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Abstract: Using six years of remote sensing data, we estimated land and forest degradation 

inside 1788 protected areas across 19 countries in Latin America. From 2004–2009, the 

rate of land and forest degradation increased by 250% inside the protected areas, and the 

land and forest degradation totaled 1,097,618 hectares. Of the protected areas in our 

dataset, 45% had land and forest degradation. There were relatively large variations by 

major habitat type, with flooded grasslands/savannas and moist broadleaf forest protected 

areas having the highest rates of degradation. We found no association between a country’s 

rate of land and forest degradation inside protected areas and Gross Domestic Product (GDP) 

per capita, GDP growth, or rural population density. We found significant, but weak, 

associations between the rate of land and forest degradation inside protected areas and a 

country’s protected area system funding, the size of the protected area, and one 

International Union for the Conservation of Nature (IUCN) management category.  

Our results suggest a high degree of heterogeneity in the variables impacting land and 

forest degradation inside protected areas in Latin America, but that the targeting of 

protected area investments on a continental scale is plausible. 
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1. Introduction 

From 1990 to 2010, the coverage of terrestrial protected areas increased from 8.8% of global land 

area to 12.7% [1]. Much of the growth in protected area coverage was in South and Central America 

(―Latin America‖ henceforth). In 1990, the average country in Latin America had 11.6% of territorial 

area within formally designated terrestrial protected areas. Two decades later, the average country had 

19.3% [1]. In Latin America, 15 out of 20 countries have more than 10% of their terrestrial area 

protected, and 7 countries have more than 25% protected [1]. Latin America now has a higher 

percentage of terrestrial areas formally protected than any other region of the world [2].  

Are protected areas in Latin America effective? If we use the International Union for the 

Conservation of Nature (IUCN) definition of a protected area as ―a clearly defined geographical space, 

recognized, dedicated and managed, through legal or other effective means, to achieve the long-term 

conservation of nature with associated ecosystem services and cultural values‖ [3], then the primary 

question regarding effectiveness is: are Latin American protected areas achieving the ―long-term 

conservation of nature‖?  

There have been a number of protected area effectiveness assessments, including studies on 

protected area management [4,5], conserving species diversity [6], coverage of global biomes and 

habitats [7], reducing deforestation [8], and maintaining populations of large mammals [9]. While there 

are multiple means of assessing protected area effectiveness, one crosscutting indicator of protected area 

effectiveness is land-cover change, specifically conversion of natural habitat to human-influenced 

habitat. Land cover frequently correlates with species-specific habitat [10], carbon sequestration [11], 

and habitat connectivity or fragmentation [12]. Preventing anthropogenic land-cover change could be 

viewed as central to protected areas’ goal of the long-term conservation of nature.  

If preventing land-cover changes is a core element for protected areas’ long-term conservation of 

nature, then one measure of protected areas’ effectiveness could be the rate of short-term land and 

forest degradation. We posit that this is a reasonable metric for protected area effectiveness, and one 

that is comparatively straightforward to quantify at a large scale via remote sensing. Granted, not all 

land and forest degradation observed by remote sensing is anthropogenic (e.g., landslides and 

lightening fires), but it is a reasonable assumption that the majority of year-on-year land and forest 

degradation is anthropogenic.  

There have been several global studies [13,14] and a number of localized studies, e.g., [15–17] of 

land and forest degradation in protected areas, but large datasets at a continental scale have yet to be 

analyzed. The availability of time-series moderate resolution remote sensing imagery and the growing 

sophistication of imagery analysis give the potential to track land and forest degradation within a large 

number of protected areas with a high degree of precision. 

Here we look at protected areas throughout Latin America and use remote-sensing land-cover data 

to answer the research question: how are changes in land and forest degradation within protected areas in 
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Latin America related to Gross Domestic Product (GDP) per capita, GDP growth, rural population 

density, protected area system funding, habitat type, IUCN management category, and protected area size?  

