets. Laboratory-reared juveniles maintained
under Acropora or Pocillopora feeding treatments grew at the same rate despite consumption of Acropora
being twice as much compared to Pocillopora [145].

2.17. Question 21 (Larvae and Juveniles)—How far do juveniles move in the field?

Locomotor capacities of newly settled CoTS are WELL RESOLVED, but there has been limited
consideration of rates and patterns of movement by larger juveniles (up to 10–15 cm total diameter).

Research on the movement of newly settled Acanthaster spp. is limited to short-term experimental
studies during which individuals were deprived of access to prey and placed on petri dishes or bare
sand. Two-week old juveniles (<2 mm total diameter) placed in a clean dish without food moved
at 1 cm per minute [61], while larger juveniles (19–70 mm total diameter) moved over bare sand at
rates of 2.34 to 6.67 cm per minute [11]. However, CoTS generally settle on or near their preferred
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prey (CCA) and spend most of their time feeding and hiding, rather than moving [61,126]. Keesing
and Halford [130] deployed pervious boxes to reef habitats to measure predation rates on captive
reared A. cf. solaris. Through the course of these experiments and explicit escape controls, Keesing
and Halford [130] demonstrated that 1-month old starfish move very little (<26 cm) on time frames of
1–2 weeks, though CoTS certainly become more mobile as they grow. Larger juveniles (up to 10–15 cm
total diameter), which have increased capacity for movement, but are still very vulnerable to predation,
may be expected to frequently move between feeding sites and predator refuges, and may also move
over larger distances in search of more optimal habitats. If there are significant ontogenetic shifts in
habitat use, it is likely that these occur once starfish attain sufficient size to maximize food intake and
energetic reserves, but have not yet invested in reproduction.

2.18. Question 1 (Adults)—Are adults capable of moving between reefs?

Adult CoTS are certainly capable of moving between reefs under certain conditions, but the
question needs to be REPHRASED to explicitly consider the maximum distances over which adult
CoTS can and do move between reefs.

Rates of movement for CoTS have been extensively studied, mostly to inform the extent of
their impacts on coral assemblages and reef ecosystems [127]. Over small distances (meters), CoTS
are capable of moving at 33 to 51 cm per minute [11,127,146], with maximum rates of movement
(which probably reflect escape responses) moderated by the size of the starfish and the complexity of
the substrate [127,147]. If maximum rates of movement recorded on sand [127] can be sustained, large
A. cf. solaris could travel up to 520 m per day. Even so, it would take weeks to months for A. cf. solaris
to move several kilometers between reefs, and longer-term and larger-scale movement will be greatly
constrained by habitat heterogeneity, resource acquisition, and diurnally restricted periods of activity.
Ultimately, the likelihood of adult CoTS moving between reefs will depend on the distance separating
adjacent reefs as well as the nature of the intervening habitat.

When tracked for periods of days to weeks (by relocating uniquely tagged individuals at regular
intervals), CoTS move <35 m per day and mostly move only after they have depleted coral prey
within the immediate area [2]. Adult CoTS also tend to avoid crossing open expanses of sand
(e.g., [148]). Sigl and Laforsch [36] demonstrated that well-fed A. cf. solaris remain within shelter,
whereas starved individuals more readily leave shelter and travel over sand, presumably in search of
food. Suzuki et al. [149] reported large numbers of adult CoTS moving across shallow sand flats in
Ishigaki Island, southern Japan, which were in very poor condition and ultimately became stranded at
low tide. For the most part, adult CoTS in good condition and with reasonable access to coral prey
will have limited impetus to move, whereas individuals that are starving are probably unlikely to
succeed in traversing large distances between reefs, despite demonstrated capacity for detection of reef
structures and selective migration toward coral-rich areas via “vision” or chemoreception [150–153].
It is very likely that CoTS can and do move between close positioned reefs, especially where there
is contiguous reef habitat connecting reefs, but the limited temporal and spatial scales of previous
movement studies (as well as the predominant focus on movement within coral habitats) do not really
inform the capacity of CoTS to travel large distances between reefs. Acoustic tagging may provide
new opportunities to assess the scale and occurrence of inter-reef movement and migrations by adult
CoTS, assuming that small acoustic tags can be permanently affixed to the body of these starfish.

2.19. Question 2 and 3 (Adults)—How rapidly do [adult CoTS] grow in the field? Is their rate of growth similar
to that recorded in the laboratory? Can the age of a starfish be determined from its size?

These questions are LARGELY RESOLVED, though there are some persistent controversies
surrounding the ability to reliably age adult CoTS using biological proxies.

Growth rates of Acanthaster spp. have long been considered to be extremely plastic [123,154].
In the extreme, Lucas [123] reported a 20-fold difference in the size of A. cf. solaris at 2 years of age,
depending on whether they did or did not transition from feeding on coralline algae to coral prey.
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Substantial differences in the size of CoTS within any given population [59] may, therefore, reflect
individual differences in growth, rather than differences in age, whereby the latter would reflect the
multiple cohorts within the same population. That said, direct comparisons of size-at-age data from
previous studies, including laboratory-based measurements of Lucas [123], have revealed remarkable
consistency in age-specific growth rates [1]. Growth rates of A. cf. solaris are maximized (100–150 mm
per year) among 1+ and 2+ annual age classes, and thereafter, follow a von Bertalanffy growth
function. There are however, apparent differences in the extent to which CoTS exhibit finite versus
indeterminate growth [154], as well as variation in asymptotic size [35]. These differences are largely
manifest when comparing between outbreaking and non-outbreak populations [155], whereby growth
is increasingly constrained (and potentially finite) during severe population outbreaks due to strong
intraspecific competition for food and scarcity of prey resources [156]. MacNeil et al. [35] compared the
size-structure of A. cf. solaris populations across 17 reefs on the GBR and showed that the asymptotic
size varied among reefs (from <300 mm to >400 mm total diameter, with smaller asymptotic sizes
recorded on reefs with higher CoTS densities.

The sigmoidal growth exhibited by A. cf. solaris, combined with variation in their asymptotic
size, may obscure the general relationship between size and age, especially for larger and older
individuals. For this reason, the capacity to distinguish individual cohorts based on population
size-structure and retrospectively establish interannual variation in rates of settlement based on
size has been contentious (but see [157]). Therefore, various size-independent proxies of age have
been explored for Acanthaster spp. including spine length and pigment bands on spines [158]. Care
is needed to consistently sample the longest spines from the upper portion of non-adjacent arms,
specifically avoiding regenerating spines and arms [159]. Stump [160] used mark-recapture to confirm
that spine-banding couplets are deposited annually for A. cf. solaris at Davies Reef in the central
GBR. While absolute age-estimates based on spine banding still need to be validated, this method
enables coarse estimates and comparisons of age-structure (and therefore growth) among discrete
populations [35]. Validation of age estimates is critically dependent upon determining the specific
timing of initial band formation [158], which may vary spatially and especially among distinct species
(Section 3.1).

2.20. Question 4 and 8 (Adults)—How long do adults survive in the field? Do adult starfish enter a senile phase
in the field where their growth declines greatly and they become infertile?

Maximum longevity is still unclear, but predominant patterns of growth and longevity are
WELL RESOLVED.

Demographics of CoTS populations are strongly dependent on food availability (e.g., [123,154]),
and may also vary with environmental conditions (especially temperature). In captivity, Lucas [123]
demonstrated that A. cf. solaris grew to >300 mm total diameter within 3 years, but then largely
stopped growing and reproducing, and mostly died within 4–5 years. The limited size of these starfish
and the early onset of apparent senescence were suggested to be experimental artefacts, and at least
partly attributable to food limitation. In the wild, Acanthaster spp. can grow to >750 mm total diameter
and live >8 years [157,161]. On the GBR, large individuals of A. cf. solaris (>600 mm total diameter)
have been recorded before the onset of active outbreaks, potentially representing individuals that
have lived throughout an entire outbreak cycle [157]. If so, these individuals may be >14 years old,
though it is also possible that these starfish simply recruited during non-outbreak periods and grew
quickly or survived longer due to abundant coral prey and limited food competition. For outbreak
populations, the maximum size of A. cf. solaris is generally <400 mm (e.g., [35]), which probably reflects
constraints on growth and longevity due to local depletion of prey resources and density-dependent
mortality [156,162]. Even so, there is no evidence of size- or age-specific onset of senility among wild
populations [101,129]. Babcock et al. [101] demonstrated that there was an exponential increase in egg
and sperm production with increasing size, and no apparent reduction in reproductive investment for
individuals up to 500 mm total diameter.
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2.21. Question 5 and 7 (Adults)—What are the rates of mortality for adults in the field? Are there any other
factors which are important in causing the mortality of adult starfish (e.g., disease)?

