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Abstract: Coffee (Coffea arabica), produced and marketed in Ecuador and worldwide, can be organolep-
tically improved by means of microorganisms such as well-characterized yeasts. This study aimed
to isolate and characterize yeasts from three postharvest fermentation processes (i.e., Natural aer-
obic at room temperature; Carbonic maceration with a CO2 atmosphere at room temperature; and
Carbonic refrigerated maceration with a CO2 atmosphere to 10 ◦C) of coffee fruits in Ecuador. Phe-
notypic and molecular analyses were conducted on 329 yeast isolates obtained from coffee farms in
Loja, Olmedo, and Gonzanamá. Three universal media were used for yeast isolation diversity, and
phenotypic characterization included morphology, sugar fermentation, salt tolerance, and ethanol re-
sistance. Molecular characterization involved DNA analysis. The isolated diversity was classified into
12 morphotypes, nine distinct biochemical groups and nine genetic species. Only six species
(i.e., Kurtzmaniella quercitrusa, Hanseniaspora opuntiae, Pichia. kluyveri, Torulaspora delbrueckii, T. quer-
cuum, and Wickerhamomyces anomalus) identified phylogenetically corresponded to the designated
morphotypes. But surprisingly, nine genetic species matched with the nine biochemical groups deter-
mined phenotypically analyzed using principal component analysis (PCA). Most of this diversity
was found in the coffee plantation located in Gonzanamá, in contrast to Olmedo and Loja, without
statistical significance (p value: 0.08295). On the other hand, the richness is not similar statistically
(p value: 0.02991) between postharvest fermentation treatments. The findings suggest that the ap-
plication of biochemical tests is useful for species determination, although morphological data may
be ambiguous. Notably, Pichia kluyveri, detected in this study, holds potential for biotechnological
evaluation in coffee fermentation processes.

Keywords: coffee fruit; fermentation; isolation; characterization

1. Introduction

Coffee is currently one of the most traded products worldwide, as it is one of the main
agro-export products in Ecuador [1]. In total, 20 of the country’s 24 provinces cultivate
commercial coffee species: 135,466.2 ha are occupied by arabica varieties (Coffea arabica L.)
and 63,748.8 ha are occupied by robusta (Coffea canephora Pierre.) [2]. The Ecuadorian
region produces quality coffee, but its chemical and organoleptic improvements are sought
through fermentative processes (beneficiation) prior to drying and milling [3].

In beneficiation processes, microorganisms such as yeasts play important roles as
facilitators in speed and conversion of organic compounds, helping coffee beans to improve
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their organoleptic properties (taste and aroma) [4]. Fermentation involves several catabolic
processes where organic substances are oxidized, transforming sugars into energy and other
simple compounds such as ethanol, acetic acid, lactic acid, and butyric acid [5]. Usually, the
farmers apply a typical or natural fermentation method after the harvest where the coffee
fruits are dried after being cleaned [4], and other farmers employ carbonic maceration, an
analogous technique to the wine fermentation process, where the coffee grains undergo
fermentation within a medium saturated with carbon dioxide (CO2), generally maintained
at room temperature or below 10 ◦C [5,6].

Microorganisms such as yeasts, a group of unicellular fungi with or without the
presence of hyphae or pseudohyphae, act strongly in that fermentation processes [7].
Ecologically, the yeasts are present in a diverse range of habitats, including soil, aquatic
environments, plant surfaces, foods, and skin and mucosal surfaces of animal hosts, but
the soil environments represent the major ecological niche for fungi including yeast [8],
helping in metabolism and facilitating carbon assimilation of fruits [9].

However, the diversity of microorganisms, especially yeasts, has been reported using
molecular techniques [10], especially next-generation sequencing methods (i.e., metage-
nomics), useful mainly for diversity estimates using operational taxonomic units [11].
Likewise, the nuclear ribosomal DNA region ITS-5.8S is one of the most widely used
regions as a DNA barcode [12], as well as the D1/D2 region of the 26S gene [13]. Also,
yeast species can be determined by biochemical tests (mandatory to describe new species)
through their fermentative capacity, as well as resistance to ethanol, NaCl, or germ tube
generation tests [9]. The diversity of yeasts in coffee still requires exploration and adequate
taxonomic characterization, as well as their ecological or biotechnological functionality in
fermentative processes of fruits such as coffee [1,14,15].

