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Abstract: Transcription factors SQUAMOSA Promoter-binding Protein-like (SPL) play a crucial role
in regulating plant response to stress, root development, and flower production. However, analysis
of SPL gene families in the three rubber-producing plants Taraxacum kok-saghyz, Hevea brasiliensis, and
Eucommia ulmoides, renowned for their natural rubber production, has not yet been conducted. In this
study, we utilized reference genomes to perform genome-wide analysis, and obtained new insights
on the evolution of SPL gene families in these three rubber-producing plants. Our results revealed
the following: (1) T. kok-saghyz, H. brasiliensis, and E. ulmoides harbored 25, 16, and 13 SPL genes,
respectively, containing conserved structural domains of SBP. (2) A phylogenetic analysis categorized
90 SPL proteins from 25 TkSPLs, 16 HbSPLs, 13 EuSPLs, 17 AtSPLs, and 19 OsSPLs into eight groups.
(3) Analysis of cis-acting elements demonstrated that the promoters of EuSPLs contained a significant
number of light response elements, hormone regulatory elements, and stress response elements.
(4) Transcriptome data analysis revealed that the EuSPL8 gene had strong expression in bark, as
well as TkSPL4 and TkSPL8 exhibit high expression levels specifically in roots and latex. This study
provides valuable insights into the biological functions of the SPL gene family in the three rubber
plants and might serve as a reference for identifying efficient genes.

Keywords: Taraxacum kok-saghyz; Hevea brasiliensis; Eucommia ulmoides; genome-wide; SPLs;
expression pattern

1. Introduction

Transcription factors (TFs), a crucial subclass of regulatory proteins that control gene
expression, are vital for plant growth and development because they bind to cis-acting
areas to either activate or inhibit the production of downstream genes. SQUAMOSA
Promoter-binding Protein-like (SPL) proteins are a family of plant-specific TFs with a highly
conserved DNA-binding SBP domain made up of two distinct zinc finger architectures, Zn-
1 (Cys3Hes or Cys4) and Zn-2 (Cys2HisCys) [1] Since the SBP genes AmSBP1 and AmSBP2
were discovered for the first time in Antirrhinum majus [2], the genome-wide analysis of
the SPL gene family has now been performed for numerous species, including 12 SPLs
in sweet cherry (Prunus avium L.) [3], 23 SPLs in quinoa (Chenopodium quinoa Willd.) [4],
and 18 SPLs in foxtail millet (Setaria italica) [5]. As more plant genomic resources become
available, more SPL genes will probably be found.

SPL transcription factors are crucial regulators of plant growth, development, and
stress response. The microRNA-targeted transcription factor SPL3, which initiates and
subsequently activates the transcription factors LEAFY, FRUITFULL, and APETALA1,
controls the time of flower development in Arabidopsis [6]. Early blooming in Arabidopsis was
reportedly stopped by AtSPL3 [7]. AtSPL8 appears to be implicated in gibberellin signaling,
according to an overexpression study [8]. SPL genes control the homeostasis of copper (Cu)
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and the response to Cu deficiency [9,10], and cadmium (Cd) tolerance [11,12]; they take part
in hormone signaling as well as reactions to a variety of biotic and abiotic stimuli, including
as heat, cold, salt, thirst, and injury [13–16]. AtSPL9 and AtSPL15 play complementary roles
in controlling plastochron length and shoot maturation [17,18], and AtSPL9-controlled cell
elongation and the transition from the vegetative phase through the BR (brassinosteroid)
signaling pathway [19]. SPL genes are essential for phase transitions in addition to the
roles they perform in the aforementioned processes [20,21], latitudinal root growth [22],
trichome development [23–25], embryogenesis [26], and seedling growth [27]. SPL genes
control rice grain shape, size, quality, and yield in addition to plant architecture [28–31].

