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Abstract: Here we report, for the first time, aspects of the breeding performance of Scopoli’s Shearwa-
ter (Calonectris diomedea) in one of its largest colonies in Europe, i.e., in the Strofades island group. We
describe the chronology of the main events in the breeding cycle of this species on Stamfani Island,
the largest island of this island group, including the evaluation of breeding performance and the
influence of ecological factors (nesting habitat, nest type, nest-entrance orientation, and occupation
rate per nest) on breeding success. The Scopoli’s Shearwater colony of Stamfani Island exhibited a
high degree of breeding synchrony and nest site tenacity. The data obtained by monitoring 472 nests
during five consecutive years (2008–2012), showed a breeding success (fledging per occupied nest
per year) of up to 66.6%. In addition, hatching success (chick hatched successfully per egg laid) was
76.9%, and fledging success (fledging young per chick hatched successfully) was 86.8%. We also
observed annual variations in breeding performance during that period. These results seemed to be
influenced positively by the breeding experience of the pair. Furthermore, the type of nest site and
the nest-entrance orientation were found to have an effect on breeding success rates, whereas the
nesting habitat did not, indicating low predation risk by rats.

Keywords: seabird conservation; marine ecosystem; population dynamics; Procellariiformes; Strofades;
National Marine Park of Zakynthos

1. Introduction

Seabirds are a diverse group of more than 400 species, spending part or all of their lives
interacting with oceans, e.g., by foraging and migrating over them [1]. They constitute one
of the most threatened groups of birds [2,3], facing ecological challenges such as invasive
alien species, incidental (by-catch) mortality on fishery gears, and climate change/severe
weather [4]. These marine top predators are, in general, long-lived birds with delayed
maturity and low annual reproductive rates. Many seabird species have long lifespans
(>30 years) and high adult survival, with less than 10% dying each year, and most of them
show delayed adult maturity, commencing breeding after the age of three years [5]. They
also show low fecundity (1–3 eggs clutch per breeding attempt) and an extended chick-
rearing period. In addition, the fact that they are sensitive to variations in food supply,
readily visible at sea, and dependent on land for breeding allows for a better understanding
of their population trends and the assessment of possible threats to their conservation [4].
Consequently, they are recognized as important bio-indicators of marine ecosystems that
are useful in evaluating the environmental disturbance of marine biotas [6–8].
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The order Procellariiformes constitutes a group of K-selected pelagic seabirds that
exhibit high plasticity to the marine environment, covering large distances and living
over the sea outside the breeding season [1,9]. They form colonies and nest in burrows,
crevices, and cavities under boulders on isolated, inaccessible, and mainly uninhabited
islands and islets while they lay one egg per breeding pair as a result of their adaptation
to highly dynamic marine ecosystems [9]. The balance or imbalance of energy intake and
demand determines the fitness of individuals and may negatively affect their reproductive
success to the point where they may temporarily interrupt breeding (sabbatical year) [10].
That phenomenon is not so uncommon among birds such as shearwaters, especially if
we consider inexperienced individuals [11], the individuals’ time of arrival from their
wintering areas to their colonies [12], as well as their colonies’ characteristics [13].

The burrowing seabird targeted in this study is a long-lived migrant procellariid species,
well-known for nest site tenacity, mate fidelity, pelagic distribution even during breeding,
and nocturnal behavior as an adaptative strategy to avoid terrestrial predators [14–17]. The
breeding sites of the Scopoli’s Shearwater (Calonectris diomedea), which lay only one egg per
pair, are widespread across the Mediterranean Basin, whereas its wintering grounds are
mainly located in the North Atlantic Ocean where the Canary Current occurs and, secondly,
in the pelagic and coastal equatorial areas of the Eastern Atlantic, as well as in the South
Atlantic Ocean along the west coast of Southern Africa [18]. Scopoli’s Shearwaters have
strong interactions with fishery operations in the Ionian Sea. These can be negative, such
as incidental mortality (by-catch) caused by various fishery gears like bottom longlines,
surface longlines, and gillnets [19], or positive, since trawlers provide a significant amount
of discarded demersal fish extensively exploited by this scavenger, as highlighted in a
recent study [20].