Worldwide, the use of yeasts to improve organoleptic properties is gaining popularity,
modifying the flavor and potential of the coffee bean with the use of species such as
Saccharomyces cerevisiae and Pichia kluyveri [16,17]. However, in Ecuador and in the province
of Loja renowned for its quality coffee [18], studies on improvements in coffee varieties
and coffee pathogenic microorganisms are recorded [19]. However, in other localities,
biotransformation of coffee flavor is proposed with the use of yeasts such as Saccharomyces
cerevisiae and Pichia kluyveri through inoculations [6].

Now, very little is known about the biodiversity of yeasts associated with coffee
fermentation processes on Ecuador, with only the study by Jumbo and Martínez [20], which
evaluates the capacity of the Saccharomyces cerevisiae species to improve the chemical and
organoleptic properties of coffee.

Due to the lack of information on the culturable diversity of yeasts from coffee in
this region, the present research sought to isolate, phenotypically and molecularly char-
acterize yeasts from three fermentation processes of coffee fruits (i.e., Natural aerobic at
room temperature; Carbonic maceration with CO2 atmosphere at room temperature; and
Carbonic refrigerated maceration with CO2 atmosphere to 10 ◦C) in three different farms in
the province of Loja applied by local farmers to improve the sensory properties of coffee.
In addition, the conservation of pure strains can be evaluated in the future in controlled
fermentation processes of coffee, and the effect on the chemical and sensory properties of
the final beverage can be determined.

2. Materials and Methods
2.1. Sampling

Nine samples of coffee beans were randomly collected from coffee farms located in the
cantons (Figure 1, Table 1): Loja, Olmedo and Gonzanamá, collecting beans of the Geisha
variety of Coffea arabica, characterized mainly by its slender trunk, elongated leaves and
branches pointing towards the sky [21]. It is a variety of coffee growing around the Andes
Mountain range known as shade coffee, and it is considered to be the best-quality coffee in
the region [18].
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Table 1. Reference information of the samples evaluated for each treatment and farm.

Canton Farms by Sector Latitude and
Longitude

Altitude
(m.a.s.l.) No Sample Code Postharvest Fermentation

Process

Loja El Aguacate 3◦55.848′ S
79◦13.340′ W

2010

A Natural

AC Carbonic maceration with CO2
atmosphere at room temperature

AF Carbonic refrigerated maceration
with CO2 atmosphere up to 10 ◦C

Olmedo Papá Café 3◦55.960′ S
79◦38.729′ W

1230

B Natural

BMF Carbonic maceration with CO2
atmosphere at room temperature

BMC Carbonic refrigerated maceration
with CO2 atmosphere up to 10 ◦C

Gonzanamá El Arenal 4◦06′02.0′′ S
79◦23′40.4′′ W

1500 m

M Natural

MC Carbonic maceration with CO2
atmosphere at room temperature

MF Carbonic refrigerated maceration
with CO2 atmosphere up to 10 ◦C

2.2. Postharvest Fermentation Process

Coffee fruits (Coffea arabica L.) of the Geisha variety were collected in three farms at
different altitudes (1230, 1500, 2010 m a.s.l) located in Loja province of Ecuador. The harvest
was conducted by hand, and only ripe fruits were used. The samples were cleaned under
continuous flow of tap water [3]. Then, the coffee fruits were placed in 4 L polyethylene
bottles and fermented for 144 h under three different conditions: (a) Natural or “blank
sample” aerobic at room temperature (N); (b) Carbonic maceration with a CO2 atmosphere
at room temperature (CM); and (c) Carbonic refrigerated maceration with a CO2 atmosphere
up to 10 ◦C (CRM). The atmospheric air in the bottles was constantly monitored by a gas
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analyzer (Oxybaby M+, Dortmund, Germany). Immediately after the fermentation process
was completed, the microbiological analyses were carried out [5].

2.3. Yeast Isolation

In total, 10 g of each sample was inoculated into a sterilized stock solution (200 mL) of
Yeast Peptone Dextrose Broth (YPD-DIFCO) and incubated at 27 ◦C for 24 h with continuous
motion at 50 rpm [22].

