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Abstract: This study examines the gut bacterial communities of four necrophagous fly species: Lucilia
illustris, L. caesar, Chrysomya megacephala, and C. pinguis. The gut bacterial communities exhibited
significant variation across species, showcasing a diverse range of bacterial phyla, classes, and genera.
Each species harbored a unique set of bacteria, yet there was considerable overlap in taxa among
species. Species richness was comparable across all species. However, measures that account for both
richness and evenness, such as the Shannon diversity index and the inverse Simpson’s diversity index,
indicated significant differences between species, especially between L. illustris and C. pinguis. The
functional profiles of the gut bacterial communities mainly centered on metabolic and environmental
information processing functions, with no marked differences between species. While this study
had limitations in data collection, it still revealed a significant correlation between the phylogenetic
distances of some fly species and the distances of their gut bacterial communities. This supports the
hypothesis that the gut microbiota is not random but is influenced by the host’s evolutionary history
or seasons. We confirmed that an association between phylogeny and gut bacterial community
structure, as determined through entanglement analysis, exists. The study focused on only five
individuals from the four fly species sampled during spring and summer, which might affect the
generalizability of the results. Future research would benefit from replicating this study with a larger
sample size across various seasons to ensure the more widespread applicability of the findings.

Keywords: gut microbiota; host–microbiota interactions; insect–microbe symbiosis; necrophagous
flies; phylogenetic relationships

1. Introduction

The subject of focus in the present study is insect biodiversity, a complex web of
biological and ecological relationships where each species plays a unique role in ecosystem
function [1,2]. Of particular interest in this context are necrophagous insects, specifically
dipteran species, which, by virtue of their scavenging behavior, accelerate decomposition
processes, facilitate nutrient recycling within trophic networks, and play a significant part
in the planet’s biogeochemical cycles. Therefore, the exploration of necrophagous dipteran
species becomes pertinent to ecological comprehension and larger ecosystem dynamism.

At the heart of our investigation are four dipteran species exhibiting necrophagous
behavior: Lucilia illustris (Meigen, 1826), Lucilia Caesar (Linnaeus, 1758), Chrysomya mega-
cephala (Fabricius, 1794), and Chrysomya pinguis (Walker, 1858). While these species share
necrophagous habits, each is a distinct biological entity with its own specific traits and
preferences for particular environmental conditions.

L. illustris and L. caesar, members of the Calliphoridae family, demonstrate an affinity
for cooler climatic conditions, primarily emerging in the spring season. Their activity is
temporally aligned with the availability of carrion—a primary dietary component that is a
result of the natural life–death cycles inherent to their habitats. In opposition, C. megacephala
and C. pinguis, also Calliphoridae members, exhibit a propensity for warmer conditions,
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marked by an enhanced presence during summer months. The differential climatic prefer-
ences of these species may point towards the existence of adaptive mechanisms facilitating
the utilization of diverse niches, thus averting direct interspecies competition [3,4].

Despite the observed variations in temporal and climatic preferences, all four species
converge on the choice of a single dietary source: carrion [5,6]. This common resource
utilization, classifying the species as necrophagous, provides an intriguing platform from
which to study survival mechanisms. An investigation into their respective ecological strate-
gies and associated gut microbiota aims to elucidate the role of intestinal microbiota in niche
differentiation among closely related species, and the wider ecosystem implications [7].

The investigation into the gut microbiota of insects in question is necessitated by
its influence over various host–insect biological facets such as nutrition, development,
immunity, behavior, and overall fitness [8]. Furthermore, its correlation with the host’s
environmental adaptation capabilities, driven largely by seasonal dietary and temperature
fluctuations, cannot be understated [9,10]. Therefore, a meticulous exploration of these
microbial populations may contribute substantially to the understanding of host organism
biology and ecological interactions [11–13]. This investigation primarily seeks to unravel
the interactions between the insects under study and their gut microbiota. Our initial
endeavors focus on accurately characterizing the gut microorganisms intrinsic to these
necrophagous flies. Such an understanding aims to shed light on the symbiotic relationships
between the host insects and their gut microbiota, highlighting implications for survival,
reproduction, ecological function, and organic matter decomposition processes [14–16].