These questions are LARGELY UNRESOLVED though there is considerable evidence that CoTS
are highly susceptible to disease.

Aside from documented declines in the local abundance of Acanthaster spp. at the end of
outbreaks [59], there is very limited information on rates (or causes) of natural mortality for CoTS.
Moran [21] proposed a comprehensive field study to explicitly quantify mortality and longevity for
Acanthaster spp., but such studies are still hampered by the limited capacity to tag and/or identify
individual starfish over necessary periods of several years, especially during major outbreaks. If or
when conducted, such studies should attempt to discern density-dependent effects on population
dynamics and individual demography, or at the very least, test for differences in key demographic
rates between outbreak and low-density populations. Information relating to the biology and ecology
of CoTS in low-density populations is particularly lacking, largely owing to the logistic constraints
on gathering sufficient data when starfish are few and far between (e.g., [14]). Conversely, recurrent
sampling of outbreak populations [112,128] has revealed marked temporal and spatial variability in
the abundance and size structure of CoTS, indicating high rates of mortality among smaller CoTS.
Zann et al. [112,128] estimated that 99% of CoTS that recruited to the barrier reef off Suva, Fiji, died
within 2 years. However, this high rate of mortality may have been anomalous due to the high
incidence (10%) of pathogenesis among small and juvenile CoTS.

Echinoderms are particularly susceptible to disease [163], and disease has been implicated in
mass mortalities of numerous species of urchins and starfish (e.g., [164,165]). Accordingly, A. cf. solaris
has been seen to exhibit symptoms of disease, both in captivity [123,166] and in the wild [112,167].
Background levels of pathogenesis among populations of Acanthaster spp. appear to be generally
very low [168], though the probability of infections arising, as well as rates of transmission among
individuals are likely to increase with population density [112,128]. Susceptibility to disease is also
likely to increase following prey depletion and declines in the condition of adult starfish, leading
to further increases in the incidence and importance of disease after outbreaks are well-established
(Section 2.23). Further research is clearly needed to better understand the ultimate fate of individual
CoTS, though it seems likely that most succumb to either predation and/or pathogenesis, even if their
vulnerability to such processes varies with size, age, prey availability, energetic condition and behavior.

2.22. Question 6 (Adults)—What is the rate of predation on adults on reefs? What are the main predators of
adult starfish? Are these predators sufficient to limit adult population levels? Do the densities of these predators
fluctuate markedly through time?

There is increasing evidence that adult CoTS are susceptible to predation, but these specific
questions are LARGELY UNRESOLVED.

Adult Acanthaster spp. were initially thought to be relatively immune to predation due to their
elaborate physical and chemical defenses [136]. However, an ever-increasing array of coral reef
organisms have been reported to feed on adult CoTS [31,32,169]. For the most part, these nominal
predators have been observed feeding on the remains of dead or moribund adult CoTS [31] and it is
unknown to what extent these predators actually kill adult CoTS. The main predators that are known
to kill and individually consume adult CoTS are the giant triton (Charonia tritonis) and the stellar
pufferfish (Arothron stellatus). The abundance of C. tritonis is purported to have been much higher prior
to extensive harvesting in the 1950s to 1960s, which coincided with the first reported mass outbreak of
A. cf. solaris on the GBR and prompted concerns that the removal of predators may have caused or
contributed to outbreaks (the predator removal hypothesis; [170]). Charonia tritonis is now universally
rare on the GBR and on all other reef systems, potentially contributing to increased instabilities in
the abundance of Acanthaster spp. Similarly, A. stellatus and other large predatory pufferfishes are
widespread, but uncommon [31]. Moreover, pufferfishes are not subject to fishing and are unlikely to
vary in abundance among reefs that are open versus closed to fishing. On the other hand, lethrinids,
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such as Lethrinus nebulosus or L. miniatus, are targeted by many fisheries and may also be important
predators of Acanthaster spp. [31]. Large polyps of the corallimorpharian Paracorynactis hoplites have
also been observed fully ingesting and killing adult CoTS [171–173], but the distribution, abundance
and rates of CoTS consumption by this highly cryptic predator are unknown. Overall, there is still
considerable research needed to identify important predators, let alone establishing their relative
preference for CoTS, and respective predation rates at different CoTS densities.

Although there are established methods for measuring relative rates of predation and mortality for
echinoderms in the field [174,175], there are no empirical data on rates of predator-induced mortality
for Acanthaster spp. For now, relative rates of predation are inferred based on the proportion of
CoTS with conspicuous injuries [32,169], which are attributed to partial predation. In the Philippines,
the incidence of injuries was higher for CoTS populations sampled from inside of marine protected
areas (MPAs) where fishing was prohibited, which would be consistent with higher abundance of
potential predators. On the GBR, Messmer et al. [32] found marked inter-reef differences in the
proportion of CoTS with injuries, but these differences did not correspond with inter-reef differences in
fisheries regulations. It is possible that the incidence and severity of injuries has no relation whatsoever
to rates of predator-induced mortality, because (i) rates of regeneration and therefore, persistence
of injuries vary depending on the physiological condition and energetic reserves of starfish [156],
and/or (ii) it is an altogether different suite of predators that cause injuries versus outright mortality
of CoTS [32]. High incidence of sub-lethal predation may nonetheless have important effects on the
individual fitness and population dynamics of Acanthaster spp., diverting energy to tissue repair that
would otherwise contribute to increased fecundity.

Predation may contribute to population regulation in several ways, including (i) direct reductions
in the local densities of juvenile or adult CoTS; (ii) disrupting spawning aggregations [176];
(iii) reducing individual fecundity through partial predation (V. Messmer, unpublished data); and/or
(iv) modifying settlement rates and behavior (Section 2.13). However, the initiation and spread of CoTS
outbreaks cannot be definitively attributed to declines in the abundance of reef-based-predators, caused
by sustained and on-going fishing (Section 2.22). If local densities of Acanthaster spp. are normally
regulated by predation then overall declines in the abundance of predators might be expected to result
in gradual and sustained increases in baseline abundance of CoTS [55], rather than periodic or recurrent
outbreaks. This is why Moran [21] asked whether there are any putative predators that fluctuate
markedly in time and potentially account for oscillations in the abundance of Acanthaster spp. In reality,
reduced predation pressure may contribute to increased instability in the population dynamics of
Acanthaster spp., thereby contributing to increased incidence or severity of outbreaks on individual reefs
subject to increased fishing pressure [133,177]. On this basis, it would be prudent to limit or prohibit
fishing in areas known to be important for the initiation of reef-wide outbreaks, though more work is
still required to reconcile the specific mechanistic links between fishing and CoTS outbreaks [101].

2.23. Question 9 (Adults)—What causes the rapid disappearance of adult starfish which has been observed in the
field? Is it related to density dependent factors (e.g., crowding causing loss of condition)? What happens to the
majority of starfish? Do they die (e.g., from disease) or do they move to another reef?

These questions are POORLY RESOLVED and potentially very important for informing
management of population outbreaks.

Rapid and pronounced declines in the abundance of CoTS following major outbreaks [2,11,59]
are suggested to occur because starfish either die following extensive prey depletion and subsequent
starvation, or move en masse to find alternate sources of prey [170]. However, precipitous declines in
the local abundance of CoTS may [170] or may not [178] coincide with comprehensive depletion of
scleractinian corals. At Lizard Island (northern GBR) in 1999, localized outbreaks ended even though
mean coral cover was still >22% [178]. Moreover, CoTS can survive without food for many months [21],
and so it seems unlikely that it is a lack of coral per se, that causes elevated mortality or initiates mass
exodus from reefs. It is possible, however, that limited access to preferred coral prey (e.g., Acropora)
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leads to compromised health and condition of CoTS [48,123], despite relatively high overall coral cover
on reefs subject to moderate CoTS outbreaks.

The extent to which CoTS actually move between reefs is largely unresolved (Section 2.18). Even
though starvation is a potential trigger for movement by CoTS [36] and there will be strong motivation
to move away from reefs following extensive depletion of coral prey, by the time this happens,
the starfish are likely to have already depleted much of their energy reserves thereby constraining the
capacity for long-distance migration. Given the high densities and compromised condition of CoTS
towards the end of outbreaks, it seems most likely that that rapid transmission of highly virulent and
opportunistic pathogens is responsible for localized population collapse [22,112]. Moran [21] argued
that mass-mortalities of CoTS are unlikely to have gone completely unnoticed, though it is possible
that diseased starfish seek refuge within the reef matrix and are highly cryptic, or that sick individuals
are targeted by opportunistic reef predators (e.g., [179]).