After the incubation, a volume of 30 µL of the stock culture was seeded by a depletion
technique on three solid media: Yeast Mold Agar (YMA-DIFCO), Sabouroad Dextrose Agar
(SDA-DIFCO) and Yeast Extract Glucose agar (YGC) using Floran (FAVETEX) as a broad-
spectrum antibiotic. The cultures were also incubated at 27 ◦C for 1–2 days. Subsequently, a
random number (between 10 and 20 colonies) was selected for replication and purification
on Potato dextrose Agar (PDA-DIFCO) solid medium plus Floran antibiotic at a final
concentration of 1%. This process was repeated at 48 and 72 h [23].

2.4. Phenotypic Characterization of Pure Strain Sampling

Morphology: Strains were classified by morphotypes (MT) according to their growth
form based on outline, size, coloration (British Standard Specification for colors) and
aroma [20]. In addition, yeast shape and size were microscopically checked using an
Olympus CX41 optical microscope and a 100×magnification. Preparations were performed
under direct staining with 1% Phloxine B and 10% KOH.

Biochemistry: Biochemical tests correspond to (a) Sugar fermentation (differential
with positive red and negative yellow staining) on a YPD-DIFCO culture medium (5 mL
of medium plus 1.6 mL of methyl red prepared at 100 ppm) [21]; (b) Tolerance to NaCl at
10 and 15% (positive when there is colony growth) in a YMA medium under depletion
stress and incubation at 30 ◦C (overnight); (c) Resistance to ethanol in a YPD medium, two
tubes for each strain, one with 4.5 mL plus 0.5 mL of 96% ethanol and another 4.25 mL plus
0.75 mL of 96% ethanol, incubated at 30 ◦C with continuous movement at 60 rpm [24].

Additionally, a yeast germ tube test was performed to determine whether any yeast
species corresponded to Candida albicans. All pure strains were tested by inoculating them
in human serum and incubating at 37 ◦C for 2 h [25].

2.5. Statistical Analysis of Ordination and Analysis of Isolates by Farms

To determine differences between yeast species richness by location and treatment, we
used one-way analysis of variance (ANOVA). We tested the normality of distributions of
richness using the Shapiro–Wilk test (p value > 0.05).

Principal component analysis was performed based on the presence of each yeast
population recovered to visualize the grouping of biochemical characteristics by species
according to the characteristics of fermentation tests based on the Jaccard similarity index.
Principal component analysis was performed using freely available statistical analysis
PAST software version 4.10 [26]. We also computed a non-metric MDS (multidimensional
scaling) ordination from the species to reveal the degree of similarity among treatments.
We used the Euclidean distance as a metric for species similarity.

2.6. DNA Extraction, Amplification and Sequencing

A total of 36 strains were selected to be molecularly worked up due to similar char-
acteristics found in the phenotypic analysis of the strains. Three strains from the same
morphotypes, MT, were chosen. One colony for each selected strain was used for DNA
extraction and amplification using the Phire Plant Direct PCR Master Mix commercial
kit (Thermo Scientific, Vilna, Lithuania) according to the manufacturer’s specifications.
The ITS-5.8S region of DNArn and partial LSU (D1/D2) was amplified with the follow-
ing primers: ITS1F 5′ CTGGTCATTTAGAGGAAGTAA 3′ [27] and NL4 5′ GGTCCGT-
GTTTCAAGACGG 3′ [28]. PCR conditions were as follows: an initial denaturation at
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98 ◦C for 5 min, followed by 45 cycles of denaturation at 98 ◦C for 10 s; banding at 55 ◦C
for 10 s and extension at 72 ◦C for 30 s, and a final extension at 72 ◦C for 5 min.

PCR results were evaluated by 1% agarose gel electrophoresis and 1X GelRED stain-
ing. Positive products were purified using the PureLinkTM Quick PCR Purification Kit
(Invitrogen, Vilna, Lithuania) and sequenced with the same set of PCR primers at Macrogen
(Seoul, Republic of Korea).

2.7. Phylogenetic Analysis

The sequences obtained were visualized and edited in CodonCode Aligner 9.0.2
software (CodonCode Corporation, Centerville, MA, USA). The concatenated sequences
(forward and reverse) were compared in GenBank Blast (https://www.ncbi.nlm.nih.gov/
genbank/ accessed on 22 June 2023) to download the most similar sequences, preferably
with taxonomic value (assigned species names). All sequences (37 new and 35 from
GenBank) were aligned in MAFFT Version 7.489 using the G-INS-i strategy [29].