We improve upon existing protected area effectiveness assessments in three ways. First, we conduct 

a continent-scale assessment with a large sample size relative to other assessments. Second, we use six 

years of biweekly remote sensing data to measure changes, giving the results a higher degree of 

precision than previous assessments. Third, we analyze a relatively large number of variables 

potentially associated with land and forest degradation inside protected areas. 

2. Methods 

To detect land and forest degradation, we use a Terra-i dataset comprised of 16-day blocks of 

Moderate Resolution Imaging Spectroradiometer (MODIS) data with a resolution of 250 m × 250 m 

per pixel (6.25 hectares). The validity and reliability of the MODIS data to detect land and forest 

degradation has been tested in multiple studies, e.g., [18–20], and MODIS remote sensing imagery has 

been successfully used to detect land and forest degradation in the tropics since 2004 by the DETER 

system at Brazil’s National Institute for Space Research [21] and since 2000 by the Indonesia FORMA 

project at the Center for Global Development [22]. The Terra-i dataset identifies changes in land cover 

with an algorithm based on a multilayer perception neural network and Bayesian theory to identify 

changes in time-series Normalized Differential Vegetation Index (NDVI) data [23].  

Changes in NDVI can have positive or negative values. NDVI has been shown to reliably detect 

negative changes, such as deforestation and land degradation, in diverse contexts and habitats,  

e.g., [24,25], but methodologies for interpreting positive changes have yet to be rigorously validated. 

Hence, we use only the negative values in measuring land-cover change. 

One of the main difficulties of land and forest degradation detection from remote sensing is 

accounting for the ―noise‖ from the scattering and absorption of the signal as it passes through the 

atmosphere [26]. Terra-i uses the Harmonic Analysis of NDVI Time Series (HANTS) algorithm to 

remove atmospheric noise by smoothing the NDVI curve and inferring the value of missing data [27].  

Floods and droughts may cause anomalous changes in NDVI data [28]. Floods tend to generate 

large shifts in vegetation indices [28–30] while droughts can lead to a slight reduction in NDVI values. 

Terra-i uses the MODIS MOD35 product [31] to mask pixels where water has been detected and that 

have potentially been flooded and uses the Tropical Rainfall Measuring Mission data [32] to detect 

anomalies within the precipitation data and flag droughts. The first year for the Terra-i land-cover data 

was 2004, and we use a 2004–2009 Terra-i dataset (six years). 

The World Database on Protected Areas (WDPA) provided 2551 terrestrial protected areas in Latin 

America with data on location and area that were established prior to 2004 [1]. We excluded 109 

protected areas with less than 50% remote sensing data coverage due to frequent high-density cloud 

cover. We further excluded 646 protected areas that were smaller than 500 hectares because one pixel 

equals 1.25% of 500 hectares, and a change in a single pixel results in a relatively large percentage 

change in land cover. We also excluded as outliers eight protected areas due to the sensitivity of the 

statistical model to outliers. Our final dataset has 1788 protected areas across 19 Latin American 

countries (Table 1).  
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Table 1. Country and number of protected areas included in the analysis. 

Country Number of protected areas 

Argentina 166 

Belize 43 

Bolivia 74 

Brazil 563 

Chile 68 

Colombia 38 

Costa Rica 15 

Ecuador 25 

El Salvador 29 

French Guiana 10 

Guatemala 99 

Guyana 1 

Honduras 74 

Mexico 341 

Nicaragua 39 

Paraguay 27 

Peru 56 

Suriname 12 

Venezuela 108 

Total 1788 

There are risks of biases in our sample of protected areas. If the 109 protected areas we excluded 

due to limited remote sensing data were subject to less anthropomorphic land and forest degradation 

because of shrouding by clouds or high precipitation, then this could conceivably bias the results 

towards an overestimation of the land and forest degradation rate of change. If the 646 protected  

areas we excluded due to small size were subject to greater land and forest degradation because of 

higher perimeter-to-interior-area ratios, then this could conceivably bias the results towards an 

underestimation of the land and forest degradation rate of change.  

