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Abstract: Amphibians are the most endangered class of vertebrate on Earth. Knowledge of their
ecology is crucial to their conservation; however, many species have received scant attention from
researchers, particularly in regions that are difficult to access or when traditional monitoring methods
are impractical. In recent years, technological advancements in environmental audio collection
techniques and signal detection algorithms (i.e., call recognition) have created a new set of tools for
examining the ecology of amphibians. This study utilises these recent technological advancements to
examine the calling phenology of a poorly known Australian mountain frog (Philoria kundagungan).
Audio recordings and meteorological data were collected from six localities across the species range,
with recordings made every hour for ten minutes between July 2016 and March 2018. We developed
an audio recognition algorithm that detected over 1.8 million P. kundagungan calls in 8760 h of audio
recordings with a true positive rate of 95%. Our results suggest that calling activity was driven by
substrate temperature and precipitation, which has potential consequences for the species as the
climate warms and seasonal precipitation patterns shift under climate change. With this detailed
knowledge of P. kundagungan calling phenology, this difficult-to-find species will now be more reliably
detected, removing a barrier that has hindered efforts to study and conserve this species.
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1. Introduction

Amphibians are the most extinction-prone vertebrate group globally, with more than
30% of species facing a high to extreme risk of extinction in the wild [1]. Several key threats
to this group have been identified and include habitat loss [2], the disease chytridiomycosis
caused by the fungal pathogen, Batrachochytrium dendrobatidis [3,4] and, more recently,
climate change [5,6]. Rising temperatures and changes to precipitation cycles generated by
an accumulation of carbon dioxide in the atmosphere are predicted to become key drivers
of amphibian population declines and extinctions over the coming decades [7]. However, it
is now clear that global climate change is already affecting aspects of amphibian behaviour
and ecology [8]. For example, extreme droughts have been associated with population
declines due to desiccating conditions experienced by amphibians and their egg masses [9],
and increasing temperatures have been found to cause physiological stress [10], alter range
boundaries [11] and shift the timing of seasonal breeding cycles by up to 76 days [8].
Furthermore, extreme fire events have increased dramatically [12,13] and have started to
affect ecosystems where fire has rarely been documented [14–16].

The Gondwana rainforests of eastern Australia, a network of World Heritage listed
protected areas, is one example of an ecosystem whose amphibian inhabitants are beginning
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to come under pressure from climate change [17]. Among the endangered species that
occupy these forests are six of the seven species described within the genus Philoria. All
are range-restricted species, have montane distributions, are listed as endangered by the
International Union for Conservation of Nature and are considered at risk from climate
change [1]. All six species occur on mountaintops in northern New South Wales and
southeastern Queensland and occupy seepages or the boggy margins of headwater streams
or drainage lines, mostly in upland rainforest [18–20]. They lay their eggs in small chambers
excavated in mud, leaf litter or under rocks, and metamorphosis requires the constant
moisture these microhabitats provide [18,21]. Adults are rarely encountered outside of
their underground breeding chambers, and detection relies upon the advertisement call of
males (from within burrows). Due to these traits and the remoteness of their habitats, all
species are poorly studied [18,19,21]. Knowledge of their ecology is urgently required to
develop effective conservation strategies to mitigate the effects of climate change.

Bioacoustics is a remote sensing technique that utilises audio recognition algorithms
to identify the vocalisations of specified species within long-duration audio recordings
from the field. Bioacoustics presents a new opportunity to improve traditional methods of
studying the ecology of threatened species and can provide detailed insights into ecological
parameters such as biodiversity indices, the density of individuals, presence or absence of
a species and the timing and duration of seasonal breeding patterns [22,23]. For example,
Hoffmann and Mitchell [24] employed bioacoustic techniques to reveal that Geocrinia
alba, a critically endangered terrestrial-breeding frog in southwestern Australia, maintains
a predictable breeding season that spans multiple months during the Austral spring.
However, the study also revealed that declining winter rainfall, which impacts soil water
potential and temperature, may lead to shortened breeding periods and fewer breeding
opportunities for the species.