Two phylogenetic trees were performed under Maximum Likelihood algorithms [30],
Kimura-2 parameter model and G + I nucleotide substitution rate model, followed by
1000 Bootstrap replicates employing MEGA 11 software [31].

2.8. Strain Preservation

The pure strains obtained were inoculated in a solution of 1.64 mL YPD medium plus
20% glycerol (permeable cryoprotectant) and allowed to grow for 1 h at 27 ◦C. Subsequently,
they were frozen at −80 ◦C in cryovials. Additionally, yeast suspensions were made in
2 mL of triple-sterilized distilled water and 2 mL of 100% sterile mineral oil, which were
kept refrigerated at 4 ◦C [32,33].

3. Results
3.1. Phenotyping and Diversity

A total of 329 pure strains were obtained and classified into 12 morphotypes (MT)
(Figure 2). Several MT correlated by shape: rounded (MT1, MT3 and MT5) differentiated by
attachments such as protrusions (MT5), visualization of vacuoles (MT1) and visualization
of cell walls and membranes typical of the genera Torulaspora and Wickerhamomyces. On the
other hand, oval-type morphology was found in MT2, MT6 and MT10, typical of the genera
Kurztmaniella, Hanseniaspora and Pichia, respectively. Furthermore, elongated morphotypes
(MT4, MT7, MT8, MT9 and MT11) were classified as recurrent in the genus Pichia; finally,
protrusions attached to a rectangular oval MT (MT12) were found. Sporulation of MT2
strain BMF4L2 was recorded (Figure 2), and four internal segments were differentiated
in the yeast. Most of the strains isolated and macroscopically checked showed similar
characteristics in terms of colony shape and odor.

The morphotype designated for Kurtzmaniella quercitrusa clustered with similar bio-
chemical properties to those of Pichia fermentans, Hanseniaspora opuntiae and Torulaspora
delbrueckii (Figure 3), standing out from the others by the presence of a germ tube, as well
as growth in lactose and 15% NaCl. P. kluyveri, H. uvarum and Wickerhamomyces anomalus
showed fermentation affinity in glucose and maintained a higher resistance in 10% NaCl.

https://www.ncbi.nlm.nih.gov/genbank/
https://www.ncbi.nlm.nih.gov/genbank/
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Figure 3. PCA for the nine species determined biochemically, according to the fermentation tests on
(1) malt, (2) sucrose, (3) glucose, (4) lactose. Tolerance to (5) 10% NaCl, (6) 15% NaCl, (7) 10% ethanol,
(8) 15% ethanol. (9) Germ Tube Test.

Most species diversity was found in the coffee plantation located in Gonzanamá
(Figure 4), in contrast to Olmedo and Loja, but statistically not significant (p value: 0.08295)
(Table 2, Figure 4). In the isolates from Olmedo and Loja, the species Hanseniaspora opontuiae
was not identified (Table 3). On the other hand, the isolates from Loja “El aguacate” (Table 1)
presented a lower number of species that did not include Kurtzmaniella quercitrusa and
Torulaspora delbrueckii, but presented a higher abundance for the genus Pichia (Table 2,
Figure 4).
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Table 2. ANOVA of the richness of yeasts found according to the fermentation treatment used and
the origin of the sample.

Sum of Squares Df Mean Square F F p Value

Richness according to the
type of fermentation

Between groups 15.7407 2 7.87037 4.077 0.02991

Within groups 46.3333 24 1.93056

Total 62.0741 26 0.3307

Richness by location

Between groups 11.6296 2 5.81481 2.767 0.08295

Within groups 50.4444 24 2.10185

Total 62.0741 26 0.08731

Table 3. Strains obtained and their BLAST reference information.