For the comparisons by major habitat types, we use WWF’s terrestrial biomes to define habitat type 

and spatial extent [33]. For the comparisons by country, we use GDP per capita, GDP growth, and 

rural population density from the World Bank’s World Development Indicators [34] along with 

protected area funding levels from Bovarnick et al. [35]. For the analysis by IUCN protected area 

management category [3], we use the categories in the WDPA database [1].  

We include an analysis of land and forest degradation inside protected areas and in 5-km and 20-km 

wide zones surrounding the protected areas. Such comparison of land and forest degradation inside 

protected areas with land and forest degradation in adjacent areas can exaggerate the protection 

effectiveness if protected areas are more isolated than their adjacent areas [14]. Comparing protected 

area and adjacent area land and forest degradation has also been shown to overestimate the 

effectiveness of protected areas due to different conditions in the buffer zones [36,37]. Thus, our 

inclusion of an inside-outside comparison should not be viewed as evidence for or against protected 

areas as effective tools for reducing land and forest degradation compared to adjacent areas. Our aim is 

simply to show land and forest degradation trends at the continental scale. 
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For the data analysis, we use a random-effects tobit model with a panel-data structure.  

The dependent variable (land and forest degradation) is characterized by many observations at zero. 

Using ordinary least-square analysis with this dependent variable would lead to biased parameter 

estimates [38]. As the zeros in this dataset can be interpreted as ―too small to measure‖, we are dealing 

with left-censored, continuous data. The tobit model was developed to analyze censored data and 

allows the simultaneous estimation of the influence of explanatory variables on the probability of the 

limit responses (i.e., the zeros or ―no change‖ observations in our data) and the size of non-limit 

responses (i.e., the non-zeros: the observations with land and forest degradation) [39]. As our data are 

clustered by country, we opted to use a panel-data structure to control for correlation between 

protected areas from the same country. The use of tobit regression with random effects allows for an 

appropriate analysis of such data and avoids bias in the estimates, which is a common problem in 

fixed-effects tobit models [40]. In addition to the tobit model, we also use the Wilcoxon matched-pair 

signed-rank test [41] and Friedman’s two-way ANOVA by ranks test [42,43] to assess statistical 

differences between the protected and the adjacent zones, and between different years, respectively. 

These non-parametric tests were selected due to the lack of normality in the distribution of the land and 

forest degradation data. The analyses were performed using statistical packages Stata 10 (command 

xttobit) and SPSS 21. 

3. Results and Discussion 

In Latin America, the rate of land and forest degradation inside protected areas more than doubled 

from 2004 to 2009, increasing from 0.04% to 0.10% per year. This is a small fraction but of a large 

number. Thus, in 2004 there were 81,975 hectares of land and forest degradation inside protected areas 

in Latin America, while in 2009, there were 247,056 hectares—an increase of approximately 165,000 

hectares. Assuming each land and forest degradation event was unique (i.e., no change, regrowth and 

change again during the six years) and considering only the negative changes in land cover, the  

2004–2009 land and forest degradation in our protected area dataset was 1,097,618 hectares—an area 

the size of Jamaica. 

3.1. Differences by Country  

The mean annual rate of land and forest degradation 2004–2009 shows large differences by country, 

with French Guiana and Guatemala at more than double the Latin American average and Nicaragua 

and Mexico at less than one-fifth the average (Table 2).  

Guyana, Suriname and French Guiana are the countries where the percentage of protected areas 

with observed land and forest degradation is highest, but all three have small sample sizes (Figure 1). 

Guatemala and Brazil have relatively high rates of land and forest degradation (Table 2), yet fall to the 

middle in Figure 1, indicating that the high rates of land and forest degradation are caused by relatively 

large changes in relatively few protected areas. On the other hand, Peru’s protected areas have 

experienced low average change but that change occurred in over 60% of its protected areas. Overall, 

45% of all protected areas experienced land and forest degradation inside their administrative 

boundaries from 2004 to 2009. 
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Table 2. 2004–2009 mean annual change in land and forest degradation inside protected 

areas by country (standard deviations in parentheses). 