There is a potentially important link between food availability, the nutritional condition of CoTS,
and their vulnerability to opportunistic pathogens [22], which are highly prevalent on and within
the tissues of these starfish [168]. Mills [162] showed that CoTS increasingly invest in prophylaxis
at high densities of conspecific, where there is an increased risk of infection. While this would be
expected to confer greater resistance to pathogenesis, and therefore, reduced relative rates of mortality,
it would be maladaptive to increase investment in prophylaxis unless risks were significantly increased.
In addition, there are likely to be significant constraints on energy investment for CoTS towards the end
of outbreaks following selective depletion of preferred coral prey (e.g., Acropora) if not comprehensive
coral loss [178]. If crown-of-thorns starfish continue to invest disproportionately into immune defense
even when prey are scarce, energy reserves will be depleted even more rapidly, thereby making
individuals even more prone to disease [180,181].

2.24. Question 10 (Adults)—Do the skeletal components of starfish accumulate in the sediments after times of
outbreaks? Do more spines tend to accumulate during outbreaks than during times when starfish densities
are low?

The specific questions posed here are WELL RESOLVED, but skeletal elements cannot be used to
resolve the specific incidence and timing of past outbreaks.

Adult CoTS have about 2000 calcareous skeletal elements; these persist in reef sediments and
are readily recognizable. It is expected therefore, that fluctuations in the prevalence of CoTS skeletal
elements within distinct layers of reef sediments could be used to test whether outbreaks occurred prior
to the first documented outbreaks in the 1950s–1960s, and test whether the frequency of outbreaks has
changed through time [182–184]. However, the use of ossicles to reconstruct the history of outbreaks
has been controversial. Initial studies sampled the sediments in the lagoons of 44 reefs spread widely
across the GBR region and found higher numbers of ossicles in surface sediments at reefs with active
outbreaks of CoTS [182]. Sub-surface sampling using an airlift found remains of starfish in sediments
that dated from more than 3000 years before present, with some suggestion of higher concentrations at
250–300 year intervals [182]. These results were reassessed by Moran et al. [185] who concluded that,
while the occurrence of skeletal elements confirms that CoTS have been present on the GBR for a long
time, these data cannot confirm or refute the occurrence of outbreaks prior to the 1960s.

Walbran et al. [183] sampled sediments in multiple sites at two reefs in the north central GBR
using a vibro-corer which retained the structure of the sediment cores better than the airlift used
by Frankel [182]. Walbran et al. [183] concluded that CoTS have been present on the GBR for at
least 8000 years and that the general density of ossicles was noticeably higher in sediments that
were 1000–2000 years old than in the more recent deposits. However, individual outbreaks lasting
only a few years could not be resolved due to reworking of sediments. A series of subsequent
papers identified potential weaknesses in the study which could undermine these broad conclusions:
possible taphonomic changes were not considered [186], a number of assumptions that are the basis
for the link between recent starfish populations and the incidence of ossicles in surface sediments
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were untested [187], and differential rates of sedimentation and compaction, both natural and those
resulting from the coring process, were not accounted for [188]. While Henderson and Walbran [184]
point out that many of these potential problems are unsubstantiated, it is clear that the interpretation of
the sediment record is not straightforward. Ultimately, bioturbation and differential compaction mean
that the position of ossicles in reef sediments is an unreliable indicator of their relative age. A robust
estimate of the timing of past outbreaks awaits the development of a method of aging individual
ossicles of CoTS at a cost low enough to allow large sample sizes. The high magnesium calcite content
of ossicles makes them unsuitable for established techniques such as U-series dating.

2.25. Question 11 (Adults)—Do adults show a distinct preference for certain types of coral?

This question has been WELL RESOLVED.
Numerous studies have reported that Acanthaster spp. feed predominantly on certain coral taxa,

mainly Acropora and Montipora, while rarely feeding on other taxa, such as Porites and Turbinaria
(reviewed by [1,21,22]). Strong selective feeding is expected to cause differential mortality and
directional shifts in the structure of coral assemblages, potentially contributing to increased diversity
through selective removal of dominant coral taxa [189]. However, differential consumption of coral
taxa may not necessarily reflect inherent feeding preferences [190]. Potts [190] argued that field-based
patterns of feeding by Acanthaster spp. are moderated by accessibility to different prey and that they
become conditioned to feed disproportionately on locally abundant corals. Moreover, Moran [21]
pointed out that few of the early studies on the feeding habits of CoTS employed methods necessary
to document explicit feeding preferences, largely failing to account for the differential abundance
or availability of different coral prey. Since that time, there have been several quantitative field
studies demonstrating that Acanthaster spp. consume and deplete different corals disproportionately
to their availability [19,20,144,191,192], reflective of distinct feeding preferences. Compilation of data
(forage ratios) from these distinct studies reveal that Acropora and Montipora are consistently consumed
more than expected based on their availability [1]. Conversely, several coral genera (including Porites,
Pectinia, Galaxea, and Echinopora) were generally consumed less than expected based on their availability,
though actual forage ratios and inherent feeding preferences vary with concentration and condition of
CoTS, as well as the size, abundance and distribution of prey.

While Acanthaster spp. do exhibit distinct feeding preferences, CoTS outbreaks do not necessarily
lead to directional shifts in the structure of coral assemblages [6], nor to persistent changes in coral
diversity [178]. During major outbreaks, feeding selectivity may be apparent in the sequential depletion
of different coral taxa, but even the least-preferred corals (e.g., Porites) are consumed and often
locally depleted (e.g., [2,6,11]). Selective effects of CoTS feeding on coral assemblages will be most
apparent during relatively moderate outbreaks (e.g., [178]). At Lizard Island in the 1990s, outbreaks of
A. cf. solaris caused overall declines in coral cover of <30% [178]. Despite moderate declines in live coral
cover, there were marked shifts in the structure of coral assemblages, with disproportionate declines
(50–80% depending on species and location) in abundance of formerly dominant Acropora corals.
Nonetheless, coral diversity declined because CoTS were not sufficiently averse to less common taxa.

2.26. Question 1 (Effects On Communities and Processes)—Do coral communities recover from outbreaks of
starfish? How long does this take? Is the pattern of recovery similar for most types of reefs and for different
scales of disturbance?

Recovery of coral assemblages (both in terms of total coral cover and community composition) is
well studied and LARGELY RESOLVED.

Estimates of the time required for coral assemblages to recover from outbreaks of Acanthaster spp.
(and other major disturbances) range from <5 years to >100 years [193–196], depending on the spatial
extent and magnitude of coral loss, as well as the specific types of corals that are affected. In extreme
cases, coral assemblages may never regain their initial structure, even where overall coral cover returns
to pre-disturbance levels [197], owing to fundamental shifts in community dynamics. Completely
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denuded reefs also recover much more slowly than reefs in which at least some corals survive to grow
and reproduce [198,199]. Moreover, it is increasingly apparent that major disturbances are occurring
too frequently to allow for recovery of coral assemblages in the intervening period [9].

The recovery of coral assemblages following outbreaks of A. cf. solaris was explicitly studied
on the GBR based on temporal dissimilarity in taxonomic composition of benthic assemblages on
reefs monitored annually from 1993 to 2005 [200]. While coral assemblages did often exhibit effective
recovery from CoTS outbreaks throughout this period, the time taken for community reassembly after
outbreaks of A. cf. solaris was longer than for other major disturbances, such as severe tropical storms
and bleaching [200]. Notably, recovery also took longer in reef areas where fishing was permitted,
where 8–10 years were necessary for coral communities to return to their pre-outbreak composition,
compared to an average of 6–7 years inside no-take areas [200]. This difference was attributed to lower
severity of outbreaks and corresponding reductions in the magnitude of coral loss inside no-take areas,
potentially linked to greater predation on juvenile or adult starfish where fisheries exploitation was
restricted [133].

2.27. Question 2 (Effects on Communities and Processes)—What effect do outbreaks have on other communities
(e.g., fish, soft corals)? Is this effect permanent or do these communities recover from such a disturbance?

These questions are WELL RESOLVED, though the effects of coral loss on reef-associated
organisms are informed by studies considering a diverse array of different disturbances.

Coral depletion, regardless of whether it is caused by CoTS outbreaks or by other large-scale
disturbances (e.g., climate-induced coral bleaching), has adverse effects across a wide range of marine
organisms that depend on corals for food, shelter or recruitment [201–204]. Extensive coral depletion
also provides increased space for colonisation by soft corals [178,205] or algae [206] which can, in turn,
lead to increases in abundance of habitat generalists and herbivores. The specific effects of outbreaks
of Acanthaster spp. on coral reef fishes will depend on the magnitude (extent and severity) and
selectivity of coral loss. However, the corals that are most critical in supporting both coral-dwelling
(e.g., Acropora, Stylophora and Pocillopora; [204]) and coral-feeding fishes (Acropora and Pocillopora; [4])
are the same corals that are preferred by Acanthaster spp. (Section 2.25) and are often rapidly and
comprehensively depleted during CoTS outbreaks [6]. Not surprisingly, therefore, declines in the
abundance of coral-dependent fishes during outbreaks of Acanthaster spp., are often disproportionate
to overall levels of coral loss [6,207,208].