Species Collection
Number

Morphotype
Referential

GenBank
Accession
Number

Country Literature Reference

Kurztmaniella quercitrusa CM1L1 MT7 OR145791 Ecuador This study
Candida quercitrusa HA 1669 - AM160627 Austria Xiao [34]

Kurztmaniella quercitrusa BMF2L3 MT7 OR145790 Ecuador This study
Hannseniaspora opuntiae MF3L2 MT8 OR145783 Ecuador This study
Hannseniaspora opuntiae JEY258 - KC111445 Tunisia Eddouzi et al. [35]
Hannseniaspora opuntiae KOT1 - KY849378 Tunisia Ben Taheur [36]
Hannseniaspora opuntiae SM10UFAM - MN268780 Brazil Silva et al. [37]
Hanseniaspora uvarum AC3L1 MT9 OR145784 Ecuador This study
Hanseniaspora uvarum P43C012 - JX188164 USA Bourret et al. [38]
Hanseniaspora uvarum Mer383 - MT734682 Slovenia Zabukovec et al. [39]

Krutzmaniella quercitrusa CBS 4412 - MK394107 Netherlands Stavrou et al. [40]
Krutzmaniella quercitrusa LHCT1 - KX961193. China Li et al. [41]

Nuerospora crassa AR14R - OK148118 India Direct submission
Nuerospora crassa I1-3 - MH507014 China Direct submission
Nuerospora crassa I1-3 - MK064500 China Direct submission
Pichia fermentans AF2L7 MT4 OR145756 Ecuador This study
Pichia fermentans CM1L6 MT4 OR145758 Ecuador This study
Pichia fermentans AC3L10 MT4 OR145755 Ecuador This study
Pichia fermentans AC4L2 MT4 OR145757 Ecuador This study
Pichia fermentans HR-1 DS1308 - KM029994 USA Direct submission

Pichia fermentans HA-1 - KU820951 Republic of
Korea Direct submission

Pichia fermentans ATCC 10651 - GQ458040 Canadá Arteau et al. [42]
Pichia fermentans CBS 187 - MK394169 Netherlands Stavrou et al. [40]

Pichia kluyveri BMC4L9 MT1 OR145759 Ecuador This study
Pichia kluyveri AF2L3 MT10 OR145761 Ecuador This study
Pichia kluyveri BMF4L1 MT10 OR145762 Ecuador This study
Pichia kluyveri AF2L1 MT10 OR145760 Ecuador This study
Pichia kluyveri P25B004 - JX188197 USA Bourret et al. [38]
Pichia kluyveri H12 - MN266784 Japón Vasques et al. [43]
Pichia kluyveri KBP:Y-4954 - MG367291 Moscow Direct Submission
Pichia kluyveri PMM10-1033666L - KP132502 Australia Irinyi et al. [44]
Pichia kluyveri CBS 188 - MK394165 Netherlands Stavrou et al. [40]
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Table 3. Cont.

Species Collection
Number

Morphotype
Referential

GenBank
Accession
Number

Country Literature Reference

Pichia membranifaciens M2L7 MT6 OR145770 Ecuador This study
Pichia membranifaciens MF4L8 MT6 OR145772 Ecuador This study
Pichia membranifaciens BMF1L6 MT6 OR145774 Ecuador This study
Pichia membranifaciens AC1L5 MT10 OR145767 Ecuador This study
Pichia membranifaciens BMF1L2 MT6 OR145769 Ecuador This study
Pichia membranifaciens BMF1L5 MT6 OR145775 Ecuador This study
Pichia membranifaciens BMF4L9 MT12 OR145773 Ecuador This study
Pichia membranifaciens AC3L3 MT6 OR145766 Ecuador This study
Pichia membranifaciens MF1L3 MT6 OR145776 Ecuador This study
Pichia membranifaciens MF1L7 MT6 OR145777 Ecuador This study
Pichia membranifaciens AC2L2 MT11 OR145764 Ecuador This study
Pichia membranifaciens AF2L6 MT6 OR145765 Ecuador This study
Pichia membranifaciens P43C010 - JX188208 USA Bourret et al. [38]
Pichia membranifaciens CBS 82 - DQ198951 China Wu et al. [45]
Pichia membranifaciens CBS 107 - MK394163 Netherlands Stavrou et al. [40]
Pichia membranifaciens MC1L9 MT6 OR145771 Ecuador This study
Pichia membranifaciens BMF1L9 MT6 OR145768 Ecuador This study
Pichia membranifaciens MF4L5 MT12 OR145763 Ecuador This study
Torulaspora delbrueckii MC4L2 MT2 OR145788 Ecuador This study
Torulaspora delbrueckii MC1L1 MT2 OR145787 Ecuador This study
Torulaspora delbrueckii MC2L1 MT2 OR145789 Ecuador This study
Torulaspora delbrueckii B2/III/17 - HE799671 Slovenia Golic et al. [46]
Torulaspora delbrueckii CBS 1146 - MK394138 Netherlands Stavrou et al. [40]
Torulaspora quercuum BMF4L7 MT3 OR145786 Ecuador This study
Torulaspora quercuum AF2L8 MT3 OR145785 Ecuador This study
Torulaspora quercuum CBS:11403 - KY105673 Netherlands Vu et al. [47]
Torulaspora quercuum CGMCC AS 2 - NR137029 China Wang et al. [48]
Torulaspora quercuum XZ-46A - FJ888525 China Wang et al. [48]
Torulaspora quercuum XZ19100-5 - MW710147 China Direct Submission