The well-documented knowledge of breeding biology and nesting habitat use con-
stitute crucial information for seabird species that we aim to conserve or plan to use as
bioindicators of marine ecosystems [1]. The Strofades Islands in the Ionian Sea are con-
sidered one of the three Scopoli’s Shearwater European strongholds which host colonies
of more than one thousand breeding pairs each [21]. Despite this fact, no studies on the
breeding rates of Scopoli’s Shearwater in the Strofades colony have been conducted so far.
To address this lack of knowledge, we examined the breeding performance of this procel-
lariiform species in the Strofades Islands for the first time, for five consecutive breeding
seasons. More specifically, we assessed the relationship between breeding success and
(a) type of nest sites, (b) nest entrance and orientation features, (c) nesting habitat reflecting
different levels of rat presence and possible predation, (d) rate of nest site occupation
throughout sampling years and its correlation with breeders’ experience, and (e) dimen-
sions of eggs. The results of our research can be used to define conservation management
priorities by providing reliable information about the Scopoli’s Shearwater colony and its
population status within the Strofades isolated insular area. Several studies carried out on
different Scopoli’s Shearwater colonies in the Mediterranean provide additional emphasis
on the benefits of a systematic monitoring of the species’ reproductive effort and success
rates [22–25].

2. Materials and Methods
2.1. Study Area

The Strofades island complex (37◦15 N, 21◦00 E) constitutes a remote group of two
small and flat islets (the highest point is 22 m.a.s.l), namely Stamfani and Arpyia, sur-
rounded by several rocks. The total insular area is about 4 km2, lying approximately 32 n.m.
to the south of Zakynthos Island and 26 n.m. to the west of the Peloponnese peninsula,
within the National Marine Park of Zakynthos in the Ionian Sea. These islets show a variety
of habitats, such as rocky coastline, broadleaved forest, brushwood, agricultural fields,
including cereal cultivations, reedbeds, and sandy beaches, and a Juniperus turbinata Gus-
sone (syn. Juniperus phoenicea Linnaeus) forest, which constitutes one of the few remaining
high forest formations of this species in the Mediterranean [26] (Figure 1). The Strofades
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islands host the largest colony of Scopoli’s Shearwater in Greece, with ca. 5550 breeding
pairs [27], as well as one of the most significant stopover sites in the eastern Mediterranean
for passerines that migrate from Africa to the Palearctic during spring [28]. They are also
characterized as a multi-invaded insular ecosystem where rodents and cats play the roles
of mesopredators and superpredators of shearwaters, respectively. More specifically, the
black rat (Rattus rattus) seems to be the most abundant predator on Stamfani Island where,
in 2011, rat density was estimated at 5.37 individuals/ha [29].
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Figure 1. Location of Strofades islands and the habitat types found on them. Sectors of the Stamfani
coastline where breeding performance of Scopoli’s Shearwater was monitored during 2008–2012 are
also shown.

2.2. Breeding Performance

The Scopoli’s Shearwater breeding performance was monitored on Stamfani Island
for five consecutive years (2008–2012). The methodological process that was followed
ensured an accurate recording of the birds’ normal behavior by minimizing the impacts
of possible disturbances caused during fieldwork [30]. The field techniques applied were
in accordance with the standards of previous studies [31–34]. In addition, we took into
consideration the outcome of a pilot study on Stamfani Island during the breeding season
of 2007, aiming to identify a suitable coastline for nesting, where more than 95% of the
nests were found within a 20 m wide area only 5 m from the coastline [27].
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During the 2008–2012 period, a research team of 3–4 members checked (during moon-
less nights) three sectors of coastline with different nest site quality, using stratified sam-
pling so as to combine the simplicity of random sampling with the potential increase in
survey reliability [35]. More specifically, the western sector was characterized by a rocky
coastline with sparse shrub cover and bare soil suitable for excavation, the southern sector
was characterized by a rocky coastline with dense maquis vegetation cover and very little
bare soil, whereas the eastern sector was the least accessible, characterized by a harsh rocky
coastline without shrub cover and bare soil (Figure 1). Each sector was treated as a different
nesting habitat reflecting different levels of rat presence because of the landscape, combined
also with observations of rodent droppings at different abundances per sector [29]. Thus,
the classification of potential predation pressure at each sector showed three levels of actual
rat presence, namely, a high level in the western sector, a medium level in the southern,
and a low level in the eastern.