Country 
Number of 

protected areas 

Mean annual change 

in % 

Mean annual 

change in hectares 

French Guiana 10 0.231 (0.465) 51 (54) 

Guatemala 99 0.206 (0.390) 228 (1003) 

Paraguay 27 0.183 (0.391) 71 (285) 

El Salvador 29 0.132 (0.288) 3 (8) 

Brazil 563 0.127 (0.353) 156 (717) 

Bolivia 74 0.104 (0.214) 443 (1010) 

Colombia 38 0.086 (0.118) 214 (357) 

Ecuador 25 0.076 (0.132) 82 (202) 

Honduras 74 0.067 (0.163) 72 (289) 

Belize 43 0.054 (0.101) 9 (21) 

Suriname 12 0.046 (0.099) 17 (23) 

Argentina 166 0.044 (0.184) 13 (110) 

Chile 68 0.039 (0.095) 15 (34) 

Venezuela 108 0.028 (0.072) 107 (325) 

Costa Rica 15 0.016 (0.043) 1 (5) 

Guyana 1 0.015 (n/a) 69 (n/a) 

Peru 56 0.014 (0.023) 79 (297) 

Nicaragua 39 0.013 (0.041) 5 (23) 

Mexico 341 0.013 (0.071) 4 (22) 

All protected areas 1788 0.080 (0.253) 102 (536) 

Figure 1. 2004–2009 proportion of protected areas with land and forest degradation by country. 
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(as a proxy for economic expansion), and average rural population density for a country (as a proxy for 

population densities around protected areas) can explain the differences between countries in land and 

forest degradation within protected areas. We acknowledge that GDP is an imprecise measure of 

income and economic expansion due to underlying issues with national accounts data [45] and that 

there can be large variations in rural population densities within a country [37], but we hypothesize 

that these may be explanatory factors for the observed country-level variation in protected area land 

and forest degradation.  

Another possible explanatory factor is differing levels of protected area system funding. To test this 

hypothesis, we use Bovarnick et al.’s data on 2007–2008 protected area system spending from all 

known sources for 12 Latin American countries (as a proxy for protected area system funding) [35].  

Using a panel-data tobit regression model with random effects, we tested for an association between 

the average annual rate of land and forest degradation between 2004–2009 inside protected areas and 

the independent variables of GDP per capita, GDP growth, rural population density, and protected area 

system funding. Data on protected area system funding were unavailable for Belize, Costa Rica,  

El Salvador, French Guiana, Guyana, Mexico, and Suriname, and thus they were excluded from the 

regression model.  

Before running the analysis, we tested for collinearity among the independent variables. There are a 

number of statistically significant correlations between the independent variables, but all correlation 

coefficients are below 0.7 [46]. The model thus includes all four independent variables. Tobit model 

coefficients are not interpretable as effect sizes [47], and interpretation of coefficients should focus on 

the positive or negative sign of the coefficient and whether or not it is statistically significant.  

Our results show that among the four independent variables, only protected area funding has a 

statistically significant relationship with land and forest degradation inside protected areas (Table 3). 

Our finding, however, of an association between protected area funding and land and forest 

degradation is tenuous and depends on the observations in just one country. Argentina’s protected area 

system funding level was more than three times the average for the countries in the dataset (US$8.60 

versus US$2.50 per hectare), while its average rate of land and forest degradation inside protected 

areas was roughly half the Latin America average (0.044% versus 0.080% per annum). If the 

observations from Argentina are excluded, the coefficient for protected area funding loses its 

significance (beta −0.047; SE: 0.048; p = 0.33; n = 1,171).  

Table 3. Regression results for country-level independent variables. 