Our secondary objective assesses whether the gut bacterial communities of these flies
correlate with their phylogenetic relationships. The working hypothesis suggests that these
factors wield considerable influence over the gut bacterial community compositions of
L. illustris, L. caesar, C. megacephala, and C. pinguis, thus unveiling an, up to the present time,
unexplored aspect of insect–microbe symbioses.

The study hypothesizes that the formation of gut bacterial communities in these
insects is not random but is influenced by their evolutionary lineage. We speculate that
phylogenetically close insects will possess more similar gut microbiota. This is based on the
notion that closely related species often exhibit comparable physiological and ecological
traits, which might extend to their associated microbiota.

2. Materials and Methods
2.1. Sample Collection and Preparation

Sampling for this study took place from March to September 2022 in Gongju City,
Chungnam, South Korea (36◦28′16′′ N, 127◦08′24′′ E). Lucilia species were collected from
March to June during the spring, while Chrysomya species were collected from July to
September in the summer. To ensure a comprehensive representation of each necrophagous
fly species, we used a trapping method with fresh pig liver as bait. Each sample consisted
of five individuals from each species. To reduce variability due to sexual dimorphism, only
male specimens were used for subsequent examinations.

2.2. DNA Extraction

The gut was extracted from five samples of each of the four fly species under sterile
conditions. Following this, genomic DNA was isolated using the DNeasy PowerSoil Pro
Kits from QIAGEN (Qiagen, Hilden, Germany), strictly adhering to the manufacturer’s
instructions. The samples were homogenized with a lysis buffer using a TissueLyser II.
According to the kit’s protocol, the DNA was subsequently extracted, and the quality and
concentration of the extracted genomic DNA were verified using electrophoresis and a
DeNovix-QFX fluorometer. This procedure was aimed at investigating the gut bacterial
community. For phylogenetic scrutiny, additional genomic DNA was extracted from the
remaining exoskeleton following gut extraction using the DNeasy Blood and Tissue Kit
(Qiagen).
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2.3. PCR Amplification and Sequencing

For the investigation of the gut bacterial community, the V4 region of the 16S rRNA
gene was targeted for amplification [17]. The Polymerase chain reaction (PCR) employed
the 515F forward primer and the 806R reverse primer. After the primary amplification, the
PCR product was purified utilizing the Agencourt AMPure XP PCR purification system.
This was followed by an index PCR process, which incorporated the Nextera XT Index
Kit. In a similar manner to the primary PCR, the products from the index PCR were
purified. To ensure the integrity, size, and quality of the final PCR product, it underwent
evaluation via electrophoresis. Additionally, its concentration was ascertained with the use
of a DeNovix-QFX fluorometer. Once these quality controls were complete, the samples
were diluted and pooled. Subsequent to these steps, sequencing was carried out on the
MiniSeq Illumina platform, specifically targeting the V4 region of the 16S rRNA gene.

For the purpose of phylogenetic investigation, the Cytochrome c oxidase subunit I
(COI) gene from the samples was targeted for amplification. A set of universal primers
was chosen for the PCR amplification of the COI gene, given its widespread applica-
tion in molecular taxonomy and the identification of metazoan species. Following the
amplification, the PCR products were visualized using gel electrophoresis to ensure the
successful amplification of the desired region. After verification, the products underwent
purification procedures similar to those described earlier for the 16s rRNA gene region.
Post-purification, the quality and concentration of the amplified COI gene were confirmed
using a DeNovix-QFX fluorometer. Once the quality checks were complete and deemed
satisfactory, the samples were prepped for sequencing. Using established methodologies,
the COI gene PCR products were sequenced to generate data for phylogenetic analysis.