Approximately 10% of coral reef fishes are directly dependent upon scleractinian coral for food
and shelter [202] and mostly small-bodied fishes with limited fisheries importance [204]. However,
the effects of extensive coral depletion caused by outbreaks of Acanthaster spp. extend well beyond
the few fishes that are directly dependent on live corals for food and shelter [209], especially where
the effects of coral depletion are compounded by structural collapse of three-dimensional habitats
and/or increased dominance of macroalgae. In southern Japan, Sano et al. [209] recorded 65% declines
in the abundance and diversity of reef fishes on reefs that were devastated by outbreaks of A. cf. solaris.
Sheltered reef environments that supported extensive growth of tall staghorn Acropora corals, providing
complex 3-dimensional habitats, were rapidly reduced to flat, homogeneous rubble fields, following
the comprehensive consumption of corals by CoTS [209]. Importantly, fundamental shifts in the
structure of coral reef habitats, initiated by severe coral loss, can impact on the abundance of many
large-bodied and carnivorous fishes [208], directly undermining fisheries productivity [210].

Given their strong reliance on corals and coral-dominated habitats, the abundance and diversity
of reef fishes are expected to recover in direct accordance with recovery and reassembly of coral
assemblages [211,212]. Inherent lags in recovery may sometimes occur due to vagaries in larval supply
and recruitment by fishes, and persistent shifts in community structure may occur due to differential
rates of coral recovery [197]. Of greater concern, however, is that the time required for effective
recovery relative to projected increases in the incidence of major disturbances [213], whereby the effects
of CoTS outbreaks on coral and non-coral communities will be increasingly compounded by other
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major disturbances, such as mass coral bleaching. Coral recovery and community reassembly may also
be constrained by the occupation of reef substrates by non-coral sessile organisms (e.g., macroalgae)
that prevent or hamper growth and recruitment of corals [214], highlighting the importance of fisheries
management to promote ecosystem resilience on coral reefs. Accordingly, Mellin et al. [200] showed
that recovery of both fish and coral communities was faster (<6 years) within no-take areas, relative to
reefs that were open to fishing (>9 years).

2.28. Question 3 (Effects on Communities and Processes)—What effect do outbreaks have on reef processes such
as calcification, primary production, and reef growth? Question 2 (Overarching)—Whether [CoTS] outbreaks
play an important part in reefal processes and the development of reef structure?

The specific effects of widespread coral mortality and corresponding fluctuations in abundance of
reef-building corals (regardless of actual cause) on reef processes are WELL RESOLVED.

Net calcification, which is important for rates of reef growth (or accretion) of contemporary reef
systems [215,216], is highly sensitive to ecological perturbations and changes in the overall abundance
of reef-building corals [217]. Importantly, significant declines in the abundance of corals, and especially
fast growing coral species (such as Acropora) will significantly affect reef carbonate budgets and net
framework production [215,216]. In the Caribbean, for example, sustained and selective coral loss
(specifically, functional loss of Acropora species) has resulted in >40% declines in rates of carbonate
production, such that net carbonate production is below the threshold necessary to sustain positive
reef accretion [215]. While the causes of reef degradation in the Caribbean do not include outbreaks
of Acanthaster spp. (which does not occur in the Atlantic), recurrent and ongoing outbreaks of
Acanthaster spp. may be undermining critical ecosystem process throughout the Indo-Pacific. If coral
assemblages can recover and reassemble reasonably quickly following disturbances (Section 2.26),
temporary declines in coral cover and calcification will have negligible effects on carbonate budgets.
Periodic mortality and structural collapse of Acropora corals may actually contribute to reef accretion
through increased production of carbonate sediment [218]. However, outbreaks of Acanthaster spp.
are a major contributor to sustained declines in the abundance of reef-building corals recorded at
key locations throughout the Indo-Pacific (e.g., GBR [7,8]; Japan [16]; Indonesia [20]; Guam [219];
Maldives [17]; French Polynesia [6,9]), and certainly have disproportionate impacts on faster-growing
corals (Section 2.25). Functional replacement of reef-building corals by other habitat-forming sessile
fauna and flora, may partially offset declines in primary productivity and carbonate production due
to widespread coral loss. However, it is now unequivocal that reef ecosystems with very limited
(<10%) cover of reef-building corals support a fraction of the species found in coral-rich habitats [220],
which has significant consequences for ecosystem function and productivity.

2.29. Question 1 (Overarching)—Why [CoTS] outbreaks occur and whether they are natural or
unnatural phenomena?

This question has preoccupied much of the discussion around Acanthaster spp., but remains
LARGELY UNRESOLVED.

The extent to which outbreaks of Acanthaster spp. are caused or exacerbated by anthropogenic
activities (e.g., inputs of nutrients and pollutants, and overfishing of key predators) is widely
disputed [1,71]. Fundamentally, the unique and extreme life-history characteristics of Acanthaster
spp., such as exceptional fecundity recorded for A. cf. solaris [101] predispose them to major
population fluctuations [103]. However, when outbreaks of Acanthaster spp. were documented
in the late 1960s [2,11], it was immediately assumed by many scientists that these were new and
unprecedented phenomena, such that scientists were compelled to link the sudden occurrence
of outbreaks to sustained and ongoing degradation of coastal environments, due to coastal
development [2], land-based run-off of nutrients and pollutants [221], and/or exploitation of marine
species [222]. Several scientists (e.g., [137,223–225]) did argue that outbreaks of Acanthaster spp. were
probably a natural phenomenon that had occurred across the Indo-Pacific well before the 1960s.
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While there are no rigorous quantitative estimates of CoTS densities prior to the 1960s, historical
accounts, mostly from anecdotal information, support the view that outbreaks have occurred in
the past [223,224,226]. In particular, there is information suggesting that CoTS were unusually
common at certain locations in the 1940s [113], though some of these reports may refer to normal
spawning aggregations of CoTS [227], rather than actual outbreaks. Birkeland [228] and Flanigan and
Lamberts [229] also proposed that the significance of CoTS in Micronesian and Samoan cultures could
be indicative of previous instances of high abundance. However, Moran [21] argued that the cultural
importance of Acanthaster spp. could be a result of its sinister appearance and toxicity, rather than
periodic abundance. On the GBR, it appears likely that outbreaks of A. cf. solaris were underway in
1913, given the relative ease with which Clark [230] collected CoTS in the Torres Strait. It is unknown
however, whether there were progressive waves of outbreaks that propagated the length of the GBR,
and there is insufficient information to establish the timing and spread of outbreaks that occurred prior
to the 1960s.

Even if outbreaks did occur on the GBR prior to the 1960s, it has been suggested that the
frequency and/or intensity of outbreaks is now much higher than it was in the past [45,113,231].
Fabricius et al. [45] refer to a model of coupled oscillations between coral cover and CoTS densities,
suggesting that the incidence of outbreaks has increased from one outbreak in 50–80 years to one in
15 years over the last 200 years, attributing this increased incidence to higher nutrient loads from river
discharge. The principal basis of these assertions is that long-term development of the GBR would
not have been possible given the current frequency and severity of CoTS outbreaks (see also [221]).
However, the increased susceptibility of reef ecosystems to outbreaks of Acanthaster spp. and protracted
periods required for subsequent recovery and reassembly of contemporary coral assemblages is
not in itself evidence that outbreaks are unnatural [22]. Rather, other factors, such as chronic
threats posed by increasing anthropogenic activities (e.g., fishing and harvesting, sedimentation,
eutrophication, and pollutants) may have undermined the capacity of reef ecosystems to withstand
natural disturbances [232], eroding ecosystem resilience and altering population and community
responses to persistent and ongoing disturbances. The best (albeit inferential) evidence that there
have been temporal shifts in the incidence and/or intensity of CoTS outbreaks comes from cores of
massive Porites and Diploastrea colonies, which purportedly record the incidence of CoTS feeding scars
throughout their lifespan [231]. DeVantier and Done [231] concede that the ability to discern previous
outbreaks declines as you extend further back, even when comparing among known outbreaks events
in the 1960s and 1970s. Nonetheless, there is evidence of outbreaks occurring prior to the 1960s, and
mainly in the 1930s. Devantier and Done [231] conclude that outbreaks of CoTS have been a persistent
feature of the GBR for centuries, but may have gone from isolated and sporadic events in the 1930s to
frequent and widespread events since the 1960s.