Dependent variable:  

Mean land and forest degradation in % 
Coefficient Std. Error p value 

GDP per capita (2004) −2.39 × 10−6 1.64 × 10−5 0.884 

Average GDP growth (2004–2009) −7.69 × 10−3 2.04 × 10−2 0.706 

Average rural population density (2004–2009) 0.0026 0.0018 0.158 

Funding per hectare (2007–2008) −0.034 * 0.015 0.023 

Constant −0.027 0.18 0.817 

* Significant at the 5% level or less; LL = −771.4; n = 1,337; clusters (countries) = 12; rho ≠ 0 indicating 

that the panel structure is superior to a non-panel structure. 
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Our finding of a non-significant relationship between GDP per capita and protected area land and 

forest degradation echoes Nagendra [13] who found that protected area land-cover clearing did not 

differ significantly among low, medium and high GDP per capita countries. This suggests that in the 

near term, regional growth in GDP per capita is unlikely to drive a regional change in land and forest 

degradation inside protected areas in Latin America. 

The absence of a significant relationship between GDP growth and protected area land and forest 

degradation suggests that economic expansion may not be correlated with land and forest degradation 

inside protected areas in our dataset. 

For rural population density and land and forest degradation, other authors have found that land and 

forest degradation in a country or region may be driven more by economic opportunities or an area’s 

suitability for agriculture than rural population densities [48,49], and we found no statistically 

significant coefficient for the variable.  

The tenuous association between protected area funding and land and forest degradation in our 

dataset could be explained by several factors. First, total spending does not necessarily reflect  

the spending on protection activities likely to reduce land and forest degradation such as the number of 

guards per square kilometers
 
[50]. Second, spending may be concentrated in a few protected areas 

within a country [35]. 

3.2. Differences by Protected Area 

As in the country-level section above, in the protected-area section below we present the descriptive 

statistics first and then the aggregate regression results. 

3.2.1. Major Habitat Type 

With protected areas categorized by major habitat type, we found that flooded grasslands and 

savannas had the highest mean annual change, but a single protected area in Brazil (RPPN Rosana 

Jubran) skews the mean annual change in percentage, and a single protected area in Bolivia  

(2.9-million ha San Matias) skews the mean annual change in hectares. Remove these two protected 

area from the analysis, and the flooded grasslands and savannas habitat type falls to third among the 

habitat types and tropical and subtropical moist broadleaf forest rises to the top. The latter habitat type 

comprises 54% of the protected areas in our dataset, and a large share of these (43%) are located in 

Brazil (Table 4).  

The habitat type results show a split between those with large average annual changes and those 

with small average annual changes. There is no habitat type close to the overall average. This suggests 

a conservation focus in Latin America on the three habitat types with the highest rates of annual 

change: flooded grasslands and savannas; tropical and subtropical moist broadleaf forests; and tropical 

and subtropical grasslands, savannas and shrublands. 
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Table 4. 2004–2009 mean annual change in land and forest degradation inside protected 

areas by major habitat type (standard deviations in parentheses). 

Major habitat type 

Number of 

protected 

areas 

Mean annual 

change in % 

Mean annual 

change in 

hectares 

Flooded grasslands and savannas 15 0.146 (0.296) 367 (1208) 

Tropical and subtropical moist broadleaf forests 971 0.113 (0.312) 167 (698) 

Tropical and subtropical grasslands,  

savannas and shrublands 
149 0.108 (0.270) 61 (219) 

Temperate broadleaf and mixed forests 62 0.043 (0.099) 15 (33) 

Mangroves 19 0.030 (0.098) 2 (6) 

Tropical and subtropical dry broadleaf forests 203 0.029 (0.098) 13 (79) 

Deserts and xeric shrublands 164 0.019 (0.085) 6 (31) 

Temperate grasslands, savannas and shrublands 57 0.016 (0.098) 3 (15) 

Montane grasslands and shrublands 51 0.015 (0.083) 22 (138) 

Tropical and subtropical coniferous forests 77 0.011 (0.057) 0 (2) 

Mediterranean forests, woodlands and scrub 19 0 (0) 0 (0) 

Indeterminate habitat type 1 n/a  n/a  

All protected areas 1788 0.080 (0.253) 102 (536) 

3.2.2. Management Categories 

The WDPA dataset divides protected areas into IUCN management categories, ranging from 

Category I strictly protected nature reserves and wilderness areas to Category VI protected areas with 

sustainable use of natural resources. The management objectives of Category I-IV protected areas are 

more restricted than multi-use Categories V and VI protected areas.  