2.4. Bioinformatics and Statistical Analysis

Sequencing reads from the 16S rRNA gene underwent quality filtering, sequence
alignment, chimera checking, and taxonomic assignment using the QIIME2 pipeline (ver-
sion 2017.6.0) [18]. Simultaneously, sequences from the Bacteria domain were extracted
for a focused analysis of the gut bacterial community. The COI sequences were aligned,
and a phylogenetic tree was constructed using the ggtree package within the R software
framework (version 2.4.1). The functional capabilities of the gut bacterial community were
inferred using the Tax4Fun package (version 0.3.1). Comprehensive visualization and sta-
tistical analysis of the bacterial communities were carried out using the Microeco package
for R (version 0.20.0). Mantel tests were utilized to examine the correlation between gut
bacterial community distances and species’ phylogenetic distances. This test is typically
used to assess the significance of associations between two distance matrices [19].

The Sloan’s neutral model was employed to examine the distribution of microbial taxa
at the genus level within each fly species. The model posits:

Occurrence frequency = 1 − (1 + m ×Mean relative abundance) exp(−m ×Mean relative abundance) (1)

Here, m signifies the neutral migration rate of microbes between individual hosts, repre-
senting the balance between the stochastic and deterministic processes governing microbial
distributions. For each fly species, the microbial data at the genus level were fitted to the
Sloan’s neutral model using R’s non-linear regression functionalities. The initial parameter
guess for m was set to 1 and, through iterative optimization techniques, the optimal value
of m that provided the best fit to the observed data was derived, along with a 95% confi-
dence interval for the parameter estimate. The adequacy of the model for each species was
assessed using the R2 coefficient of determination. This metric, computed in R, quantifies
the proportion of variance in the observed occurrence frequencies that is captured by the
model, providing an indication of its explanatory power for the microbial distributions at
the genus level [20].

In addition, an entanglement analysis was performed to study the relationship be-
tween phylogeny and gut bacterial community structure. Entanglement analysis is a
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statistical method that investigates how multiple variables are intertwined. In this con-
text, entanglement refers to the interconnectedness and complex dependence between
phylogenetic distance and gut bacterial community distance. To further understand the
relationship between phylogeny and gut bacterial community structure within each genus,
we performed separate entanglement analyses for both Lucilia and Chrysomya genera. This
approach allowed us to delve deeper into the intricacies of the relationship within each
genus and assess if there were genus-specific patterns that might be masked when analyz-
ing all species together. It allows for the quantification of the degree to which these factors
influence each other, providing a multifaceted understanding of the relationship between
host evolutionary lineage and microbiota composition. The analysis was carried out using
the factoextra, cluster, and dendextend package.

3. Results
3.1. Gut Bacterial Composition of Necrophagous Fly Species

The gut microbiota of the four necrophagous fly species—C. megacephala, L. illustris,
C. pinguis, and L. caesar—showed phylum-level variation (Figure 1a). Actinobacteria (58.87%),
Bacteroidetes (13.31%), Firmicutes (54.99%), and Proteobacteria (29.59%) were the predominant
phyla across all species. C. megacephala (57.10%) and L. illustris (64.57%) were primarily
colonized by Firmicutes. In contrast, Actinobacteria were most prevalent in C. pinguis (73.85%)
and L. caesar (68.56%). Proteobacteria were more abundant in L. caesar and L. illustris, while
Bacteroidetes were notably prevalent in C. megacephala (29.71%) and C. pinguis (18.02%), and
less abundant in L. caesar (3.64%) and L. illustris (1.88%).
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Figure 1. Taxonomic breakdown of gut bacterial composition in necrophagous fly species at various
levels: (a) phylum, (b) class, and (c) genus.

At the class level, Bacilli (50.37%), Bacteroidia (10.45%), and Gammaproteobacteria (28.10%)
were dominant across all species (Figure 1b). Bacilli had a consistent presence in all species.
L. caesar (43.72%) and L. illustris (30.22%) hosted more Gammaproteobacteria, while Bacteroidia
were especially common in C. megacephala (29.57%).