From 25 May to 15 October of each breeding season, nest sites distributed throughout
all sectors were systematically monitored by using a burrowscope with a wide-angle
CCD camera and 2 m cable, so as to ensure the minimum bias in evaluating breeding
performance. Three field visits were made each year to monitor the Scopoli’s Shearwater
reproductive effort. The first visit took place between 25 May and 10 June and aimed to
check potentially occupied nests according to the pilot study of 2007 and to mark active
nests (those with a breeder incubating). The second took place in the second fortnight of
July, collecting information on the breeding effort at the hatching stage, while the third took
place during the last 10 days of September and the second fortnight of October so as to
check for fledglings (Figure 2). It was assumed that no further mortality incidents occurred
after our last visit every breeding season. According to the obtained data, the breeding
success (% fledglings per egg laid), hatching success (% chicks hatching successfully per
egg laid), and fledging success (% fledglings per egg laid) were estimated. Data on breeding
performance were recorded in datasheets along with general information (e.g., date, time,
evidence of predation, etc.), sector name, and GPS waypoints defining the exact location of
each nest site and nesting habitat type. Birds (breeders, but mainly fledglings) were also
ringed, blood sampled, and measured. The collected data were entered into a database
which was interactively connected with GIS software (ArcGIS Pro 3.0) so as to be depicted
in digital maps with respective geographical parameters.
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2.3. Factors Influencing Breeding Success

Several environmental factors were tested for their possible impacts on the breeding
success of Scopoli’s Shearwater, namely, the nesting habitat features reflecting different
levels of rat presence/predation pressure, as already mentioned, the type of nest site, the
orientation of the main entrance of each nest, the rate of nest site occupation throughout
sampling years reflecting different level of breeders’ experience, and eggs’ dimensions.
More specifically, the nest sites of Scopoli’s Shearwater in the Stamfani colony were catego-
rized into five different types: natural deep cavities under cliff cover (cliff cover), natural
shallow cavities under stones (stone cover), cavities under shrub cover (shrub cover), rock
cavities among fallen boulders (crevices), and burrows excavated by breeders (burrows).
The orientation of the main entrance of each nest site was categorized as western (west),
eastern (east), northern (north), or southern (south). Nest sites were also ranked from
0–5 given the total number of successful breeding occupation events during the 2008–2012
sampling period, assuming that nests with higher scores are occupied by more experienced
breeders since the species is characterized by a high degree of nest site tenacity and mate
fidelity [36].

The egg measurements were conducted during the breeding season of 2011 and
involved examining a sample of eggs laid in different nesting habitats and nest types of
the Stamfani colony. A Vernier caliper (readable to 0.05 mm) and a digital pocket scale
(readable to 0.01 g) were used for the egg measurements, such as weight (WE), length
(L), and width (W). The dates of fieldwork in June corresponded to the early stages of
laying so as to minimize biases in egg weight measurements. In addition, egg size was also
estimated according to the volume index, L × W2 (length and width in mm), so as to make
comparisons with other colonies [37].

2.4. Statistical Analysis

One-way ANOVA was applied to each egg variable to evaluate differences accord-
ing to breeding performance. Prior to the ANOVA, we examined data for assumptions
of normality and homogeneity of variance using the Kolmogorov–Smirnov and Levene
tests, respectively.

To explore the trends of success per breeding stage, the non-parametric Mann–Kendall
test and Sen’s slope estimator were applied to detect and estimate the trend magnitude
within a time-series [38]. The Mann–Kendall (MK) test is a non-parametric and distribution-
free test that indicates only the trend direction (null, increasing, decreasing) over time.
Additionally, Sen’s slope estimator was used to calculate the magnitude of trends [39]. The
unit of Sen’s slope is the slope magnitude per year. MK tests were applied with the R
programming language [40] and the Kendall and trend packages [41,42].

Abiotic and biotic factors, such as type of nest sites, nest-entrance orientation, and
nesting habitat (sectors), reflecting different levels of rat presence and possible predation
were also used as independent variables in order to model the breeding performance of
the Scopoli’s Shearwater in Stamfani during the 2008–2012 period. More specifically, to
assess the effect of abiotic and biotic factors on reproductive success, nests were ranked
according to their frequency of use by reproductive season. Low-quality nests were defined
to have been successfully used for zero or one year, medium-quality nests for two or three
years, and high-quality nests for four or five years. Ordered Logistic Regression (OLR)
was then used to model the probability of each nest site being in a particular breeding-
quality class (low, medium, or high). The model estimates coefficients for each independent
variable to determine how it affects the likelihood of being placed in a higher category. The
data were partitioned according to the observed covariate patterns using the categorical
covariates only.