Natural rubber, with distinct physical characteristics [32,33], is a valuable industrial
raw material used extensively in the transportation, medicinal, and defense sectors. Cur-
rently, the prevalent plants that produce rubber are Hevea brasiliensis, Taraxacum kok-saghyz,
and Eucommia ulmoides [33,34]. Several TFs participate in the control of the expression of the
genes involved in rubber biosynthesis in H. brasiliensis. As an example, the expression of
HbSRPP was decreased by the three genes HbWRKY14, HbWRKY1, and HbMADS4 [35,36].
HbFPS1 expression was increased by HblMYB19, HblMYB44, and HbWRKY27 [37,38].
HbRZFP1 decreased the expression of HRT2 [39]. HbMYC2b controls the expression of Hb-
SRPP [40]. While TkWRKY21 was up-regulated under heat stress, TkWRKY18, TkWRKY23,
and TkWRKY38 were all considerably up-regulated during cold stress [41]. The majority of
CBF genes in TKS seedlings that had undergone cold acclimation took longer to react to the
cold signal than those that had not [42]. Most of the EuWRKYs genes were highly expressed
in leaf buds and involved in leaf development [43]. The genes EuMADS39 and EuMADS65
were highly expressed in male individuals, whether in flower or leaf tissues [44]. These
findings demonstrated that TFs are essential for rubber biosynthesis.

However, the precise role of SPL genes in rubber biosynthesis remains incompletely
understood in these three rubber-producing plants. Despite that, it is believed that they may
regulate the expression of genes involved in either the mevalonate (MVA) pathway or the
methylerythritol phosphate (MEP) pathway, both of which contribute to the synthesis of the
isoprenoid precursor for rubber molecules. Therefore, we selected three significant natural
rubber producers, H. brasiliensis, T. kok-saghyz, and E. ulmoides. In this study, a thorough
analysis of the gene structure, conserved domain, chromosome location, cis-acting element,
and expression pattern of the SPL genes in three rubber-producing plants was conducted in
this study. Through analyzing the SPL gene family in these plants, our objective was to gain
potential insights into the involvement of SPL genes in the biosynthesis of natural rubber.

2. Materials and Methods
2.1. SPL Identification across the Genome and Phylogenetic Analysis

The genomic sequences of T. kok-saghyz, H. brasiliensis, and E. ulmoides were retrieved
from the NCBI and Genomic Warehouse databases (https://ngdc.cncb.ac.cn, accessed
on 23 April 2023). This study used the Phytozome (https://phytozome-next.jgi.doe.gov,
accessed on 23 April 2023) database to download the AtSPLs and OsSPLs protein sequences
that are used to retrieve the protein sequences of T. kok-saghyz, H. brasiliensis, and E. ulmoides.
The SBP domain sequences (ID: PF03110) from the Pfam database were used to scan the
three genome sequences of rubber-producing plants for putative SPL genes using HMMER
(http://hmmer.org, accessed on 23 April 2023). The local BLAST and hidden Markov
models were utilized for comparison in order to locate the SPL family members in all
three species, and the findings were combined. Delete domain-less or domain-incomplete
sequences manually to guarantee the accuracy of the results. The first transcript is chosen
as the typical sequence in situations when there are numerous transcripts of the same
gene. The protein domain was analyzed by NCBI Batch CD-search and plotted by Chiplot’s
website (https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi and https://www.
chiplot.online/, accessed on 23 April 2023). Gene mapping was performed using TBtools
software (https://github.com/CJ-Chen/TBtools/releases, accessed on 23 April 2023).

https://ngdc.cncb.ac.cn
https://phytozome-next.jgi.doe.gov
http://hmmer.org
https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi
https://www.chiplot.online/
https://www.chiplot.online/
https://github.com/CJ-Chen/TBtools/releases
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The amino acid sequences of T. kok-saghyz, H. brasiliensis, E. ulmoides, Oryza sativa
and Arabidopsis thaliana SPLs were compared in multiple sequences using ClustalW 2.0
software, while the phylogenetic tree was built using the neighbor-joining method with
MEGA 11.0 software, with the number of replications set at 1000 and all parameters left
at their default settings, and figures with confidence levels below 60 were selected to be
hidden in Figure 1 and, finally, touched up in the iTQL website (https://itol.embl.de,
accessed on 23 April 2023).

Figure 1. Phylogenetic tree includes 90 SPLs from 5 different plants. Using MEGA 11.0 and the
neighbor-joining (NJ) method, a phylogenetic tree based on the SBP domain was created. The
bootstrap value is represented by the number of branches.