The gut bacterial communities of the four species exhibited distinct compositions at
the genus level (Figure 1c). The genera Bacillus (1.33%), Dysgonomonas (7.67%), Enterococcus
(5.01%), Lactobacillus (23.53%), Moellerella (15.36%), Myroides (2.44%), Peptoniphilus (1.42%),
Peptostreptococcus (1.38%), Vagococcus (5.21%), and Wohlfahrtiimonas (1.31%) were present
across the species. Lactobacillus was dominant in L. illustris (32.25%) and L. caesar (43.07%).
C. megacephala prominently hosted Dysgonomonas (29.50%). Conversely, C. pinguis exhib-
ited a balanced distribution of Lactobacillus (11.48%), Moellerella (10.05%), and Vagococcus
(10.87%).

3.2. Alpha and Beta Diversity of Gut Bacterial Community of Necrophagous Fly Species

Regarding observed species richness, no significant differences were detected among
C. pinguis, L. illustris, L. caesar, and C. megacephala (H = 1.080, p = 0.782) (Figure 2a).
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Figure 2. Measures of alpha diversity in the gut bacterial communities of necrophagous fly species:
(a) Observed species richness, (b) Shannon diversity index, (c) Inverse Simpson’s diversity index,
and (d) Phylogenetic diversity (PD). Different letters indicate significant differences between groups,
as determined by Dunn’s post hoc test following a Kruskal–Wallis test.

Both the Shannon diversity index (H = 2.399, p = 0.106) and the inverse Simpson’s diver-
sity index (H = 7.194, p = 0.066), which account for the richness and evenness of the bacterial
communities, showed no significant differences among the four groups (Figure 2b,c).

Regarding phylogenetic diversity (PD), there were no significant differences across the
four species (H = 6.040, p = 0.110), suggesting that the gut bacterial communities of these
species may have similar evolutionary histories (Figure 2d).

The principal coordinate analysis (PCoA) plot showed no distinct separation of the
bacterial communities. The combined PCo1 and PCo2 axes accounted for 36.6% of the
total variance in the gut bacterial communities from the four fly species. Clusters mostly
overlapped among the groups, indicating a significant similarity in their gut microbial com-
positions (Figure 3a). Using Bray–Curtis distances in the PCoA, there were no statistically
significant differences among the species. This suggests that the overall dissimilarity in the
composition of the gut microbial communities is not significant (Figure 3b).

An upset plot showcased both shared and unique bacterial taxa among the species.
While each species harbored a unique set of bacteria (ranging from 123 in C. megacephala
to 228 in L. illustris), there was a considerable overlap, with the most extensive shared set
comprising 39 taxa across all four species (Figure 3c). The distance dendrogram, utilizing
Bray–Curtis distances, showed mixed clustering by genus, with Lucilia and Chrysomya
species intermingling (Figure 3d).
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Figure 3. Assessment of beta diversity and shared taxa among the gut bacterial communities of
necrophagous fly species: (a) Principal coordinate analysis (PCoA) visualization based on Bray–Curtis
distances, (b) boxplots showing the distribution of Bray–Curtis distances within the gut bacterial
communities. Same letters above boxes signify no differences between groups (adjusted p < 0.05), as
determined by Dunn’s post hoc test following a Kruskal–Wallis test, (c) an upset plot highlighting both
shared and species-specific bacterial taxa among the four fly species, and (d) distance dendrogram
based on Bray–Curtis distances.

3.3. Gut Bacterial Community Functional Profile

The functional profiles of the gut bacterial communities may not differ significantly
across the species. However, any differences should be validated using a much larger
dataset (Figure 4). The communities we studied predominantly participate in metabolic pro-
cesses and environmental information processing. The primary functional categories, listed
in decreasing order of prevalence, are Carbohydrate Metabolism, Membrane Transport,
Amino Acid Metabolism, Metabolism of Cofactors and Vitamins, Nucleotide Metabolism,
Translation, Signal Transduction, Energy Metabolism, Replication and Repair, and Lipid
Metabolism.
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3.4. Correlation between Phylogenetic Distances and Gut Bacterial Community Distances