More specifically, the first stage of the OLR modeling process included the classification
of nests belonging to different breeding classes (low, medium, high) per nest type, nest-
entrance orientation, and habitat sector during the monitoring of Scopoli’s Shearwater
breeding performance on Stamfani Island for all breeding seasons (Figure 3). In order
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to model the probability of each nest site being in a particular quality class, we used as
a reference (baseline) category the group of categorical variables that showed the lower
representation for each predictor variable, i.e., “Shrub cover” for nest type, “North” for
nest-entrance orientation, and “East” for coastline-habitat sector. In the second stage, we
determined the impact of predictor variables, (a) separately, and (b) as a group, on the
likelihood of a nest site being placed in a higher nest quality class, which means higher
breeding success. Furthermore, we compared the overall performance of all OLR models
by using different evaluation metrics, such as Pseudo R-squared (McFadden), Residual
Deviance, Akaike Information Criterion (AIC), and the Chi-squared Test.
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Figure 3. Number of nests belonging to different breeding classes per nest type, nest-entrance
orientation, and habitat sector during the monitoring of Scopoli’s Shearwater breeding performance
on Stamfani Island (period: 2008–2012).

The Pulkstenis–Robinson chi-squared test was used as a goodness-of-fit test for the
OLR models since it is capable of accommodating models with continuous as well as
categorical predictors. The models were developed in R using the polr function of the
MASS package [43], DescTools for PseudoR2 [44], and Generalhoslem for goodness of
fit [45]. The values of the variables are given as mean ± s.d.

3. Results
3.1. Breeding Phenology

The Scopoli’s Shearwater colony of Stamfani Island showed a high degree of breeding
synchrony and nest site tenacity. The birds return to the Strofades islands every year
after having spent 4.5 months in the tropical waters off the coast of West Africa and the
equatorial waters of the eastern Atlantic. This was based on telemetry data that revealed
an almost synchronized departure from the breeding site (24th–25th of October), but a
significant spread of departure dates (1st–26th of February) to return from the wintering
areas to the vicinity of their colony in the Ionian Sea [46]. The pre-breeding season lasts
from late February to mid-May when Scopoli’s Shearwaters are recovering from energy
losses due to migration demands, socializing during the formation of rafts, mating, and
coming ashore for relatively short periods during moonless nights so as to acquire and
defend nest sites of high quality. Egg-laying takes place between the 25th of May and the
15th of June, while about 80% of females lay their eggs until the 5th of June (Figure 4). The
eggs usually hatched between the 12th and the 31st of July, but the overwhelming majority
(90–95%) hatched by the 20th of July. The fledglings are ready to abandon their nests during
the last 15 days of October in order to migrate to their wintering areas for the first time
(Figure 5).
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3.2. Breeding Performance

The data obtained by monitoring 472 nests of Scopoli’s Shearwater during five consec-
utive years (2008–2012) showed a breeding success (fledging per occupied nest per year) of
up to 66.60 ± 10.24%. In addition, hatching success (chick hatched successfully per egg
laid) was 76.90 ± 4.22%, and fledging success (fledging young per chick hatched success-
fully) was 86.80 ± 3.39% (Figure 6). An annual variation in breeding performance was
also observed during the sampling period. More specifically, the breeding season of 2010
(82.35% breeding success; N = 102 nests) and the breeding season of 2011 (54.74% breeding
success; N = 95 nests) represented the best and the worst seasons, respectively, in terms
of breeding performance. On the other hand, the breeding seasons of 2008 (N = 90 nests),
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2009 (N = 107 nests), and 2012 (N = 78 nests) showed similar scores of breeding success,
ranging between 62 and 69% (Table S1). For all breeding seasons, fledging success was
higher compared to hatching success.
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The Mann–Kendall (MK) test did not reveal any statistically significant monotonic
trends in breeding performance. More specifically, hatching success showed a non-significant
negative trend (MK: tau = −0.4, p = 0.46, Sen slope = 1.72). Fledging and breeding success
had a more stable trend (MK: tau = 0.2 and tau = −0.2, respectively, p = 0.81, Sen slope = 1.8
for fledging success, and Sen slope = −2.17 for breeding success). Predation pressure by
black rats, feral cats (Felis catus), and yellow-legged gulls (Larus michahellis) have been
observed thereon and may be partially responsible for the breeding failure of nests. Never-
theless, the majority (60–70%) of the breeding failures were attributed to the abandonment
of nests, mainly occurring during incubation and in the hatching period (Karris per. obs.).