A number of the protected areas in our dataset lack an IUCN category designation, and thus we 

excluded 562 protected areas with no IUCN data, including all of Mexico and El Salvador’s protected 

areas. Category VI protected areas had the highest mean annual rate of change and Category IV had 

the lowest (Table 5). 

Table 5. 2004–2009 mean annual change in land and forest degradation inside protected 

areas by IUCN category (standard deviations in parentheses). 

IUCN management 

category 

Number of 

protected areas 

Mean annual 

change in % 

Mean annual 

change in hectares 

Category VI 363 0.125 (0.286) 179 (681) 

Category III 60 0.091 (0.263) 84 (311) 

Category I 148 0.084 (0.249) 174 (692) 

Category V 83 0.075 (0.217) 31 (143) 

Category II 403 0.074 (0.260) 86 (301) 

Category IV 169 0.052 (0.180) 43 (365) 

No specified category  562 n/a  n/a  

All protected areas 1788 0.080 (0.253) 102 (536) 
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IUCN management categories reflect differing management objectives rather than inherently 

different levels of protection against land and forest degradation, and the ambiguous results above are 

no surprise given that a well-managed Category V or VI protected area may be more effective in 

preventing land and forest degradation than a poorly managed Category I or II protected area.  

3.2.3. Size 

Other authors have shown that smaller protected areas with a high perimeter-to-interior-area ratio 

may be more prone to anthropogenic-induced changes, e.g., [51,52]. Larger protected areas may also 

have lower proportional land and forest degradation because they have more area that is farther away 

from human settlements. To facilitate the presentation of the size analysis, we split size into 10 equal 

groupings of n = 178 ranging from the smallest (size group 1) to the largest (size group 10) [53].  

The larger protected areas (size groups 6–10) have a higher rate of land and forest degradation on 

average than the smaller protected areas (size groups 1–5) (Figure 2). 

Figure 2. Mean annual rate of change by protected area group size showing slightly greater 

average change in the five larger size groups than the five smaller size groups. 

 

Size groups 2–4 are the lowest suggesting that small size may not be a substantial risk factor for 

greater land and forest degradation. There may, however, be a threshold close to 500 hectares where 

the rate of land and forest degradation increases, given the relatively high rate of change in the smallest 

group. There also appears to be a benefit to being in the largest size, but this may be due to many of 

the largest protected areas in Latin America being located in remote areas such as Brazil’s 3.9 million 

hectares Tumucumaque National Park. 

3.2.4. Regression Results for Major Habitat Type, Management Category, and Size 

We also analyzed the differences in WWF-defined major habitat types, IUCN-defined protected 

area management categories, and protected area size using a random-effects tobit regression model 

with a panel-data structure. The categorical variables of habitat type and management category were 
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entered as dummy variables, using the variable with the greatest frequency (largest n) as the base: 

tropical and subtropical moist broadleaf forests and Category II protected areas. Protected areas in the 

habitat type Mediterranean forest (n = 19) were excluded given that there was no land and forest 

degradation in any of them. As the variable ―size‖ has a positive skew (many small protected areas and 

a few very large ones), a natural log transformation of size is included in the model (Table 6).  

Table 6. Regression results for major habitat type, management category, and size. 