Wickerhamomyces anomalus BMC2L7 MT5 OR145778 Ecuador This study
Wickerhamomyces anomalus AC4L9 MT5 OR145782 Ecuador This study
Wickerhamomyces anomalus BMF2L7 MT5 OR145779 Ecuador This study
Wickerhamomyces anomalus MF1L9 MT5 OR145780 Ecuador This study
Wickerhamomyces anomalus MC3L1 MT5 OR145781 Ecuador This study
Wickerhamomyces anomalus CBS 5759 - MK394130 Netherlands Stavrou et al. [40]
Wickerhamomyces anomalus I 29 - HF952836 Netherlands Zha et al. [49]
Wickerhamomyces anomalus VIT-ASN01 - KX253664 India Direct Submission
Wickerhamomyces anomalus DBL01s1 - LC120363 Japan Tanahashi and Hawes [50]
Wickerhamomyces anomalus iL-51-2 - FN868149 Germany Glushakova et al. [51]
Wickerhamomyces anomalus CBS 5759 - MH545921 Netherlands Stavrou et al. [40]

The richness was not similar between treatments (p value: 0.02991), which was sta-
tistically different from the natural fermentation, with a dispersion like the mean F: 4.077
(Figure 5A,B).
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aerobic at room temperature (N); � = Carbonic maceration with CO2 atmosphere at room temperature
(CM); and • = Carbonic refrigerated maceration with CO2 atmosphere to 10 ◦C (CRM), (B) boxplot of
the species according to the treatments.

Biochemically from 329 strains, nine groups corresponding to the species Hanse-
niaspora opuntiae, H. uvarum, Kurtzmaniella quercitrusa, Pichia fermentans, P. kluyveri,
P. membranifaciens, Torulaspora delbrueckii, T. quercuum and Wickerhamomyces anomalus were
determined based on the description of Kurtzman et al. (2011).

Kurtzmaniella quercitrusa, Hamniospora opuntiae, P. fermentans and Torulaspora delbrueckii
showed higher fermentation in glucose and lactose. In addition, they grew on media with
NaCl up to 15% and 15% ethanol; this differed from P. kluyveri, which maintained similar
tolerance characteristics up to 10% of each reagent.
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3.2. Molecular Species Definition

From 36 molecularly worked-up strains, 60 (ITS-5.8S plus D1/D2 partial LSU) se-
quences (forward and reverse) were obtained. Twelve sequences were discarded due to
multiple peaks in the chromatograms. All concatenated sequences (37 in total, Table 3)
corresponded to the Ascomycota division (Table 3). Nine genetic species were determined
(Table 3, Figure 6). The species Pichia membranifaciens was considered the most recurrent
with 15 sequences and strains clustered in one clade (Figure 6).
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the nodes.
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The nine genetic species (Figure 6) corresponded to the nine biochemically determined
phenotypes (i.e., Hanseniaspora opuntiae, H. uvarum, Kurtzmaniella quercitrusa, Pichia fermen-
tans, P. kluyveri, P. membranifaciens, Torulaspora delbrueckii, T. quercuum and Wickerhamomyces
anomalus) (Figures 2 and 3). On the other hand, the nine genetic species only corresponded
to six MTs where MT1 matched with Torulaspora delbrueckii; MT2 to Kurtzmaniela quercitrusa;
MT3 to Wickerhamomyces anomalus; MT5 to Torulaspora quercuum; MT9 to Hanseniaspora
opuntiae and MT10 matched with Pichia kluyveri.