In June 2011, a total sample of 30 eggs laid in different sub-colonies of Stamfani Island
were examined and the length, width, and weight scores were estimated at 6.75 ± 0.19 cm,
4.55 ± 0.14 cm, and 76.40 ± 4.69 g, respectively (Table S2). In addition, the egg size,
estimated by the volume index LxW2, was 139.9 ± 10.01. The length of the eggs was
also found to be smaller in the nests with a higher breeding success (one-way ANOVA;
F = 4.400; p < 0.05) (Table S3; Figure S1).

3.3. Factors Influencing Breeding Success

The results of the OLR models based on nest type, nest-entrance orientation, and
habitat sector separately are presented in Tables 1–3 respectively, while the relevant results
of the OLR model for the group of all predictor variables are presented in Table 4 (see also
Figure S2 for the R code).
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Table 1. OLR model based on nest type as predictor variable on the likelihood of a nest site being
placed in a higher nest quality class. Shrub cover nest was used as reference (baseline) category as
the less representative nest type in the sample. CI indicates confidence interval scores.

Model Breeding Success Classes~Nest Type
Estimate Std. Error t Value p-Value Odds Ratio (95% CI)

Intercept

Low-quality
nests/Medium-quality nests −0.381 0.304 −1.252 0.211 0.682

Medium-quality
nests/High-quality nests 0.583 0.306 1.904 0.056 1.792

Coefficient

Cliff cover nests 0.179 0.352 0.508 0.611 1.196 (0.599–2.391)
Stone cover nests 0.316 0.371 0.852 0.393 1.372 (0.663–2.844)
Burrow nests 0.363 0.369 0.983 0.325 1.438 (0.697–2.973)
Crevice nests −0.245 0.389 −0.628 0.529 0.782 (0.364–1.679)

Table 2. OLR model based on nest-entrance orientation as predictor variable for the likelihood of a
nest site being placed in a higher nest quality class. Northern nest-entrance orientation was used as
reference (baseline) category as the less representative nest-entrance orientation in the sample. CI
indicates confidence interval scores. * p < 0.05, ** p < 0.01.

Model Breeding Success Classes~Nest-Entrance Orientation
Estimate Std. Error t Value p-Value Odds Ratio (95% CI)

Intercept

Low-quality
nests/Medium-quality nests −0.045 0.317 −0.144 0.885 0.955

Medium-quality
nests/High-quality nests 0.925 ** 0.325 2.847 0.004 2.523

Coefficient

Eastern orientation 0.491 0.381 1.289 0.197 1.635 (0.777–3.471)
Southern orientation 0.409 0.354 1.155 0.248 1.506 (0.754–3.038)
Western orientation 0.792 * 0.367 2.153 0.031 2.208 (1.079–4.569)

Table 3. OLR model based on habitat sector as predictor variable for the likelihood of a nest site being
placed in a higher nest quality class. Eastern habitat sector was used as reference (baseline) category
as the less representative habitat sector in the sample. CI indicates confidence interval scores.

Breeding Success Classes~Habitat Sector
Estimate Std. Error t Value p-Value Odds Ratio (95% CI)

Intercept

Low-quality
nests/Medium-quality nests −0.473 0.285 −1.658 0.097 0.622

Medium-quality
nests/High-quality nests −0.473 0.285 1.658 0.097 1.606

Coefficient

Western sector 0.148 0.323 0.460 0.645 1.160 (0.615–2.187)
Southern sector 0 0.313 0 0.999 0.999 (0.540–1.851)
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Table 4. OLR model based on all predictor variables for the likelihood of a Scopoli’s Shearwater nest
site being placed in a higher nest quality class. “Shrub cover” for nest type, “North” for nest-entrance
orientation, and “East” for coast-line-habitat sector eastern habitat sector were the group of categorical
variables used as the mixed reference (baseline) category as the less representative in the sample. CI
indicates confidence interval scores. * p < 0.05.