Establishing whether outbreaks of CoTS are caused (or exacerbated) by anthropogenic activities
was considered fundamental in addressing the dilemma of whether to regulate population densities of
Acanthaster spp. and prevent future outbreaks [233]. In reality, the decision to aggressively defend coral
reef ecosystems against the devastation caused by CoTS outbreaks has already been made, as evidenced
by intensive and extensive culling programs in operation throughout the Indo-Pacific, wherein over
17 million CoTS have so far been killed and/or removed from reefs across the Indo-Pacific [1]. The more
important questions that must be addressed are whether increased actions to improve water quality
(specifically, addressing land-use practices to reduce nutrient inputs) within reef environments and/or
increased fisheries restrictions can reduce the frequency or intensity of future CoTS outbreaks. We also
need to consider whether these indirect management actions are ultimately going to be more effective
than direct intervention (e.g., culling programs) in minimizing the incidence of outbreaks and reducing
coral loss at various timeframes. Given persistent uncertainties surrounding the proximal cause(s) of
outbreaks and the likelihood that multiple factors will be involved in the initiation and subsequent
spread of outbreaks [57,71], it seems prudent to maintain a multipronged approach to managing
outbreaks of Acanthaster spp. ([18]; Section 2.33). Nevertheless, intensifying efforts to improve water
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quality, as well as redressing over-fishing on coral reefs, are important regardless of whether they
ameliorate the threat posed by outbreaks of Acanthaster spp. Meanwhile, evaluating the relative roles
of these factors in initiating outbreaks of CoTS will require more integrated and intensive monitoring
to explicitly resolve spatial and temporal gradients in biological communities and environmental
conditions (Section 2.2) relative to the larval abundance, settlement rates, and post-settlement survival
of CoTS [71].

2.30. Question 3 (Overarching)—Why some reefs are more susceptible to [CoTS] outbreaks than others?

This question refers to differences in the occurrence and severity of outbreaks among reefs within
the same reef system (e.g., the GBR), which is LARGELY UNRESOLVED

On the GBR, outbreaks of A. cf. solaris are only ever recorded on a specific subset of reefs [21].
Outbreaks are not, for example, recorded on most nearshore reefs and are only rarely recorded on
outermost reefs [21]. The reasons for these patterns are often discussed, but generally unknown.
The specific factors that influence susceptibility of reefs to population outbreaks of Acanthaster spp.
will vary depending on whether outbreaks arise independently (primary outbreaks) or result from
extensive delivery of larvae spawned by high-density populations on nearby or upstream reefs
(secondary outbreaks). The independent initiation of outbreaks on individual reefs is likely to result
from the progressive accumulation of starfish over multiple cohorts [59], which will be conditional
upon entrainment of larvae and sustained levels of self-recruitment [57]. The initiation of primary
outbreaks may also be promoted by local depletion of putative predators (through fisheries exploitation
and trophic cascades [133,177]) leading to increased survival of larvae, settlers, juveniles or adult
CoTS within reef environments, and/or localized nutrient enrichment, due to river discharge [45]
or upwelling of nutrient rich waters [234], which overcomes normal food-limitation and facilitates
increased development and survivorship of CoTS larvae [55]. Outbreaks of A. cf. solaris on the
GBR are initiated on mid-shelf reefs between Cooktown and Cairns, and mainly in the northern
portion of this area (commonly referred to as the “initiation box”). This region is characterized by
high densities of individual reefs and highly restricted water movement [58], which will promote
steady and sustained increases in local densities of A. cf. solaris during successive years of spawning.
However, limited spatial and temporal resolution in monitoring means that it is unclear where exactly
outbreaks originate. This prohibits meaningful comparisons of putative predator densities or nutrient
concentrations among reefs that do and do not sustain primary outbreaks. There is also very limited
monitoring of biological communities and environmental conditions at spatial and temporal scales
relevant to explain the initiation of CoTS outbreaks (Sections 2.1 and 2.2).

For secondary outbreaks, the predominant factor that will influence (or at least fundamentally
constrain) when and where outbreaks arise is the extent of larval delivery via hydrodynamic
connectivity [58,83]. That said, the delivery of high densities of CoTS larvae to individual reefs
would not necessarily result in the establishment of population outbreaks if there were local constraints
on larval survival and development or high rates post-settlement mortality (Figure 3). Previous
discussions on the role of river discharge and nutrient pulses on the GBR have focused largely on
the initiation of primary outbreaks [45]. If, however, larval development and survival are severely
constrained by very low nutrient concentrations and limited food availability (Section 2.1), it seems
logical that this would limit both the initiation and spread of CoTS outbreaks [1,29]. Pratchett et al. [1]
suggested that primary outbreaks may propagate over extended periods independent of any major
flood events, whereas it is the subsequent spread of outbreaks that might benefit from major flood
events, due to enhanced food availability and elevated larval survival across large areas of the reef [29].
Even if there are large numbers of well-fed and competent larvae arriving at a reef, settlement and
post-settlement survival might be constrained by habitat structure, availability of coralline algae or
coral prey, as well as the local abundance putative predators (Figure 3). Specific habitat requirements
and settlement preferences are yet to be established for Acanthaster spp. (Section 2.9), though it is likely
that there will be inter-reef variation in settlement and survival rates corresponding with differences in
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reef topography, habitat availability, and also the recent disturbance history. Importantly, there are
expected to by interactions between CoTS outbreaks and other disturbances that cause coral loss
and habitat degradation [71]. In general, outbreaks might be expected to be less likely to arise on
reefs where coral cover has been supressed by recent distrubances, but these disturbances might
also increase local availability of critical settlment habitat (dead, but intact coral skeletons, and/or
coral rubble). Outbreaks of A. cf. solaris have certainly occurred on reefs with low coral cover in the
aftermath of major disturbances (e.g., GBR [59], Guam [219], Okinawa [235]), and contribute to further
coral loss.

2.31. Question 4 (Overarching)—Why some [CoTS] outbreaks cause extensive coral mortality while others
do not?

This question is LARGELY RESOLVED, though more research is needed to explore species–specific
differences in biology and behavior (Section 3.1).

Although outbreaks of Acanthaster spp. are capable of causing extensive coral depletion over vast
areas (e.g., [2,11,236,237]), outbreaks vary greatly, not only in the size and density of starfish, but also
in their effects [21]. Most notably, high densities of A. cf. solaris occurred for more than 18 months
(1969–1970) at Molokai Island, Hawaii, but had negligible effect on local coral assemblages [238]. Within
the Pacific, devastating effects of CoTS outbreaks on coral assemblages are mainly restricted to the
central and western Pacific, including French Polynesia [6,9], Australia’s GBR [7,11], Micronesia [2,237],
and southern Japan [16,239,240]. In contrast, CoTS outbreaks cause minimal coral loss in the eastern
Pacific [138,241]. These patterns might be explained by the relative dominance of Acropora spp. [22];
Acropora spp. tend to dominate coral assemblages in the central and western Pacific, and are consistently
among the corals that are first and worst affected during outbreaks (e.g., [19,178]). In the north and east
Pacific (e.g., the main Hawaiian islands and Panama) Acropora is relatively scarce and coral assemblages
tend to be dominated by Pocillopora, which is much less susceptible to CoTS attack [138,241,242], owing
to the defensive behavior of infauna, especially Trapezia crabs.

Geographic variation in the effects of Acanthaster spp. may also result from differences in the
population dynamics and behavior among the four nominal sister species distributed in different parts
of the Indo-Pacific [38,39]. Acanthaster spp. from throughout the Indo-Pacific ostensibly look and
behave the same way, but devastating impacts of crown-of-thorns starfish appear to be confined to the
Pacific, which is the geographical range of A. cf. solaris [39,243]. This warrants explicit comparisons
of reproductive and larval ecology, demographic rates, feeding rates and feeding preferences among
Acanthaster spp. from each of the four distinct sub-populations identified by Vogler et al. [38], extending
the studies in the Pacific and the Red Sea to both southern and northern Indian Ocean regions.

2.32. Question 5 (Overarching)—How [CoTS] outbreaks are propagated over large distances?

This question is ambiguous, but is assumed to refer to the apparent coincidence of outbreaks and
population connections across widely separated locations, which has Been Largely Resolved.