2.2. Physicochemical Characterization and Structural Analysis of the Protein

The amino acid count, relative molecular weight, theoretical isoelectric point, and
instability index of TkSPLs, HbSPLs, and EuSPLs were examined using the ExPASy Prot
Param program (https://web.expasy.org/protparam/, accessed on 23 April 2023). By
comparing SPL gene sequences to the matching genomic DNA sequences, the exons, introns,
CDS, and UTRs of the genes were identified. WoLF PSORT (https://wolfpsort.hgc.jp,
accessed on 23 April 2023) is used to predict protein subcellular localization. Expasy and
TMHMM-2.0 were used to assess the hydrophobicity and transmembrane characteristics
of proteins (https://web.expasy.org/protscale/ and https://ser-vices.healthtech.dtu.dk/
Services/TMHMM-2.0/, accessed on 23 April 2023). The secondary and tertiary structures
of proteins can be predicted using the SOPMA and Phyre2 programs (https://npsa-prabi.

https://itol.embl.de
https://web.expasy.org/protparam/
https://wolfpsort.hgc.jp
https://web.expasy.org/protscale/
https://ser-vices.healthtech.dtu.dk/Services/TMHMM-2.0
https://ser-vices.healthtech.dtu.dk/Services/TMHMM-2.0
https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html
https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html
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ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html and http://www.sbg.bio.ic.ac.
uk/phyre2/html/page.cgi?id=index, accessed on 23 April 2023).

2.3. Analysis of Protein Domains and Conserved Motifs

Using ClustalW 2.0, the protein sequences of AtSPL, OsSPL, and the 54 SPL sequences
discovered in this investigation were aligned to identify the SBP domain [45]. TBtools was
used to examine the exon–intron structure [46], using the genome and cDNA sequences
of the SPL gene retrieved from the genomes of four rubber-producing plants. Three
rubber-producing plant gene family members were subjected to protein motif analysis
using the web program MEME (https://meme-suite.org/meme/tools/meme, accessed
on 25 April 2023) [47]. This analysis used up to 10 motlets and other default parameters.
Using GFF files of three rubber-producing plants and two model plants, as well as the
files of the previous construction of the evolutionary tree, the gene structure and motif
combination map were drawn on the TBtools software. The PlantCare website (http:
//bioinformatics.psb.ugent.be/webtools/plantcare/html/, accessed on 25 April 2023) was
used to predict the cis-acting elements in the promoter region of the three rubber-producing
plant SPLs using the 2000 bp sequence upstream of the translation start codon (ATG), and
the TBtools software was then used for visual analysis.

2.4. Collinearity Analysis

The genome sequences of Oryza sativa and Arabidopsis thaliana were downloaded
from Phytozome (https://phytozome-next.jgi.doe.gov, accessed on 23 April 2023) to create
a chromosome location and collinearity plot in order to analyze the replication patterns
and evolutionary mechanisms of SPL genes.

2.5. Analysis of Expression Patterns across Several Developmental Stages and Tissue Types

The NCBI database was used to download the transcriptome information for various
tissues and time periods in E. ulmoides, the relative expression abundance of SPLs of the
three rubber-producing plants was expressed by FPKM value, the logarithm of the value
was statistically analyzed, and the TBtools software generated a heat map of gene expres-
sion, where the highest expression was denoted by a red box and the lowest expression by
a blue box.

3. Results
3.1. SPL Identification across the Genome and Phylogenetic Analysis

Local BLAST and the hidden Markov model were utilized for screening purposes,
resulting in the identification of 25 TkSPLs, 16 HbSPLs, and 13 EuSPLs (Table 1). The
Supplementary Materials provide information on the SBP domain and gene localization of
these three species following the identification and screening process (Figures S1 and S2).

To enhance our understanding of the evolutionary trajectory of the SPL gene across
various species, a phylogenetic analysis was conducted on a set of 90 SPL proteins, including
those from T. kok-saghyz (25), H. brasiliensis (16), E. ulmoides (13), Arabidopsis thaliana (17)
and Oryza sativa (19). The analysis categorized these proteins into eight distinct groups, as
shown in Figure 1.

The results showed that in the phylogenetic tree (I–VIII), 90 SPL genes were divided
into 8 subfamilies. Their agreement with the AtSPL and OsSPL protein classification groups
implies that SPL genes have been highly conserved throughout molecular evolution. SPL
genes of T. kok-saghyz and Arabidopsis thaliana are distributed in all eight subfamilies, while
SPL genes of E. ulmoides and H. brasiliensis are lacking in subfamily II and SPL genes of
Oryza sativa are lacking in subfamily VIII. Subfamily VII had the most individuals (17 SPLs)
out of the eight subfamilies, while subfamily II only had seven SPLs. The phylogenetic tree
also revealed that a number of SPL genes from the five species clustered together, with a
support rating of ≥70.

https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html
https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html
http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index
http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index
https://meme-suite.org/meme/tools/meme
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
https://phytozome-next.jgi.doe.gov
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Table 1. Analysis of basic physical and chemical properties of 54 SPLs.