Model Breeding Success Classes~Nest Type + Nest Orientation + Habitat Sector
Estimate Std. Error t Value p-Value Odds Ratio (95% CI)

Intercept

Low-quality
nests/Medium-quality nests 0.167 0.548 0.305 0.759 1.182

Medium-quality
nests/High-quality nests 1.157 * 0.554 2.087 0.036 3.183

Coefficient

Cliff cover nests 0.144 0.363 0.398 0.690 1.155 (0.567–2.358)
Stone cover nests 0.285 0.391 0.731 0.464 1.331 (0.619–2.865)
Burrow nests 0.316 0.394 0.802 0.422 1.372 (0.633–2.981)
Crevice nests −0.272 0.399 −0.683 0.494 0.761 (0.347–1.664)
Eastern orientation 0.537 0.396 1.355 0.175 1.711 (0.789–3.742)
Southern orientation 0.382 0.366 1.043 0.296 1.465 (0.717–3.017)
Western orientation 0.692 0.389 1.777 0.075 1.998 (0.935–4.314)
Western Sector 0.168 0.404 0.417 0.676 1.184 (0.536–2.626)
Southern Sector 0.127 0.346 0.367 0.713 1.135 (0.576–2.246)

The comparison of the models showed that none of the OLR models provides a
significant improvement in fit compared to the null model so as to make it a preferable
choice for explaining the variation in breeding success classes based on the metrics given
in Table 5. Moreover, the model for the group of all predictor variables revealed the highest
McFadden score (0.038) and the lowest Residual Deviance (262.739), indicating a better fit
among the models. On the other hand, the OLR model based on nest-entrance orientation
showed the lowest AIC score (276.383) among the models, indicating the best trade-off
between the complexity of the model against how well the model fits the data.

Table 5. Overall performance of OLR probability models of each Scopoli’s Shearwater nest site
being in a particular quality class based on different evaluation metrics, including Pseudo R-squared
(McFadden), Residual Deviance, Akaike Information Criterion (AIC), and Chi-squared Test.

Models PseudoR2 Residual
Deviance AIC Goodness of Fit

McFadden CoxSnell Nagelkerke Chi-
Squared df p-Value

Breeding success
classes~Nest type 0.015 0.034 0.038 267.323 279.323 3.764 6 0.708

Breeding success
classes~Nest-entrance
orientation

0.019 0.041 0.046 266.383 276.383 2.654 4 0.617

Breeding success
classes~Habitat sector 0.002 0.004 0.005 271,141 279.141 0.217 2 0.897

Breeding success
classes~A 0.038 0.069 0.078 262.739 284.739 74.653 74 0.456

A = Nest type +
Nest-entrance orientation
+ Habitat sector

Focused on the OLR model for the group of all predictor variables, the odds ratio
of 1.182 for “Low-quality nests/Medium-quality nests” indicates that, compared to the
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reference category, the odds of moving to a higher breeding success class are about 18.2%
(Table 4). Furthermore, the odds ratio of 3.183 for “Medium-quality nests/High-quality
nests” indicates that, compared to the reference category, the odds of moving to a higher
breeding success class are about 218.3% (t value = 2.087; p < 0.05). This suggests a significant
increase in the odds of higher breeding success for nests classified as “Medium-quality
nests/High-quality nests” compared to the lower classes. It is also worth mentioning
that (a) the odds ratio for burrow nests suggests a greater increase (37.2%) in the odds of
greater breeding success for nests of this type compared to the reference category “Shrub
cover”, (b) the odds ratio for the western habitat sector suggests a greater increase (18.4%)
in the odds of greater breeding success for nests of that sector compared to the reference
category “East” for the coastline-habitat sector, and (c) the odds ratio for the western nest-
entrance orientation suggests a greater increase (99.8%) in the odds of greater breeding
success for nests with a western nest entrance compared to the reference category “North”.
The latter is in accordance with the outcome of the OLR model based on nest-entrance
orientation, where the odds ratio for the western nest-entrance orientation suggests a
significant increase (p < 0.05) in the odds of greater breeding success for nests compared to
the reference category “North”. In conclusion, the overall outcome shows that breeding
success was influenced by the type of nest site and the nest-entrance orientation, whereas
the nesting habitat did not influence breeding success.