Our analysis revealed a significant correlation between the phylogenetic distances
among the four species across two genera of necrophagous flies and their gut bacterial
community distances (Mantel test: r = 0.1861, p = 0.0131). This correlation suggests that fly
species that are more closely related tend to have gut bacterial communities that are more
similar than those of more distantly related species. To delve deeper into this relationship,
we conducted an entanglement analysis, which evaluates the interconnectedness between
host phylogeny and gut bacterial community structure. This analysis yielded a score of
0.26, indicating a moderate degree of association between the host’s evolutionary lineage
and its gut microbiota composition (Figure 5a).

When this entanglement analysis was applied separately to the Lucilia genus, it pro-
duced a score of 0.31 (Figure 5b). This score suggests a slightly stronger association between
the evolutionary lineage of Lucilia species and their gut microbiota composition compared
to the combined analysis of both genera.

Conversely, for the Chrysomya genus, the entanglement score was observed to be 0.37
(Figure 5c). This score denotes an even stronger association between the host’s evolutionary
lineage and its gut microbiota composition within this genus. The higher entanglement
score for Chrysomya, when compared to Lucilia, implies that evolutionary lineage might
exert a more pronounced influence in shaping the gut bacterial community structure in
Chrysomya than in Lucilia.
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tently clustered in both dendrograms, suggesting a strong correlation between their phylogenetic
relationships and gut bacterial community compositions.

3.5. Sloan Neutral Model Analysis of Gut Bacterial Community

Utilizing Sloan’s neutral model, we evaluated the relationship between the occurrence
frequency and the mean relative abundance of gut bacteria in the four necrophagous fly
species. The model revealed distinct patterns of microbial occurrence across different
species (Figure 6).

For L. caesar, the fit with Sloan’s neutral model indicated a significant correspondence
between the data and the fitted curve with an R2 value of 0.49. Similar patterns were
observed for L. illustris, C. megacephala, and C. pinguis with respective R2 values of 0.44,
0.66, and 0.49.

Further insights were obtained from an analysis of deviations from the neutral model
predictions (Figure 7). For L. caesar, 9 microbial genera were observed above, and 8 below
the model’s prediction, while 221 were consistent with neutral expectations. L. illustris
showed 3 genera above and 13 below the predictions, with 222 fitting the neutral model.
Both C. megacephala and C. pinguis presented 9 genera above and 9 and 8 genera below
the predictions, respectively, with each having 220 and 221 genera aligning with the
neutral model.
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curve, along with its 95% confidence interval, is depicted as a solid line. Points representing microbial
genera above, below, and in line with the neutral model predictions are color-coded in red, blue, and
gray, respectively.
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Figure 7. Deviations from the Sloan neutral model predictions (with a 95% confidence interval) across
the four fly species. The number of microbial genera that fall above, below, or align with neutral
model expectations are presented for each species. Genera above the predictions are indicated in
red, those below in blue, and those aligning with the neutral model in gray. This breakdown offers
insights into the specific microbial genera that deviate from or adhere to neutral distribution patterns
within each fly species.