Gene Gene ID Chr ID Gene Range Exon Intron CDS UTR Size/aa MW/kD PI Instability
Index

TkSPL1 GWHPBCHF001261 GWHBCHF00000001 14822969:14828316 12 11 11 3 927 103,394.48 6.2 53.89
TkSPL2 GWHPBCHF002675 GWHBCHF00000002 2073280:2078116 11 10 10 3 748 83,959.66 5.95 58.08
TkSPL3 GWHPBCHF006473 GWHBCHF00000002 100814431:100818025 4 3 4 0 261 29,108.21 7.73 74.85
TkSPL4 GWHPBCHF019170 GWHBCHF00000004 830539:832919 3 2 2 3 302 34,271.32 9.08 68.14
TkSPL5 GWHPBCHF020579 GWHBCHF00000004 30786520:30796342 5 4 5 2 357 39,818.25 9 51.09
TkSPL6 GWHPBCHF020580 GWHBCHF00000004 30786520:30796342 5 4 4 3 349 38,902.15 9.1 51.1
TkSPL7 GWHPBCHF022201 GWHBCHF00000004 84269226:84270914 4 3 4 2 298 33,372.53 8.41 56.09
TkSPL8 GWHPBCHF023484 GWHBCHF00000004 107063807:107065169 2 1 2 2 198 22,079.54 9.24 65.76
TkSPL9 GWHPBCHF024887 GWHBCHF00000004 129182786:129185573 2 1 2 2 192 22,005.9 8.36 70.5

TkSPL10 GWHPBCHF025127 GWHBCHF00000004 132569671:132571972 3 2 3 2 298 33,497.02 8.76 53.76
TkSPL11 GWHPBCHF026791 GWHBCHF00000004 155862873:155865148 4 3 3 3 279 30,897.47 9.74 67.09
TkSPL12 GWHPBCHF028134 GWHBCHF00000005 14701253:14704746 4 3 3 3 351 37,175.07 7.61 52.58
TkSPL13 GWHPBCHF029402 GWHBCHF00000005 33473738:33478697 11 10 10 3 1042 115,521.09 8.36 56.28
TkSPL14 GWHPBCHF029413 GWHBCHF00000005 33656280:33661229 11 10 10 3 1039 115,165.69 8.36 57.09
TkSPL15 GWHPBCHF035319 GWHBCHF00000006 28696570:28698241 2 1 2 2 183 20,547.1 9.49 44.27
TkSPL16 GWHPBCHF039801 GWHBCHF00000007 11469584:11479658 5 4 5 2 357 39,883.37 9.1 53.96
TkSPL17 GWHPBCHF039802 GWHBCHF00000007 11469584:11479658 5 4 4 3 349 38,967.27 9.19 54.04
TkSPL18 GWHPBCHF040059 GWHBCHF00000007 13895402:13897881 3 2 2 3 171 19,026.37 8.94 60.4
TkSPL19 GWHPBCHF044300 GWHBCHF00000008 4487440:4488774 2 1 2 2 296 32,163.23 9.48 57.94
TkSPL20 GWHPBCHF044302 GWHBCHF00000008 4501786:4503817 3 2 2 3 261 29,845.17 7.03 73.8
TkSPL21 GWHPBCHF050461 GWHBCHF00000009 9840573:9843749 5 4 4 2 275 30,724.02 9.55 73.95
TkSPL22 GWHPBCHF052188 GWHBCHF00000009 28195236:28196956 3 2 3 2 316 35,456.72 9.36 68.57
TkSPL23 GWHPBCHF053518 GWHBCHF00000009 42852554:42856744 10 9 9 3 928 104,212.96 6.82 46.08
TkSPL24 GWHPBCHF053519 GWHBCHF00000009 42852554:42856744 9 8 9 2 924 103,871.69 6.95 45.77
TkSPL25 GWHPBCHF056162 GWHBCHF00000009 103280194:103281999 2 1 2 2 137 15,812.68 8.56 63.94
EuSPL1 GWHPAAAL001077 GWHAAAL00000030 988480:992976 11 10 11 0 178 20,179.44 9.03 55.87
EuSPL2 GWHPAAAL003913 GWHAAAL00000058 2037987:2040046 3 2 3 0 547 60,636.72 6.91 54.8
EuSPL3 GWHPAAAL004171 GWHAAAL00000080 203789:215644 2 1 2 0 369 41,404.83 8.07 72.6
EuSPL4 GWHPAAAL007895 GWHAAAL00000112 735958:741319 5 4 5 0 133 15,322.89 7.69 84.16
EuSPL5 GWHPAAAL008461 GWHAAAL00000115 1029716:1033122 5 4 5 0 968 107,979.44 7.33 57.38
EuSPL6 GWHPAAAL008647 GWHAAAL00000172 475295:476266 2 1 2 0 978 109,120.78 8.36 51.07
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Table 1. Cont.