4. Discussion
4.1. Breeding Phenology

The first systematic monitoring of the reproductive effort of Scopoli’s Shearwater
on Stamfani Island provided baseline information on the breeding cycle of the species in
that area, an area that hosts the largest species colony in Greece [27]. The crucial dates of
breeding stages found here are closely aligned with corresponding studies carried out in
other Mediterranean colonies of the species [31,33,47,48]. Incubating was biparental, as was
also confirmed by geolocators deployed on breeders, where parents usually alternate the
incubation role every eight to nine days during June [46]. These results are in accordance
with relevant findings regarding the related species Cory’s Shearwater (Calonectris borealis)
in the Atlantic [10], highlighting in this way the importance of continuous egg incubation
but also the need to replenish the inevitable energy losses of breeders. The duties of both
parents are still particularly increased during the first stages of chick rearing and especially
in the first two weeks after the eggs hatch since almost every night the parents visit their
nests for food provision [16]. These visits gradually thin out, with the absence of the parents
being noticeable during the last stages of the fledging period and especially after the 20th
of September.

4.2. Breeding Performance

The average breeding success, for five consecutive breeding seasons (2008–2012), was
found to be about 66–67%. This outcome is comparable with respective results from other
Scopoli’s Shearwater colonies, such as those on the Dionysades islands north of eastern
Crete (77%), the Marseille islands (79–82%), the Maltese islands (64%), and Linosa Island,
close to Sicily (39–89%) [33,49–51]. Predation pressure by black rats was the main reason
for the low level of breeding success (39%) on Linosa Island just before a rat eradication
project was launched, but this was not the case for the breeding failures on Stamfani Island.
The by-catch incidental mortality of Scopoli’s Shearwater seems to be a significant threat
for the species in the southern Ionian Sea, and a possible reason for the sudden end to
breeding effort, since about 1.7–2.0% of the Strofades population has been estimated to
have been caught in longline fishery operations [19]. As a result, the accidental trapping
of shearwaters could be considered a potential risk for the conservation of the Strofades
population by taking into consideration the ecological features of the study species, such as
the long-term mate fidelity, the biparental care during the incubation, and the consequent
chick-rearing duties.
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The low number of abandoned nests after the hatching period, and the early stages
of chick rearing, could also be attributed to inexperienced breeders which also tend to
change nests. It is worthwhile to mention that the highest level of breeding success (77.5%)
was found in the group of nests that were occupied throughout the five breeding seasons
(N = 48; 30.38% of the total number of monitored nests; Figure S3). These nests were mainly
occupied by experienced males, according to our ringing recoveries, which could explain
such a high level of breeding success [11,36,52]. Indeed, a recent study has shown that
experienced males rarely change nests, and seldom do so in response to the results of
previous breeding performances [53].

The shearwaters’ breeding performance showed interannual variations, but no signifi-
cant monotonic trends, as already described. It is assumed that this outcome was obtained
due to the short time series of the data. Nevertheless, it did provide valuable information
on success trends (positive or negative, depending on the sign of the Sen slope value).
The collection of more data in subsequent breeding seasons, as well as the further study
of nest site tenacity, can provide explanations for the variation in breeding success on
Stamfani Island.

The mean length, mean width, and mean size index of the Scopoli’s Shearwater eggs
on Stamfani Island were found to be similar to those from another Greek colony located on
a satellite islet of Crete [54]. The aforementioned results also enhance relevant findings from
other studies that support biometric clinal variation in Scopoli’s Shearwater from eastern
to western Mediterranean colonies [55–58]. That morphological pattern is in accordance
with the eastward decline in primary production and increase in sea surface temperature
of the Mediterranean Sea [59]. It is assumed that philopatric behavior, mate fidelity, and
nest site tenacity, as well as discrete distribution of the remote insular breeding areas, may
lead to the maintenance of morphometric variation among colonies. Additionally, these
morphological traits of the species could be related to the spatiotemporal fluctuations
of ecogeographical factors that shape the conditions of foraging areas used by different
colonies spread around the Mediterranean.

In the current study, breeding success was negatively linked to egg length. This
outcome is not in line with relevant findings of Cory’s Shearwater in Selvagem Grande
where big eggs had higher possibilities of successful hatching and successful reproductive
output than smaller ones [37]. Even if the least experienced females tend to lay smaller
eggs and improve their ability to produce larger eggs with age [60–62], we assumed that
elongated eggs could be more susceptible to damage during incubation. As a consequence,
we propose further research into the influence of egg size, the experience of the breeders,
and incubating behavior on breeding success.