4. Discussion

The diversity of microorganisms in different ecosystems is high and still unknown [1].
Also, not all microorganisms are culturable. However, 329 strains were isolated in this
study from coffee fruits corresponding to 12 morphotypes, suggesting 12 morphospecies.
Moreover, nine biochemical groups corresponding to the species Hanseniaspora opuntiae,
H. uvarum, Kurtzmaniella quercitrusa, Pichia fermentans, P. kluyveri, P. membranifaciens, Toru-
laspora delbrueckii, T. quercuum, and Wickerhamomyces anomalus (Figures 3 and 5) were
determined.

Surprisingly, all these species identified biochemically are of the same genetic species
determined phylogenetically. Nonetheless, only six of the designated morphospecies
(Kurtzmaniella quercitrusa, Hanseniaspora opuntiae, Pichia. kluyveri, Torulaspora delbrueckii,
T. quercuum, and Wickerhamomyces anomalus) corresponded to the genetic species. This is
an indication that morphological characters are not entirely conclusive for defining yeast
species [48] or other fungal species [24]. This is due to the variability that microorganisms
can generate depending on the environment in which they develop [50]. In this regard,
rapid and accurate identification of yeasts can be more effective using molecular tools [11],
such as metagenomics [10].

On the other hand, it is well known that biochemical tests are an essential tool for the
description of microorganisms [51] and are widely used in the description of yeast species
such as within the genus Candida [52]. Likewise, De Melo Pereira et al. [53] indicate that
fermentative capacity are unique characteristics to define species within different genera
like Saccharomyces into Saccharomycotina. Biochemically and morphologically, the MT2 was
determined as the species Candida quercitrusa, actually synonymized with Krutzmaniella
quercitrusa [34]. The genetic species determined as Pichia membranifaciens (98% Bootstrap)
contains several sequences from strains M2L7, MF4L8, BMF1L6, AC1L5, BMF1L2, BMF1L5,
BMF4L9, AC3L3, MF1L3, MF1L7, AC2L2, AF2L6, MC1L9, BMF1L9 and MF4L5, which
were preliminarily classified into two morphotypes, MT7 and MT12, respectively (Figure 2).
It is likely that the morphological variation corresponds to an adaptation of each strain to
the culture medium, as suggested for other yeasts [54].

Of the species isolated in this study, the species Torulaspora delbruekii and T. quercuum
have been previously reported in studies of fungal diversity associated with coffee in
the species Coffea arabica L. in different locations of the planet such as USA, Europe and
Asia, but no records of these species were found in Ecuador [54,55]. These species are
considered to be sisters, as they are grouped within the same phylogenetic clade [15], ac-
companied by morphological similarity as indicated in this study (Figure 2 (MT1 and MT5)).
Additionally, similar results in NaCl, ethanol resistance, malt and lactose fermentation
were found for Torulaspora delbruekii and T. quercuum, contributing to the evidence of their
taxonomic closeness.

Similarly, the species Krutzmaniella quercitrusa, Hanseniaspora opuntiae, Pichia kluyveri,
and Torulaspora delbrueckii [56,57] have been reported from coffee fruits in nearby countries
such as Brazil, Colombia and Chile. In addition, isolation of yeasts from coffee (Coffea ara-
bica) belonging to the genera Pichia, Candida and Saccharomycopsis has been reported [58,59].
For the southern region of Ecuador, the nine genetic species described in this study and
species such as Candida albicans and Saccharomyces cerevisiae have been reported in a study
on the microbiome in the beverage called colada morada [60]. It is known that the diversity
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of microorganisms can vary due to environmental factors [55] such as fermentation process
in closed tanks with airlocks used by the farmers to generate new sensory profiles.

Local farmers apply similar fermentation processes as evaluated here: natural fer-
mentation or controlled atmosphere with a CO2-rich environment at room temperature
and refrigeration to improve sensory profiles mainly conducted by development of dif-
ferent microorganisms like yeasts [56,57]. Biotechnologically, yeasts such as those de-
termined in this study, for example, Pichia membranifaciens, are applicable in fermenta-
tion processes of fruits such as coffee [58,59,61], or as biocontrollers of fungal pathogens
(e.g., Botrytis cinerea) [62]. Likewise, species such as Pichia fermentans and P. Kluyveri have
been used in the wine and brewing industry including various fruits such as coffee [61];
likewise, Hanseniaspora uvarum and Wickerhamomyces anomalus have been used to date in
the wine industry, increasing their organoleptic properties such as aroma and flavors [60].