4. Discussion
4.1. Gut Bacterial Composition of Necrophagous Fly Species

Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria were the predominant phyla
in the gut microbiota of the four necrophagous fly species. The relative abundances of
these phyla fluctuated among the species: Firmicutes was prevalent in C. megacephala and
L. illustris, while Actinobacteria dominated in C. pinguis and L. caesar. Notably, Lactobacillus
was consistently present in significant amounts across all species, emphasizing its likely
importance in their ecology and physiology [21,22]. In the fly gut, Lactobacillus potentially
influences developmental processes. However, the probiotic attributes of Lactobacillus can
vary based on the specific strains [23]. As a primary metabolic facilitator, Lactobacillus might
play a crucial role in decomposing and fermenting the organic matter found in the carrion
diet, ensuring nutrient uptake and thereby enhancing fly survival and reproduction [24].
Its potential immunomodulatory properties could also fortify the flies against pathogenic
threats [15,25–29]. Hence, the prevalence of Lactobacillus may signify an adaptive symbiotic
relationship that shapes the biology and ecological adaptability of these flies [23,30]. In
light of the Sloan’s neutral model predictions, it is noteworthy that the genus Lactobacillus,
despite its prominence in our discussion and its significant representation in the gut bac-
terial communities, aligns with the model’s neutral expectations. This suggests that the
occurrence and distribution of Lactobacillus across the four fly species might be governed
by neutral processes rather than specific deterministic factors. While several genera were
observed to deviate from the model’s predictions, either being above or below, Lactobacillus
was neither overrepresented nor underrepresented in comparison to the model’s predic-
tions [22]. Despite these foundational findings, we observed significant overlap in bacterial
taxa across all species, suggesting a core bacterial community resilient to seasonal varia-
tions. Notably, the functional profiles remained consistent, pointing to factors beyond mere
seasonality that shape these communities [10].
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In future research, comparisons with a suitable control group could further validate
the hypothesized importance of Lactobacillus [31]. The diverse composition of the gut
microbiota underscores the intricate interplay between the flies and their resident microbes,
potentially influencing their biology and ecological roles [32,33]. These microbial com-
munities might assist in various physiological functions, such as digestion, detoxification,
immune modulation, and nutrient synthesis which, in turn, support the flies’ survival and
reproductive viability in their habitats [34,35].

Our investigations revealed a discernible pattern of shared bacterial taxa across the
four fly species, pointing towards the presence of a “core” gut microbiota. This core
ensemble of microbes is not merely a collection of shared species but is indicative of
bacterial populations that collectively perform indispensable biological functions common
across the flies. A core gut microbiota might act as the stable base upon which each fly
species can accommodate additional, unique bacterial taxa suited to its particular ecological
context. While a core microbiota provides a baseline functional profile, the unique sets
of bacteria in each fly species could be seen as adaptive components. These specialized
microbial sets may confer distinct advantages, allowing each fly species to thrive in their
specific ecological niches [29,36]. The composition of these microbial communities is
likely shaped by a combination of factors: the dietary preferences of each fly species, the
unique environmental interactions, and the evolutionary histories that guide host–microbe
associations over time. It is crucial to distinguish between the concepts of a core microbiota
and keystone taxa. Whereas the core refers to the assemblage of microbial taxa commonly
found across multiple hosts, keystone taxa are individual or specific groups of microbes
that have a disproportionately large impact on the structure and function of the entire
microbial community, despite their potentially low abundance. Keystone taxa can anchor
the microbial community, and their removal or reduction might lead to significant shifts
in community composition and function. In the context of our study, the core microbiota
offers insights into the foundational bacterial taxa shared across the necrophagous flies,
while any identified keystone taxa would highlight microbes that play a pivotal role in
shaping and stabilizing the gut microbial ecosystem of these flies [37,38].

4.2. Gut Bacterial Community Diversity and Functional Profile

The observed alpha diversity across the gut bacterial communities of the four fly
species suggests a consistent number of taxa present across them. This uniformity might
indicate that the necrophagous nature of these flies necessitates a particular bacterial diver-
sity level to effectively decompose organic matter and assimilate essential nutrients [36].
While the gut bacterial communities in adult flies appeared homogenous, some variations
in bacterial abundance and diversity were evident. These differences may correlate with the
functional roles of the bacteria tailored to specific fly species or individual characteristics.

The congruence in species richness across the communities implies that there might
be a common set of fundamental ecological functions performed by the gut bacteria.
Yet, it is worth noting that, even with these shared functionalities, the exact roles and
adaptations of these bacteria may vary, catering to the specific ecological requirements of
each fly species [39]. To discern these roles conclusively, further in-depth studies involving
functional assays and transcriptomic and metabolomic analyses are warranted. These
would shed light on the bacteria’s active metabolic pathways and their respective functional
contributions to the fly hosts. Notably, the consistent phylogenetic diversity across these
species could hint at a parallel evolutionary lineage of their gut bacterial communities.
Such nuances or similarities in gut microbiota could be a manifestation of the flies’ distinct
evolutionary and ecological journeys [39,40]. However, it is also possible that the observed
patterns stem from inadequate data. Future studies with more extensive sample sizes and
appropriate controls are essential to validate these observations.