4.3. Factors Influencing Breeding Success

Breeding habitat, nest type, and nest-entrance orientation are among the factors that
may affect nesting in terms of heat retention, humidity insulation, and light penetration,
as well as access for predators and exposure to atmospheric forces, such as strong winds
and rains, and as a result, may have an impact on the breeding output of burrow-nesting
seabirds [52,63,64]. It is also evident that the cavity selection of good-quality nest sites is a
significant predictor of breeding success in Procellariiformes [65,66]. Our results show that
shearwaters prefer to use cliff-cover nests, stone-cover nests, and burrow nests, equally
classified as medium-quality (38%) and high-quality (37%) nest sites (Figure 3). These nests
have as a common feature the existence of soft soil and thus a substrate for excavation that
allows for greater protection of eggs and chicks by reducing the possibility of detection
by potential predators [67,68]. The higher occupancy rates for the above-mentioned nest
types may possibly be biased by the lower detection rate for breeders using shrub-cover
nests and crevices. Nevertheless, we believe that the detectability of large, easily accessible
burrow-nesting species such as Scopoli’s Shearwater is high and not biased by the nest type.

Regarding the impact of nest-entrance orientation, we found that a western nest-
entrance orientation suggests a significant increase in the odds of greater breeding success
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for nests compared to the reference category “North”. As was already described in the
Results section, a northern nest-entrance orientation was used as the reference category as it
was the less representative orientation in the sample. Indeed, shearwaters seemed to avoid
nests with northern nest entrances, perhaps as a strategy to avoid exposure to prevailing
northern cold winds. We also assumed that this outcome could reflect the need of birds to
facilitate landing and take-off processes through drag force and lift force, respectively, thus
selecting nesting sites with entrances opposite to the sea [67].

We found no significant impact of the coastline-habitat sector on Scopoli’s Shearwater
breeding success. This result reflects an imperceptible footprint of rat presence, and
consequently predation, on reproductive outcomes. Black rats, which are categorized as
omnivorous but most of the time are herbivorous, have a short reproduction period where
breeding mainly occurs in May and June [29], thus having the highest population density
in July-September. Therefore, the period of possible egg and chick predation coincides with
a decrease in vegetation productivity and relevant biomass due to summer drought [23].
Nevertheless, the study area shows high levels of humidity in summer which significantly
reduce vegetation dryness and maintain its density. As a result, the black rat may continue
to act as a herbivorous species even during the summer months. Moreover, the study area
constitutes a limestone island that offers a high availability of suitable nesting sites (cavities
and burrows) while the smoother texture of limestone rock on the coastline results in a
large number of sites protected from rat predation [69]. We assume that this could be a
possible explanation for the non-significant effect of rat predation on Scopoli’s Shearwater
in the study area, which does not constitute a typical Mediterranean dry insular site.

Overall, the current study provides the first data on the breeding biology and success
rate for Scopoli’s Shearwater in the Strofades island group, which constitutes one of the
largest colonies in European territory. Effective conservation measurements and assess-
ments at global and local scales need such fundamental knowledge, which can be used as
baseline data for the evaluation of possible impacts by forthcoming activities related to
hydrocarbon exploration and the construction of offshore wind farms in the Ionian Sea.
Therefore, a long-term research effort is needed in order to examine more factors as possible
determinants of breeding success and to identify relevant trends in more detail.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/d16030150/s1, Figure S1: Box plot showing median, interquartile range,
and range referring to the egg length of Scopoli’s Shearwater nest sites revealed breeding failure
and breeding success (breeding season 2011, N = 30 nests); Figure S2: R code developed for Ordered
Logistic Regression (OLR) analysis used to model the probability of each Scopoli’s Shearwater
nest site being in a particular quality class (low, medium, or high); Figure S3: Classification of
the Scopoli’s Shearwater nests that were monitored on Stamfani Island per occupation rate during
2008–2012; Table S1: Breeding performance of Scopoli’s Shearwater on Stamfani colony during
different reproductive stages (sampling period: 2008–2012); Table S2: Egg measurements of Scopoli’s
Shearwater colony on Stamfani Island (sampling period: 2–5 June 2011); Table S3: Com-parison of
egg measurements and egg volume index between nest sites with different breeding performance
(suc-cess-failure) on Stamfani Island (one-way ANOVA). * p < 0.05
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