The propagation of CoTS outbreaks among adjacent reefs and within reef systems is
variously ascribed to larval dispersal (Sections 2.5 and 2.6) versus inter-reef movement by adult
starfish (Section 2.18), depending on relevant inter-reef distances. At smaller spatial scales
(100 s to 1000 s of meters) it is conceivable that connectivity among reefs is achieved through
movement of adults [113], whereas large-scale dispersal is largely, if not exclusively, achieved through
dispersal of planktonic larvae. Planktonic larvae may also be dispersed on oceanic currents to
provide connections among widely dispersed locations. Indeed, the pan-Pacific range of A. cf. solaris
is a potential indicator of its broad dispersal capability [88]. In the 1960s, and again in the late
1970s, outbreaks of Acanthaster spp. occurred more or less synchronously across multiple locations
throughout the Indo-Pacific [21] suggesting that these outbreaks were inter-connected. The only viable
mechanism that would enable connections among widely separated locations, leading to simultaneous
or successive outbreaks in discrete locations, is large-scale dispersal of very large number of larvae.
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Indeed, outbreaks of A. cf. solaris that occurred in Central Province, Papua New Guinea in the
early 2000s likely represented the ultimate and inevitable conclusion of the northerly progression of
outbreaks on the GBR throughout the 1990s [19]. However, Timmers et al. [88] explicitly tested for
larval dispersal among distinct geographic regions in the Pacific by examining genetic structure of the
highly variable mitochondrial control region (mtDNA). While there was evidence of very occasional
larval exchange among geographic regions, there was no possibility that outbreaks were propagated
from one region to another through mass larval dispersal. Strong genetic structure, indicative of
limited larval exchange, was particularly apparent at scales of >1000 km [88], suggesting that the
simultaneous occurrence of outbreaks across a broad range of locations are triggered by large-scale
climatic features, such as ENSO [244] or increased temperature [113]. Moreover, the increasing
incidence of ENSO anomalies since the 1960s may account for increased incidence of CoTS outbreaks
since that time [231]. However, searches for environmental triggers of CoTS outbreaks, based on
spatiotemporal correlation have been hampered by imprecise accounts of when outbreaks actually
started across different locations [231]. The apparent coincidence in the occurrence of outbreaks may
simply result from increased research and reporting following reports of renewed outbreaks at key
locations. Even Moran [21] conceded it is unlikely that discrete and disparate outbreaks of Acanthaster
spp. originate as a result of the same single process.

2.33. Question 6 (Overarching)—Whether special management policies need to be formulated in order to prepare
for the occurrence of future [CoTS] outbreaks?

There is an unequivocal need for increased proactive (cf. reactive) management of CoTS
outbreaks, but the specific management policies and strategies are LARGELY UNRESOLVED and yet
to be implemented.

Contemporary management of CoTS outbreaks is largely focused on culling or removing adult
starfish, with the intention of minimizing ongoing coral loss through reductions in the number and
size of adult starfish and/or containing the spread of outbreaks. To address the current outbreak on
the GBR, for example, a targeted control program is in place that kills upwards of 100,000 A. cf. solaris
each year. Currently, the most efficient and accepted method for culling is to individually inject starfish
with specific chemicals [37,179,245] that cause immediate and comprehensive mortality. Manual
controls are very labor intensive, though the recent development of a single-injection method [246]
has increased the efficiency of in-water culling programs by at least 250%. Single-injection methods
also eliminate the need to manually handle adult CoTS, which is purported to result in spontaneous
spawning, though this seems unlikely given the delayed responses of CoTS to specific spawning
inducers during experimental studies [52]. Single-injection methods are now so efficient that major
constraints on effective population control relate to detectability of outbreak populations [247], which is
contingent upon both timely surveillance and improved understanding of the spatial dynamics (within
and among reefs) of CoTS populations. Even with the current suite of tools, there are significant
opportunities to further improve the efficiency and therefore, effectiveness of CoTS control programs
(e.g., “CoTSBot” [248]). The concern however, is that effective control of CoTS outbreaks across the
entire extent of the GBR will be prohibitively costly. Moreover, ineffective control (e.g., incomplete
eradication at specific locations) may simply prolong the outbreak and fail to actually protect local coral
assemblages. In reality, outbreaks do not affect all reefs (Section 2.30) and never occur simultaneously
across the entire expanse of the GBR [56]. Moreover, outbreaks on most reefs can be traced back to
initial outbreaks on a few discrete reefs within the initiation box [56], such that timely investment
and focused management activity in these areas could contain the spread of outbreaks and minimize
reef-wide coral loss.

Despite the consistent and recurring patterns of CoTS outbreaks on the GBR [1,56] there have been
very few management policies that have been specifically formulated to prepare for the occurrence
of future outbreaks. This lack of planning, combined with inevitable diversion of research and
management focus during non-outbreak periods [249] and limited capacity to detect the early onset of
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outbreaks, results in inevitable delays in responding to new outbreaks [250]. The issue is even more
complex and more pronounced outside of the GBR where there is no apparent pattern to the timing and
location of outbreaks. A proactive management policy with dedicated funding that can be immediately
accessed when initiation of future outbreaks are imminent or actually detected is sorely needed and
currently lacking [249]. Ongoing control programs across the Indo-Pacific are estimated to have cost
up to US $44 million [1], and have been largely ineffective in protecting reef systems from outbreaks
of Acanthaster spp. once they become established [247]. Timely intervention and the containment
of outbreaks before they can spread may, therefore, save greatly on management costs and increase
management effectiveness (e.g., [148,251]). Established disaster funds have proven successful in the
Australian agriculture sector to support pro-active monitoring, early detection and early prevention of
locust plagues [252]. Under this scenario, farmers locally monitor and pre-emptively control locusts at
the initiation of an outbreak (and are reimbursed by the fund) and the government targets high-risk
locations. A similar commission should be established for Acanthaster spp. to coordinate early detection
and rapid response for future outbreaks. Such a fund needs to have well established trigger levels
for action and to be well resourced given the significant cost and efficiency benefits associated with
rapid response.

Timely intervention to manage new and renewed outbreaks of Acanthaster spp. is partly
constrained by the reliance on detection of elevated densities of relatively large starfish to signify the
onset of outbreaks [56,59,253,254]. The development and refinement of early-warning systems, focused
on measuring larval densities, settlement rates, and/or local abundance of newly settled juveniles is,
therefore, a priority not only for improved understanding of population dynamics (Section 2.7), but also
for management. Moreover, it is important to maintain research and management traction throughout
non-outbreak periods (Figure 4), both to address significant knowledge gaps pertaining to the dynamics
of non-outbreak populations and to consider additional preventative actions (e.g., sustained culling of
low density populations) that may further increase management effectiveness.
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3. New Directions

While many of the questions posed by Moran [21] regarding the biology of CoTS and management
of outbreaks remain pertinent, there are several emerging issues and research methods that have
deflected much of the recent research attention. For example, when Moran’s [21] review was published,
taxonomists concurred that crown-of-thorns starfish found on coral reefs throughout the Indo-Pacific
(including the Red Sea) were just one species, Acanthaster planci (Linnaeus 1758). However, molecular
sampling throughout the last 30 years has suggested that there are multiple species of Acanthaster that
inhabit coral reefs [38,87,255,256]. Most notably, Vogler et al. [38] sampled CoTS from the Red Sea
to the eastern Pacific, and revealed at least four strongly differentiated clades, which has stimulated
necessary research into the systematics and nomenclature [39] and raises many important questions
about the biogeography of CoTS. Moreover, genomic data are providing unprecedented insights into
the intrinsic mechanistic basis of CoTS behavior [176], providing new options for population control
and management. It is these fields, along with advances in population modelling that are expected to
advance understanding and management of CoTS outbreaks in coming years.

3.1. Systematics and Biogeography

It is now unequivocal that coral reef CoTS, which were formerly referred to as A. planci throughout
the Indo-Pacific (including the Red Sea) comprise at least four distinct species [39]. Most notably,
A. planci occurs throughout the northeastern Indian Ocean, from the Sea of Oman to Christmas and
Cocos Keeling Islands and is both genetically and phenotypically different from A. cf. solaris [38,256],
which occurs throughout the Pacific and the Indo-Pacific archipelago. These two species co-occur
and potentially hybridize at Christmas and Cocos (Keeling) Islands [257]. The third major species
(A. mauritiensis) is generally restricted to the southwestern Indian Ocean, but does co-occur with
A. planci in the Oman Sea [38]. There is also a fourth distinct species restricted to the Red Sea, which is
yet to be formally described and named [39]. The relatively high (8.8–10.6%) genetic distance among the
four-aforementioned species, based on the COI marker used for ‘barcoding’, suggests that these species
diverged 1.95 to 3.65 million years ago [38]. Within the four nominal species, genetic divergence
was greatest for the Pacific population [39], and other studies have revealed conspicuous genetic
structure when comparing among CoTS from different regions across the Pacific [88,99]. Moreover,
distinctive phenotypes of Acanthaster spp. have been recorded from the southern (Lord Howe Island)
and northeastern Pacific (Hawai’i) suggesting that there may actually be more than one species in
the Pacific [39]. A recent report by Yuasa et al. [258] also found A. cf. solaris and its short-spined
sibling species, A. brevispinus on the same reef in Kushimoto, Japan, which is in contrast with the
previous assertion that natural interbreeding between these genetically compatible species is blocked
by ecological isolation (different habitats) in regions of sympatry [259]. This suggests that other
possible blocks against interbreeding between these two distinct species may be present.