On the other hand, the species Torulaspora delbrueckii, a yeast with remarkable resis-
tance to osmotic and freezing stress [53], possesses flavor- and aroma-enhancing properties
in wine, beer, or bread dough fermentation processes [58]. This yeast is considered a
biotechnological model that can be used in food industries [53]. Kurtzmaniella quercitrusa
and Hanseniaspora opuntiae species have been used and reported in the fermentation of
cocoa beans in Malaysia [14]. In the case of Torulaspora quercuum, it has been reported
in cider fermentation in association with other yeasts described in this study [15]. How-
ever, its metabolic potential is currently being studied, and it is defined as a potential
biotechnological model in the production of ethanol associated with microalgae [63].

Future studies are required to determine the capabilities and behavior of these yeasts
in coffee fermentation processes and the effect on the chemical and sensory properties of
the final beverage.

5. Conclusions

The diversity of yeast can vary due to environmental factors such as fermentation
process, as is evaluated here (i.e., Natural aerobic at room temperature; Carbonic maceration
with CO2 atmosphere at room temperature; and Carbonic refrigerated maceration with
CO2 atmosphere to 10 ◦C), allowing the obtention of culturable yeast. This diversity after
biochemical and molecular test is represented by nine species, Hanseniaspora opuntiae, H.
uvarum, Kurtzmaniella quercitrusa, Pichia fermentans, P. kluyveri, P. membranifaciens, Torulaspora
delbrueckii, T. quercuum, and Wickerhamomyces anomalus. These nine species determined
biochemically and molecularly have congruent correspondence, contrary to morphological
characters that can be ambiguous due to overlapping between species as, for example,
within the genus Pichia.

The nine species determined here are considered new Saccharomycotina records for
southern Ecuador according to the revised literature.
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39. Zabukovec, P.; Čadež, N.; Čuš, F. Isolation and Identification of Indigenous Wine Yeasts and Their Use in Alcoholic Fermentation.

Food Technol. Biotechnol. 2020, 58, 337–347. [CrossRef]
40. Stavrou, A.A.; Lackner, M.; Lass-Flörl, C.; Boekhout, T. The changing spectrum of saccharomycotina yeasts causing candidemia:

Phylogeny mirrors antifungal susceptibility patterns for azole drugs and amphothericin B. FEMS Yeast Res. 2019, 19, foz037.
[CrossRef]

41. Li, D.; Han, T.; Liao, J.; Hu, X.; Xu, S.; Tian, K.; Gu, X.; Cheng, K.; Li, Z.; Hua, H.; et al. Oridonin, a promising ent-kaurane
diterpenoid lead compound. Int. J. Mol. Sci. 2016, 17, 1395. [CrossRef] [PubMed]

42. Arteau, M.; Labrie, S.; Roy, D. Terminal-restriction fragment length polymorphism and automated ribosomal intergenic spacer
analysis profiling of fungal communities in Camembert cheese. Int. Dairy J. 2010, 20, 545–554. [CrossRef]

43. Vasques, D.T.; Ebihara, A.; Hirai, R.Y.; Prado, J.; Motomi, I. Phylogeny of Hymenophyllum subg. Mecodium (Hymenophyllaceae),
with special focus on the diversity of the Hymenophyllum polyanthos species complex. Plant Syst. Evol. 2019, 305, 811–825.
[CrossRef]

44. Irinyi, L.; Serena, C.; Garcia-Hermoso, D.; Arabatzis, M.; Desnos-Ollivier, M.; Vu, D.; Meyer, W. International Society of Human
and Animal Mycology (ISHAM)-ITS reference DNA barcoding database—The quality controlled standard tool for routine
identification of human and animal pathogenic fungi. Med. Mycol. 2015, 53, 313–337. [CrossRef]

45. Wu, Z.W.; Robert, V.; Bai, F.Y. Genetic diversity of the Pichia membranifaciens strains revealed from rRNA gene sequencing and
electrophoretic karyotyping, and the proposal of Candida californica comb. nov. FEMS Yeast Res. 2006, 6, 305–311. [CrossRef]
[PubMed]

46. Golić, N.; Čadež, N.; Terzić-Vidojević, A.; Šuranská, H.; Beganović, J.; Lozo, J.; Topisirović, L. Evaluation of lactic acid bacteria
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