Gene Gene ID Chr ID Gene Range Exon Intron CDS UTR Size/aa MW/kD PI Instability
Index

EuSPL7 GWHPAAAL012748 GWHAAAL00000184 1290342:1300388 11 10 11 0 347 37,321.69 8.1 64.57
EuSPL8 GWHPAAAL012866 GWHAAAL00000249 1634971:1649669 12 11 12 0 875 98,038.82 6.26 58.57
EuSPL9 GWHPAAAL016673 GWHAAAL00006095 779825:852698 9 8 9 0 259 28,558.46 8.79 61.98

EuSPL10 GWHPAAAL020125 GWHAAAL00014124 1676:4668 3 2 3 0 363 38,927.58 9.01 64.09
EuSPL11 GWHPAAAL025240 GWHAAAL00017881 529023:533014 3 2 3 0 354 40,444.43 8.94 48.71
EuSPL12 GWHPAAAL026381 GWHAAAL00020293 536331:540436 3 2 3 0 696 77,869.21 8.88 53.91
EuSPL13 GWHPAAAL026606 GWHAAAL00026424 227394:229146 3 2 3 0 131 15,166.23 10.47 72.74
HbSPL1 GT021460.t1 CM021228.1 13875757:13877545 2 1 2 0 531 57,107.57 7.27 46.45
HbSPL2 GT021495.t1 CM021228.1 13970213:13972002 2 1 2 0 442 48,140.64 8.2 48.31
HbSPL3 GT010583.t1 CM021228.1 86118185:86120916 4 3 4 0 194 21,651.15 9.06 64.25
HbSPL4 GT010615.t1 CM021233.1 98164232:98172531 10 9 10 0 194 21,651.15 9.06 64.25
HbSPL5 GT017984.t1 CM021234.1 94639220:94645994 4 3 4 0 458 49,852.23 8.87 56.52
HbSPL6 GT003116.t1 CM021238.1 65041899:65062959 24 23 24 0 707 79,038.55 7.23 55.88
HbSPL7 GT030712.t1 CM021238.1 65225362:65248838 24 23 24 0 1065 117,893.71 8.75 46.86
HbSPL8 GT030809.t1 CM021239.1 12363240:12365845 3 2 3 0 1005 110,811.41 8.33 48.37
HbSPL9 GT019690.t1 CM021239.1 23400072:23405078 10 9 10 0 293 32,788.22 9.21 64.77
HbSPL10 GT039310.t1 CM021239.1 26622170:26632180 12 11 12 0 995 110,256.79 6.4 43.85
HbSPL11 GT033052.t1 CM021239.1 39504948:39506565 3 2 3 0 339 37001.37 9.5 59.73
HbSPL12 GT019861.t1 CM021240.1 72675955:72677659 3 2 3 0 686 77,405.9 5.86 55.24
HbSPL13 GT025439.t1 CM021241.1 2028142:2034204 10 9 10 0 368 41,070.02 9.44 51.55
HbSPL14 GT042310.t1 CM021241.1 27863168:27864903 3 2 3 0 862 97,241.22 6.29 47.94
HbSPL15 GT040479.t1 JAAGAX010000040.1 559530:565521 4 3 4 0 398 44,823.71 8.64 49.13
HbSPL16 GT028737.t1 JAAGAX010000040.1 620658:626675 4 3 4 0 404 44,567.07 8.41 55.27
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3.2. Physicochemical Properties and Secondary and Three-Dimensional Structural Analysis

In the three rubber-producing plants, 54 SPL genes in all were found. The protein’s
amino acid composition ranged from 131 to 1065, its molecular weight from 15,166.23
to 117,893.71 kD, and its isoelectric point from 5.86 to 10.47 as a basic protein, and the
instability index ranged from 43.85 to 84.16. With only 131 amino acids, EuSPL13 was the
smallest of the 54 SPL proteins. HbSPL7, in contrast, had the most amino acids (1065),
making it the biggest.