Confirmation that there are multiple CoTS species, which are geographically separated, raises
important questions about generality of prior research, whereby much of the research on CoTS
has been conducted in the western Pacific on A. cf. solaris (see Sections 2.1–2.3, 2.5, 2.10, 2.11
and 2.16). Interestingly, devastating outbreaks of Acanthaster spp. are also reported mainly from
the western Pacific [21], suggesting that species-specific differences in feeding behavior and biology
(e.g., reproductive potential) may account for geographic variation in the occurrence of outbreaks
as well as their impacts on reef ecosystems [1]. If there are significant interspecific differences in
the biology of Acanthaster spp., this may also provide significant insights into the intrinsic factors
responsible for population outbreaks. Immediate priorities for comparative demographic studies
among species would include: (i) estimates of size-specific fecundity, (ii) larval development and
competency periods, and (iii) growth functions. Importantly, these demographic processes have already
been quantified for A. cf. solaris [27,34,35,101,129] and are key to understanding population dynamics.
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3.2. Genetic and Genomic Sampling

High throughput sequencing technologies (HTS) are providing increasing opportunities to use
genomic data to address ecological questions. As such, HTS has been used to describe molecular
ecology and evolution, molecular mechanisms of development in animals, and how environmental
factors such as those related to climate change influence animal life history. Methods such as RNA-Seq
using Illumina technology have been widely used in many marine invertebrates, including corals [260]
and echinoderms to detect changes in gene expression [261], or describe genetic variability among
populations to assess future adaptation to global change [262]. The era of genomics on CoTS using HTS
technologies has just started to emerge. By sequencing the transcriptome of the male gonad of CoTS,
using an RNA-Seq approach, key candidate genes involved in reproduction were identified [263].
This study found that CoTS contain proteins, molecules, signalling pathways and key developmental
genes that are known to have a role in sperm motility and signalling in other echinoderms [263].
A recent study using genome sequencing and proteomics in combination with behavioral experiments,
allowed the identification of key species-specific pheromones involved in their aggregation [176].
Although this result provides a potential solution to control adult populations of CoTS in the GBR,
little is known about the molecular basis underlying CoTS life history stages in response to ecological
factors. Therefore, future studies using HTS approaches in combination with ecological experiments
are necessary. A complete developmental transcriptome will be essential for the identification of (1) key
genes and signalling pathways involved in CoTS developmental traits; (2) response to environmental
factors addressed in this review; and (3) for understanding the molecular mechanism of calcification in
CoTS. Moreover, genome sequencing of closely related species could provide a comparative genomic
approach for population genomics and evolution within this group of animals. Other approaches
such as eDNA could also serve as a tool to trace the distribution of early life stages of CoTS in the
field [53,107,264]. These data will not only contribute to a better understating of CoTS genomics,
but will also be required for effective conservation and management.

3.3. Advances in Modelling

There have been significant recent advances in modelling CoTS populations (relevant to
demographic and/or dispersal models), building on a long history of theoretical treatment of outbreak
dynamics and the spread of outbreaks [265]. Previous demographic models were mostly developed at
a reef-scale and typically incorporated demographic processes and predator-prey relationships, but not
dispersal [266,267]. For example, Morello et al. [268] developed a model of intermediate complexity
for ecosystem assessment (MICE) based on trophic interactions between CoTS and slow versus fast
growing corals for Lizard Island. Although this model fit with observed population dynamics based
on AIMS LTMP data [133], it implicitly assumed low immigration and self-recruitment levels and
failed to capture major peaks in CoTS abundance. The semi-individual based model developed by
Chen et al. [269] has further refined those predictions and was able to reconstruct historical abundances
on a set of three reefs (including Lizard Island), however such a model remains too data demanding and
computationally intensive to be transferred to the entire Great Barrier Reef. Furthermore, this model
does not account for connectivity via larval dispersal, though it could be added.

At a regional scale, the development of large-scale hydrodynamic models for the GBR gave
researchers the opportunity to recreate the initiation and spread of outbreaks [82–84,93]. However,
Wolanski [270] suggested that these predictions were built upon unrealistic assumptions and
parameterization of the dispersal process and should therefore not be used for management.
Despite this, these hydrodynamic models provided the foundation for Scandol’s [271] interactive
metapopulation models for CoTS management. Another hydrodynamic model was proposed by
Bode and Mason [272] and was used to define self-recruitment and connectivity for 321 reefs on the
GBR [273], and in turn model the effect of increasing nutrients on CoTS outbreaks and coral cover
over a 150 year time period [45]. This showed that moderate increases in nutrient availability can
drastically increase larval survival and reduce coral cover. Importantly, these models were designed
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to predict population dynamics under a specific scenario (i.e., varying chl-a levels) while keeping
other parameters constant; however, such parameters were not calibrated against empirical data.
Furthermore, such models did not account for uncertainty and how it propagated through the different
steps, limiting their usefulness in terms of management and in developing decision-making strategies.

Recent developments in the hydrodynamic modelling for the GBR (e.g., eReefs) have reinvigorated
attempts to understand CoTS population dynamics and provide management solutions. A connectivity
network model for CoTS on the GBR based on hydrodynamic models generated from eReefs [58]
aimed to identify the most important areas for initiating and spreading CoTS outbreaks via their
relative importance within the network. This approach has since been used as the basis of an
adaptive management strategy, whereby reefs targeted for control are selected based upon their
likelihood to spread future outbreaks [274]. While it is a commendable and practical approach
to inform management decisions, this model is solely based on dispersal and fails to incorporate
demography or important biotic interactions [275]. Furthermore, if models such as these are to be used
for management, it is essential for them to be first validated against empirical data, and to account for
uncertainty and its propagation throughout the model.

This recent progress in the field of CoTS modelling highlights important directions for future
research: (i) despite the fact that there is no one-size-fits-all model, CoTS models should be
better integrated across multiple scales so that those developed at reef scales can inform regional
models (e.g., role of CoTS behavior, such as aggregation, on spatial distribution patterns). In turn,
regional models provide a framework for defining conditions at the boundaries of reef-scale models
(e.g., immigration rates from neighbouring reefs); (ii) demographic models should combine multiple
and diverse sources of empirical data and specifically highlight where there is limited relevant
information [275]. This will provide an opportunity for better interactions between CoTS modellers and
biologists to prioritize biological research; (iii) for CoTS models to be useful in terms of management,
there needs to be a better appraisal of uncertainty (both data- and model-driven) and how it propagates
though the different steps of the model. This implies the need to steer away from purely deterministic
models and, instead, account for both environmental and demographic stochasticity. By documenting
the uncertainty stemming from each step of the model and each scenario, more transparent CoTS
models will allow managers to assess the impacts of different management strategies while accounting
for the full range of their possible outcomes.

3.4. CoTS and Climate Change

Acanthaster spp., as well as their coral prey, are increasingly subject to environmental change
caused by anthropogenic forcing in global climate systems. This issue was brought to the fore, during
the recent mass bleaching on the GBR [276], which is expected to have resulted in levels of coral
mortality to rival the cumulative impact of entire cycles and reef-wide outbreaks of A. cf. solaris.
Widespread and significant bleaching [276] and subsequent coral mortality throughout the initiation
box may ultimately constrain the initiation of future CoTS outbreaks, which are expected to occur
in the early 2020s. However, projected changes in ocean temperatures and seawater chemistry are
also expected to have direct effects on Acanthaster spp. [23,24,42,74–76,78] and juveniles [74,124,277]
especially during early life-history stages.

The optimal temperatures for embryonic and larval development of A. cf. solaris (28–29 ◦C),
reflects ambient temperatures currently experienced during the reproductive season in the northern
GBR [24,76]. Above these temperatures embryonic abnormality and mortality increase [76,78] and
larval growth is impaired, as evident in the reduced size of the brachiolaria [75]. Without acclimation
to changing climate, even moderate ocean warming (1–2 ◦C) is therefore, likely to impose significant
constraints on reproduction and settlement rates. When ocean acidification is also considered,
warming (+2 ◦C) and reduced pH (pH 7.6–7.8) have additive negative effects, reducing larval size [75].
As a single stressor acidification increases developmental abnormality in CoTS and reduces larval
growth [74]. Settlement by CoTS was also negatively affected when coralline algae were grown in low
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pH conditions [74]. These negative effects on early development may be the bottleneck for population
maintenance of CoTS in a changing ocean.