Regarding beta diversity, the minimal compositional disparities observed suggest
that a delicate interplay exists. It is the species-specific determinants that shape the gut
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microbial makeup and overarching factors contributing to their similarities, encapsulating
the flies’ shared ecological and evolutionary narratives [9].

The functional profiles identified from the gut bacterial communities, despite the lack
of significant variations among the species, underscore the pivotal roles these bacteria
play in underpinning the biological and ecological roles of the flies. Functional redun-
dancy, in essence, emphasizes the overlapping of indispensable roles across organisms
or taxa. Such redundancy can be seen in the predominant functions related to metabolic
processes and environmental information processing. This redundancy suggests these
bacteria play a central role in processing nutrients and mediating interactions with the
external environment [41,42]. Key functional categories like carbohydrate and amino
acid metabolism, membrane transport, and signal transduction can directly influence the
survival, adaptability, and reproductive efficacy of the flies [43]. This intricate web of host–
microbe interactions provides a deeper understanding of how these flies have adapted to
their necrophagous lifestyle and the potential evolutionary pressures that may have shaped
their gut microbiota [44].

4.3. Correlation between Phylogenetic Relationship and Gut Bacterial Community Distances

The discovery of a strong correlation between the phylogenetic distances of the fly
species and the distances within their gut bacterial communities validates our initial hypoth-
esis, inferring that closely related fly species are more likely to harbor similar gut bacterial
communities than those that are more distantly related [40]. These findings contribute
significantly to our understanding of host–microbiota co-evolutionary dynamics, hinting
that evolutionary history might, indeed, partially shape the gut bacterial communities
of these necrophagous flies [45]. This could be a reflection of the shared physiological
and ecological traits among closely related species, which might influence their symbiotic
bacterial community compositions [41,46]. The entanglement analysis offers a quantitative
perspective on this interconnectedness. Our findings suggest varying degrees of entangle-
ment across the genera, Lucilia and Chrysomya. The higher entanglement score observed in
Chrysomya implies evolutionary and ecological pressures might more tightly link its gut
bacterial community to its host lineage, compared to Lucilia. Such distinctions may arise
from differences in dietary preferences, habitat selection, or reproductive strategies between
the two genera. This differential entanglement raises intriguing questions about the broader
evolutionary dynamics at play, hinting at potential adaptive strategies employed by these
flies in their respective ecological niches.

Despite the influence of host evolution on gut microbiota, it is crucial to acknowl-
edge other contributing factors such as environmental impacts and individual varia-
tions [10,47,48]. The concept of entanglement underscores that, while the association
is moderate, the host’s evolutionary trajectory has an undeniable influence on the gut bacte-
rial community. Alongside these conventional understandings, Mendelian randomization
could offer another perspective. This analytical method utilizes genetic variants as instru-
mental variables to determine causality between exposures and outcomes. Employing
Mendelian randomization in this context might help to untangle potential confounding
factors and provide more direct insights into the causal relationships within host–microbe
interactions. Thus, considering Mendelian randomization in future studies could further
enhance our comprehension of these intricate relationships [49,50].

5. Conclusions

This research delves into the intricate relationship between necrophagous flies and
their gut microbiota, unraveling the nuanced dynamics of insect–microbiota symbiosis. It
suggests that beyond just their phylogenetic relationships, the ecological roles these flies
play also influence their gut bacterial communities. Such insights can enrich our compre-
hension of how these flies contribute to the decomposition of organic matter and offer a
deeper perspective on symbiotic relationships in insects. Recognizing the limitations of our
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sample size, we intend to expand our study in the future, ensuring our findings resonate
with broader applicability and offer more extensive insights into this fascinating interplay.
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