Dependent variable:  

Mean land and forest degradation in % 
Coefficient Std. Error p value 

Category I −0.01 0.045 0.902 

Category III 0.05 0.067 0.444 

Category IV 0.02 0.050 0.655 

Category V −0.03 0.062 0.631 

Category VI 0.13 * 0.033 0.000 

Deserts and xeric shrublands −0.26 * 0.080 0.001 

Flooded grasslands and savannas −0.11 0.158 0.486 

Mangroves −0.24 0.145 0.099 

Montane grasslands and shrublands −0.44 * 0.098 0.000 

Tropical and subtropical coniferous forests −0.39 * 0.128 0.002 

Tropical and subtropical dry broadleaf forests −0.19 * 0.062 0.002 

Tropical and subtropical grasslands,  

savannas and shrublands 

0.01 0.044 0.754 

Temperate broadleaf and mixed forests −0.14 0.089 0.126 

Temperate grasslands, savannas and shrublands −0.34 * 0.098 0.001 

Protected area size (ln) 0.04 * 0.007 0.000 

Constant −0.49 0.083 0.000 

* Significant at the 5% level or less; LL = −572.6; n = 1217; clusters (countries) = 17; rho ≠ 0 indicating that 

the panel structure is superior to a non-panel (pooled) structure. 

We found significant differences between the base and five habitat types: deserts, montane 

grasslands, tropical coniferous forests, tropical dry broadleaf forests, and temperate grasslands. All 

these habitat types experienced lower land and forest degradation than tropical moist broadleaf forests.  

Some of these habitat types mainly occur in one or two countries. For example, 73% of tropical 

grassland protected areas are in Brazil together with 47% of flooded grasslands, and 43% of moist 

broadleaf forests. To check the sensitivity of our findings, we excluded observations from several 

countries. Excluding protected areas in Brazil from the model does not change the habitat findings. 

Excluding the temperate grassland protected areas in Argentina (home to 95% of the temperate 

grassland protected areas in the dataset) leaves only three other protected areas with this habitat type, 

and the coefficient of its variable becomes non-significant. 

With regard to IUCN management categories, a statistically significant difference with reference 

Category II was only found for Category VI protected areas. Testing other combinations of IUCN 

categories identified no other significant differences. Running the model without Brazil’s protected 

areas resulted in non-significant coefficients for all the management category variables. In a model 

with only Brazilian protected areas (n = 473), the original effect was found: only Category VI 
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protected areas experience a statistically higher land and forest degradation. Thus, the higher land and 

forest degradation association with Category VI protected areas appears to be driven by Brazil. 

A study by Ferraro et al. [54] found 10–13% higher deforestation rates in less strictly protected 

areas (Categories V-VI) in Costa Rica, Thailand and parts of Indonesia—though the differences in 

Costa Rica stem largely from the less-threatened locations of the more strictly protected areas. 

Nagendra [13] found no difference in land-cover clearing for less strictly protected IUCN categories 

versus more strictly protected categories from 49 protected areas across 22 countries. Our findings 

largely corroborate the findings of Nagendra. 

For protected area size and land and forest degradation, we found a statistically significant and 

positive coefficient indicating that land and forest degradation is greater in larger protected areas. 

Looking more closely at the data, there are two opposite trends: larger protected areas are more likely 

to have a land and forest degradation than smaller protected areas, but smaller protected area tend to 

have greater rates of change than larger protected areas when there is a land and forest degradation. 

The overall mean rate of change shows a mixed picture in which the first trend dominates as reflected 

in Figure 2. 