The secondary structure analyses predicted that all SPLs of the three species comprised
alpha helices, extended strands, beta turns, and random coils (Table S1). The alpha helices
and the random coils were the main secondary structural elements of SPLs. It was projected
that TkSPL1 would localize to the plasma membrane in T. kok-saghyz, while TkSPL2 would
localize to the cytoplasm, TkSPL9 to the chlo, and TkSPL18 to the cytoplasm. EuSPL8
was predicted to localize to the peroxisome in E. ulmoides. The remaining 49 SPL genes,
excluding the aforementioned 5 SPL genes, are found in the nucleus. The Phyre2 sever
was used to model the three-dimensional structure of the 54SPLs (Figures S9–S11). The
results showed that the SPLs were mainly composed of alpha helices and random coils, and
the structure ratios were consistent with the predicted secondary structures. The tertiary
structures of all three rubber-producing plant SPLs proteins were very similar, and the
results are shown in the accompanying figure, with the largest proportion of irregular curls,
while the different protein spatial structures will determine the differences in function. In
addition, 54 SPL proteins were predicted for hydrophilicity and transmembrane conditions
(Figures S3–S8).

3.3. Analysis of Protein Domains and Conserved Motifs

Exon–intron distribution and conserved motifs were studied in order to further evalu-
ate the structural characteristics of the five species (Figure 2). We selected SPL genes from
two model plants (Arabidopsis thaliana and Oryza sativa) for comparison with SPL genes
from the three rubber-producing plants found in this study. A phylogenetic tree with ten
conserved motifs was built using sequence data from the 54 SPLs and the SPL genes from
the two additional plants using the NJ method; 10 conservative motifs were designated
Motif1–Motif10.

Motifs are shared by genes in the same subfamily, which causes them to group together
and generate an unequal distribution of the TkSPL, HbSPL, and EuSPL genes in the
evolutionary tree. The most varied motifs were found in subfamilies V and VII, while motifs
8 and 10 were frequently seen near the start and conclusion of the patterning, respectively.
Additionally, we discovered that in subfamilies I and II, motif 9 was consistently distributed
towards the start of the pattern, and pattern 7 was consistently distributed at the very end
of patterning.

The protein sequences of AtSPL, OsSPL, and the 54 SPL sequences found during this
work were aligned to determine the SBP domain; 14 conserved amino acids are found in
the basic region, which is made up of 70–80 amino acids. The Zn-fingers (Zn-1 and Zn-2)
are shown in green, while the bidirectional nuclear localization signal (NLS) structures are
highlighted in red (Figure 3).

To define the protein structure, the multiple sequence alignment of full-length proteins
was created using MEGA 11.0 software. The length of the conserved SPL domains has
been aligned many times. With roughly 74 amino acid residues, the SBP domains at the
SCR, RRR, and CQQC sequences were largely preserved. Both the nuclear localization
signal (NLS) and the Zn-1 and Zn-2 zinc finger configurations are retained in these SPL
domains. The amino acid distribution of the structural domains of the SPL genes of the
three rubber-producing plants was very similar to that of Arabidopsis and rice, with the
BASIC region consisting of 19 amino acids, 9 of which were highly conserved, and the HLH
region containing 5 highly conserved amino acids.
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Figure 2. Analyses of protein domains and conserved motifs. (A) Phylogenetic tree. (B) Conserved
motifs. (C) Gene structure.