In contrast to larvae, juvenile CoTS are highly tolerant to increased temperature (+2 ◦C
above ambient) and resilient to acidification (pH 7.6) [124]. Growth and feeding rates of the
algal-feeding juveniles were highest at 30 ◦C and pH 7.6. While growth increase at higher temperature
is likely due to the direct effects of warming on physiology, faster growth in ocean acidification
conditions was not expected. This was largely attributable to indirect effects of acidification on
coralline algae [277], which was more palatable (less calcified) and had a higher nutritional value
(C:N) when grown at low pH. The cumulative effects of environmental change on individual fitness
and population viability of Acanthaster spp. still needs further consideration, along with explicit
research into the vulnerability of coral feeding juveniles and adults to ocean warming and ocean
acidification. However, any such effects may be largely irrelevant, given that climate-change poses a
real and considerable threat to the availability of coral prey [276], and has disproportionate impacts on
Acropora and other corals that are favored by Acanthaster spp. Importantly, the loss of preferred coral
prey will lead to declines in the quality and quantity of progeny [25,48], with significant consequences
for population replenishment regardless of any direct effects of environmental change.

4. Discussion

Despite persistent controversy surrounding the specific cause(s) of outbreaks of
Acanthaster spp. [1,29], there has been substantial research (>950 publications) on Acanthaster spp.
over the past 30 years, leading to major advances in knowledge of their biology and ecology, as
well as increased understanding of the effects of CoTS outbreaks within reef ecosystems (Table 1).
In all, we suggest that 59% (24 out of 41) of the questions posed by Moran [21] have been effectively
addressed and largely resolved in the last 30 years (Table 1). Many of the questions that are still
largely unresolved relate to ecological processes (e.g., food-limitation and predation) that pertain to
population regulation. While these questions are critically important in establishing the fundamental
cause(s) of outbreaks of Acanthaster spp., a large part of the reason why these questions have
not been effectively addressed is that the required research will be logistically very challenging.
For example, measuring survivorship of CoTS larvae in the field is not really tractable, and it is
clear that experimental studies conducted under laboratory conditions provide very limited insights
into natural rates and causes of larval mortality (Section 2.12). There are however, some unresolved
questions that are not only tractable, but will contribute directly to increased management efficiency
and effectiveness (Table 1), and it is these research topics that should be given immediate priority.
Notably, new technologies and opportunities to quantify the temporal and spatial patterns in the
abundance of CoTS larvae [53,54], along with other established methods for measuring settlement
rates [115] should be incorporated into intensive and ongoing monitoring programs to provide an
early warning system for new and renewed outbreaks of Acanthaster spp. (Section 2.33).

Table 1. Research progress against each of the specific questions posed by Moran [21]. Numbers reflect
the original numbering of questions, as referred to in heading throughout Section 2. “*” indicates
those questions that are still unresolved, that are nonetheless very tractable problems which will
have significant benefit for understanding and managing outbreaks of Acanthaster spp. on relatively
short time-frames.

Topic Addressed/Resolved Unresolved Ambiguous

Larvae Q4–8, Q14 Q1–3, Q9 *, Q10
Settlement and juveniles Q12, Q20–21 Q11 *, Q13 *, Q15–18 Q19

Adults Q2–5, Q8, Q10–11 Q6–7, Q9 * Q1
Impacts Q1–3

Overarching Q2, Q4–5 Q1, Q3, Q6 *
Total 21 18 2
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A large portion of recent studies on Acanthaster spp. are confirmatory in nature, often refining
or validating the exceptional insights of early researchers, such as Endean [113] and Moran [21].
For example, Pratchett et al. [127] quantified short-term movement rates for adult A. cf. solaris
over different substrate types. Despite using detailed video analyses to document movement under
laboratory conditions, Pratchett et al. [127] reported rates of movement that were broadly similar to
those estimated based on field observations in the 1960s [113]. Moreover, the more critical question
to establish the capability of CoTS to move between reefs, which was also raised by Endean [113],
about how long adult CoTS can actually sustain near maximum rates of movement, has never been
addressed. While specific and detailed experimental studies are critical in providing a stronger
foundation for future research as well as the application of research findings, major advances in
understanding and managing outbreaks of Acanthaster spp. are reliant on (i) synthesis of prior research,
both through qualitative reviews (e.g., [1,31,129]; this review) and empirical-based models (Section 3.3)
to combine diverse data sources and identify critical knowledge gaps; (ii) coordinated and collaborative
research efforts to effectively address logistically challenging questions at relevant scales of time and
space, and in field settings; and (iii) improved integration of science and management, not only to
expedite the update of new and important research findings, but to moderate research objectives to
explicitly consider specific management tools and levers, and the relevant time-frames for considering
different management actions.

Moran [21] provided a thorough and comprehensive review of the state of knowledge for
Acanthaster spp. in the mid 1980s, during the height of the second documented outbreak on
the GBR. At the time, most of the research and scientific discussion centered on the cause(s) of
population outbreaks, and specifically, whether outbreaks are influenced by anthropogenic activities.
Moran [21] predicted that the staunch support for individual hypotheses and specific viewpoints
would significantly impede scientific advances, such that research should not aim to confirm or refute
individual hypotheses, especially not in isolation. Currently, in the midst of the fourth documented
outbreak wave on the GBR, there is still ongoing debate and specifically targeted research to address
individual causes of outbreaks. Some of this research is entirely pragmatic, focusing on the potential
benefits of specific management actions [133], rather than the specific mechanistic causes of outbreaks.
However, focus needs to be given to specific, well-defined and tractable issues (Table 2). Outbreaks
of Acanthaster spp. also need to be considered against the backdrop of other disturbances and threat
to coral reef ecosystems. Worryingly for the health of the GBR is that the same areas that have so
far been impacted by outbreaks of A. cf. solaris (northern and central sections; [34,35], have recently
(2016 and 2017) been subject to the most widespread and most severe mass coral bleaching ever
recorded [276].

In conclusion, outbreaks of Acanthaster spp. remain one of the most significant disturbances
and major causes of coral loss across the Indo-Pacific [6–9,17,19,20,219,235,278]. While previous
efforts to eradicate outbreaks have only been successful in relatively small and isolated areas [22,148],
questioning whether it would ever be feasible or practical to prevent outbreaks. However, outbreaks
are more amenable to direct intervention than most of the other major causes of widespread and
significant coral loss (e.g., climate-induced coral bleaching), and therefore, sustained and ongoing
research to improve understanding and management of outbreaks of Acanthaster spp. is certainly
warranted. Fundamentally, there remain considerable practical and logistical challenges to undertaking
necessary research to better understand the population dynamics of Acanthaster spp., though emerging
technologies continually provide new opportunities and increased efficiencies to tackle research
questions that were previously intractable or unfeasible (e.g., [53,54,107]). The purpose of this review
was to highlight research questions posed more than 30 years ago, that were considered fundamental
in understanding and managing CoTS outbreaks [21]. Despite significant research in the intervening
period, a relatively large number (18 out of 41) of these questions remain largely unresolved (Table 1).
It was not that scientists completely neglected or disregarded these questions, and there has been some
progress made to address many (21 out of 41) of the pertinent questions (Section 2). There have also



Diversity 2017, 9, 41 36 of 49

been new and emerging issues (Section 3) that have partly deflected research attention. However,
ongoing debate regarding the specific cause(s) of CoTS outbreaks is potentially detracting from
effective research on this issue. Moving forward, the focus has to be on questions that will improve the
effectiveness of management to reduce the frequency and likelihood of outbreaks arising, as well as
detecting and containing outbreaks as soon as they start.

Table 2. New questions about crown-of-thorns starfish, intended to stimulate future research. These are
additional to unresolved questions that were posed by Moran [21] (Table 1).

Biogeography and systematics

(1) Is it possible to distinguish distinct species of Acanthaster spp. in the field? Do these species hybridize in areas of
geographical overlap?

(2) Is there interspecific variation in demography (e.g., growth and fecundity) and behavior (feeding rates and diets)
that might account for geographic variation in incidence and severity of population outbreaks?

Larval biology

(3) How does the nutritional status of wild larvae vary spatial and temporally? Does the condition, survival and
settlement of larvae increase following exposure to nutrient pulses and phytoplankton blooms?

(4) What is the most critical bottleneck in larval development and survival? Are nutrient (and food) pulses more
important for early or late developmental phases?

Adult behavior

(5) Is interannual variation in spawning intensity and periodicity related intrinsic (adult condition) or extrinsic
(e.g., temperature) factors? What are the proximal and ultimate spawning cues?

(6) Does increased abundance and diversity of reef fishes (and/or invertebrate predators) constrain the reproductive
success of Acanthaster spp. (either through sub-lethal effects on fecundity or disruption of aggregations
and spawning)?

Control strategies

(7) Can intensive culling contain or prevent, rather than eliminate outbreaks? What are the detection limits and
culling efficiencies for immature starfish? What are the longer-term versus short-term benefits of direct control?

(8) Is it possible to disperse aggregations and/or prevent spawning by CoTS using chemical deterrents? Is it possible to
aggregate dispersed populations to increase effectiveness of culling?
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