3.3. Differences Inside and Outside Protected Areas  

Protected area locations are often biased towards higher elevations, steeper slopes, and greater 

distances to roads and cities [37]. Moreover, a protected area’s habitat type can differ substantially 

from its adjacent geographic areas [36]. In a global estimate of land and forest degradation inside 

protected areas compared to adjacent control sites matched for elevation, slope, ecoregion, distances to 

roads and to cities, and agricultural suitability, Joppa and Pfaff [55] found that these land 

characteristics were different for approximately half of the protected areas and their adjacent areas  

We compared the average annual land and forest degradation inside protected areas to the 5-km and 

20-km wide zones adjacent to the protected areas. Both adjacent zones experienced a higher average 

land and forest degradation between 2004 and 2009: 0.12% and 0.13% for the 5-km and 20-km zones, 

respectively, versus 0.08% for the protected areas. Compared to the 5-km zone, land and forest 

degradation inside the protected areas was lower in 45% of the cases, higher in 19% of the cases, and 

there was no change in either area in 35% of the cases. Compared to the 20-km zone, land and forest 

degradation in the protected areas was lower in 66% of the cases, higher in 17% of the cases, and there 

was no change in either area in 17% of the cases. To test whether the differences in land and forest 

degradation between the protected areas and the adjacent zones are statistically significant, we used the 

Wilcoxon matched-pair signed-rank test, which is the non-parametric version of the paired samples  

t-test used for normally distributed variables. We found statistically significant differences for both the 

5-km zone (Z = 12.46; p < 0.001; n = 1787) and the 20-km zone (Z = 18.20; p < 0.001; n = 1787).  

This, however, should not be construed as evidence of protected areas effectively reducing land and 

forest degradation compared to having no protected areas. In order to be accurate, such a comparison 

would require matching of protected area characteristics with adjacent areas to provide the 

counterfactual as per Joppa and Pfaff [55] and Ferraro et al. [54].  

Perhaps more importantly, the rate of change for all three variables increased from 2004 to 2009 

(Figure 3). Using Friedman’s two-way ANOVA by ranks test, which is the non-parametric version of 
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the repeated-measures ANOVA for normally distributed data, we find that the change over the six 

years are significantly different from each other at the 5% level (protected areas: Chi2 = 319.57;  

p < 0.001; df = 5; n = 1788; 5-km zone: Chi2 = 265.63; p < 0.001; df = 5; n = 1787; 20-km zone:  

Chi2 = 365.15; p < 0.001; df = 5; n = 1787). 

Figure 3. Mean land and forest degradation 2004–2009 for protected areas and adjacent 

areas showing lower change inside protected areas than in the 5-km and 20-km zones around 

each protected area and a general trend towards increasing land and forest degradation. 

 

4. Conclusions  

Using extensive remote sensing data, our analysis shows aggregate land and forest degradation in 

1788 protected areas across 19 countries in Latin America increased 250% from 2004 to 2009. This is 

problematic for protected areas, which remain the primary conservation strategy in Latin America and 

globally [2]. Our findings suggest that protected areas in Latin America are not fulfilling their long-term 

goal of the conservation of nature. If protection grows in quantity and improves in quality in the next 20 

years due to growing wealth and education levels as McDonald and Boucher [56] suggest, then the trend 

in Latin America towards increasing land and forest degradation inside protected areas could moderate. 

Our results suggest a high degree of heterogeneity in the variables impacting land and forest 

degradation inside protected areas in Latin America. There was no statistically significant association 

between protected area land and forest degradation and GDP per capita, GDP growth, or rural 

population density, and the significance of protected area system funding depended on the inclusion of 

one country. We also found that the IUCN management category of a protected area has a minimal 

association with the de facto level of protection with the exception of Brazil, and that the size of the 

protected area has a positive and statistically significant effect on the rate of land and forest 

degradation. The comparison of land and forest degradation rates inside protected areas with adjacent 

buffer areas shows lower rates inside protected areas than outside. Moving away from the data and 

results, we hypothesize that agricultural expansion, grazing expansion, intentional burning, 

infrastructure development, and increased accessibility could all be causal factors driving protected 

area land and forest degradation in Latin America and are potential future areas of research. 
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Finally, our results suggest that a land and forest degradation trend analysis of all the terrestrial 

protected areas globally using remote sensing data is a possibility, and the rate of short-term land and 

forest degradation inside protected areas could be a viable environment indicator for the post-2015 

global development goals. 
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