3.4. Cis-Acting Elements and Collinearity Analysis

To investigate the gene functions and expression regulation patterns of EuSPLs, Plant
CARE online analysis software was used to search for cis-acting elements in the 2000 bp
sequences upstream of the start codon of 13 EuSPL proteins (Figure 4).
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Upstream of the gene coding sequence, the promoter of the gene contains a large
number of cis-acting elements that can control how the gene expresses itself. The SPL
promoter contains not only basic cis-acting elements but also four types of elements:
(1) hormone regulatory elements, such as gibberellin response element ABRE, growth
element AuxRR-core, and salicylic acid response element CGTCA-motif; (2) light response
elements, such as G-Box, G-box, Box 4, GATA-motif, etc.; (3) stress response elements, like
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the MBS drought stress response elements and the low-temperature response elements; and
(4) physiological response elements, such as O2-site, CAT-box, etc. It is speculated that SPL
genes may perform crucial functions in stress response, growth, hormone regulation, and
photoperiodic regulation in E. ulmoides. The promoter region of EuSPLs contains 19 ABRE
elements and 26 ARE elements (Figure 4B), suggesting that EuSPLs may be involved in
ABA regulation and anaerobic regulation.
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To gain deeper insights into the evolutionary relationships, replication patterns, and
evolutionary processes of the SPL genes, we created a chromosome location and collinearity
plot for the 54 SPL genes (Figure 5).
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collinearity among H. brasiliensis, T. kok-saghyz, Oryza sativa and Arabidopsis thaliana.

The tandem relationship between two species, H. brasiliensis and T. kok-saghyz, was
confirmed and five and two pairs were found in their own genomes, respectively. The
number of homologous SPLs of AtSPLs and OsSPLs in HbSPLs was more than that in
TkSPLs. Between AtSPLs and HbSPLs, there were nine lines, but only five lines between
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AtSPLs and TkSPLs. Between OsSPLs and HbSPLs, there are five lines, yet just two lines
separate OsSPLs from TkSPLs. There were the most connections between T. kok-saghyz and
H. brasiliensis (15).

3.5. Analysis of Expression Patterns across Several Developmental Stages and Tissue Types

According to transcriptome data, the expression pattern of the EuSPLs gene was found
in order to examine the role of the SPL gene in various developmental stages and tissues of
E. ulmoides.

Based on transcriptome data, the expression patterns were analyzed in order to analyze
the roles of the EuSPLs and TkSPLs genes throughout various developmental phases and
rubber production, and the gene numbers shown in the figure are consistent with the gene
naming in the article (Figures 6 and 7). Low levels of expression of the majority of the
EuSPLs genes were observed, but two EuSPLs genes (EuSPL5 and EuSPL6) were expressed
in high abundance in all parts of E. ulmoides at all stages of development. Otherwise,
EuSPL3 and EuSPL7 were significantly expressed in fruit, EuSPL4 was highly expressed in
fruit and leaf, and EuSPL8 was highly expressed in bark.
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Figure 7. Patterns of gene expression for TkSPLs in various T. kok-saghyz tissue sections. TKX:
varieties with lower rubber yield; TKR: varieties with intermediate rubber yield; MR: main roots; LR:
lateral roots; ML: mature leaf; LP: leaf petiole; LAT: latex.

In T. kok-saghyz, several genes including TkSPL16, TkSPL2, TkSPL1, TkSPL13, and
TkSPL23 show relatively high expression levels in multiple tissues. TkSPL4 and TkSPL8
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exhibit high expression levels specifically in main roots, lateral roots, and latex. TkSPL25
demonstrates higher expression levels in mature leaves and leaf petioles. Furthermore,
TkSPL12 shows higher expression levels in mature leaves and leaf petioles of TKR.

4. Discussion

This is the first account of a simultaneous investigation of three SPL gene families
from rubber-producing plants at the genome-wide level. These findings advance our
comprehension of the biological role of the SPL gene as well as the underlying molecular
mechanisms.

4.1. SPL Identification across the Genome and Phylogenetic Analysis

Plant-specific TFs called SPL proteins have a structural domain of the SBP that is
highly conserved [48,49], and it plays a critical role in stress response and plant growth and
development [7,50,51]. Natural rubber has important economic and strategic values, and
the in-depth study of rubber-producing plants is of great significance. The identification and
characterization of SPL genes in numerous plants, including Arabidopsis thaliana [49], Oryza
sativa [52], and Camellia sinensis [53], has been made possible by the quick advancement
of genome sequencing technologies. However, the association of the SPL gene family in
these three rubber-producing plants is not so clear that the related research is necessary
and urgent.

The number of SPL members is unaffected by the size of the genome [54]. In the
study, 54 SPL sequences, including 25 TkSPLs, 16 HbSPLs, and 13 EuSPLs were identi-
fied. The prediction of the physicochemical properties of SPLs showed that most of the
members were basic hydrophobic proteins. The majority of the SPL proteins from the three
rubber-producing plants are high in basic amino acids, which may be important in acidic
subcellular settings. By bioinformatic analysis of SPL genes from three rubber-producing
plants, we found that the number of SPL members in T. kok-saghyz was higher than that in
H. brasiliensis and E. ulmoides. However, the species T. kok-saghyz and E. ulmoides shared
greater similarities in terms of the number of exons, introns, and CDS as well as the number
of amino acids and molecular weight.

4.2. Analysis of Protein Domains and Conserved Motifs

The predicted motifs, conserved domains, and tertiary structures show that all mem-
bers have typical SBP domains and that the tertiary structures are similar. Eight groups
were formed from the evolutionary examination of three rubber-producing plants, and each
group had at least one gene from each of the other two plant species (Arabidopsis thaliana
and Oryza sativa). It suggests that the AtSPLs and OsSPLs shared a high homology of
similarity with the SPLs of three rubber-producing plants. In addition, the phylogenetic tree
revealed that several SPL genes from the five species clustered together tightly (bootstrap
support 70) (Figure 1). This suggests that SPL genes are functionally conserved across
multiple plant species and these proteins may be orthologous [49,55], and as a result, may
share similar biological roles. Sequence alignment showed that the 54 SPL genes of the
three rubber-producing plants had high similarity to the structural domains of Arabidopsis
and rice SPL proteins. According to Motif analysis, it was found that the Motif 1 motif
was found to be present in all SPL transcription factors, indicating that they all belong to
the SPL transcription factor family and are relatively conserved during gene evolution.
Analysis of cis-acting elements revealed that EuSPL contains a large number of response
elements related to hormone, light response, stress and physiology; therefore, SPL genes
may play important roles in growth and development, stress response, hormone regulation
and photoperiodic regulation in E. ulmoides.

4.3. Analysis of Responses and Expression Patterns

Plant growth and development depend heavily on hormonal cues and environmental
changes [56–58]. SPL genes may play a substantial role in the control of photoperiodic,
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hormone, growth, and responses to stress in three rubber-producing plants. The majority
of the members of this family respond to a range of hormones and stresses, which in
our study’s investigation of cis-acting regions upstream of the EuSPLs promoter revealed
(Figure 6) that PavSPLs may be regulated by light, stresses, and phytohormones. As with
studies in other species, there have been cases that have not yet been assembled at the
chromosomal level (Figure 5A) [59]. Previous studies have shown that transcriptional-level
analysis can identify genes involved in plant regulation [60]. Therefore, this study aims
to obtain key SPL genes involved in the growth regulation of rubber-producing plants
through transcriptome analysis. Based on transcriptome data, low levels of expression
of the majority of the EuSPLs genes were observed, but two EuSPLs genes (EuSPL5 and
EuSPL6) were expressed in high abundance in all parts of E. ulmoides at all stages of
development. Due to the latex production primarily occurring in the roots of T. kok-saghyz,
it is observed that TkSPL4 and TkSPL8 show higher expression levels in the main roots,
lateral roots, and latex. Therefore, it is speculated that these two genes, TkSPL4 and TkSPL8,
may have a strong correlation with the latex production process in T. kok-saghyz. To better
understand how these EuSPL and TkSPL genes regulate the response, the analyses and
research of other taxa will provide tests of our perspective that are essential to the molecular
mechanism of the related gene families in rubber-producing plants.

5. Conclusions

This work combines genome-wide data from three rubber-producing plants to conduct
a comprehensive bioinformatics investigation of the SPL transcription factor family. A
total of 54 SPL transcription factor family genes were identified and classified into eight
groups based on evolutionary tree analysis. The members of the SPL family exhibit the
typical SBP structural domains. Furthermore, a thorough analysis of the gene structure,
conserved domain, chromosome location, cis-acting element, and expression pattern of
the SPL genes in the three rubber-producing plants was conducted. Additionally, the
expression patterns of the EuSPLs gene family were analyzed, revealing that the EuSPL8
gene was highly expressed in bark, EuSPL3 and EuSPL7 were highly expressed in fruit,
and EuSPL4 was highly expressed in both fruit and leaf. This article focuses on the genome-
wide investigation of SPL gene families in rubber-producing plants. These findings will
facilitate a better understanding of the biological function and molecular mechanisms of
SPL genes in rubber-producing plants.
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