The chorusing behaviour of frogs makes obtaining audio recordings of vocalisations
much more accessible than more mobile taxa, such as avian or mammalian species, which
can vocalise over much larger home ranges. In most frogs, adult males use advertisement
calls to attract a mate for breeding and generally call from a relatively small site, such as
a pond, stream or swamp [25]. These traits provide an excellent opportunity to utilise
bioacoustic methods to gain detailed knowledge of amphibian ecology not achievable with
traditional methods.

Using bioacoustics, we examine the influence of environmental variables on the calling
activity of Philoria kundagungan [26]. We had three specific aims: (i) develop a recognition
algorithm capable of autonomously detecting P. kundagungan calls in audio recordings;
(ii) determine the current seasonal and diurnal cycles of calling activity; (iii) determine
the primary environmental variables driving calling activity. This study will allow future
targeted surveys of this visually cryptic species to be conducted under conditions that
induce calling activity and further understand the implications climate change may have
on this endangered mountaintop frog.

2. Materials and Methods
2.1. Study Species

Philoria kundagungan occurs along high-elevation headwater streams and bogs in rain-
forest and adjacent wet sclerophyll in a small mountainous region of southeast Queensland
and northeastern New South Wales, Australia (Figure 1). There are no data on diel, seasonal
or inter-year variation in calling for this species, but it is thought to call diurnally from late
August to mid-February [18], with males calling in small aggregations. The male P. kunda-
gungan advertisement call comprises a short, pulsed note with most acoustic energy located
between 300–1200 Hz. Call duration ranges between 0.2–0.3 s and calls are separated by
0.8–2 s when calling continuously (Figure 2).
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Figure 2. Oscillogram (A) and spectrogram (B) of nine typical male P. kundagungan advertise-
ment calls.

2.2. Data Collection

Calling activity was examined at six known P. kundagungan breeding sites across the
species range [27] (Figure 1). Audio recordings were collected at each site using a Song
Meter v2 (Wildlife Acoustics®, Manyard, MA, USA) positioned at the height of 1 m above
ground level. Song Meters were configured to record audio at a sample rate of 16,000 Hz for
the first ten minutes of every hour, 24 h a day from July 2016 to March 2017 and from June
2017 to March 2018. However, due to equipment malfunctions, audio was not recorded
on all days within the deployment period. Song Meters were powered with external 12 V,
28 Ah, lead-acid batteries which required changing every four weeks. The default setting
was used for all other Song Meter configurations.

Hygrochron iButtons (DS1923, Maxim Integrated, San Jose, CA, USA) were used
at each site to record hourly substrate and air temperature. The iButton for substrate
temperature measurement was positioned approximately 10 cm below the soil surface and
within one metre of a calling P. kundagungan. Air temperature iButtons were housed in 1-
inch PVC pipes with holes drilled in them and placed 1 m above the ground. Subsequently,
the recorded hourly temperature data was used to compute the daily mean and minimum
temperature of substrate and air temperature at each site. Daily precipitation totals and
the cumulative precipitation values for the preceding seven days were extracted for each
site from a gridded dataset sourced from the Australian Bureau of Meteorology [28].
ArcMap 10.3.1 (ESRI) was used for the extraction and processing of all precipitation data.
Cumulative rainfall was included so as to avoid any influence of reduced call detection
during rainfall events due to noise. The daily day length was computed in hours using the
‘Suncalc’ package version 0.5.1 in R version 3.5.3.

2.3. Development of Automated Species-Specific Recogniser

An automated species-specific recogniser was developed using Kaleidoscope Pro 5.1
(Wildlife Acoustics®, Manyard, MA, USA) to identify male P. kundagungan advertising calls
in raw audio recordings. Development and operation of this sound recognition algorithm
involved three phases. In the first phase, a randomly selected subset of audio recordings
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containing approximately 10,000 candidate vocalisations were selected as training data. We
applied a broad filter to remove all biotic and non-biotic sounds that did not fall within
the basic vocalisation characteristics of P. kundagungan (Figure 2). Specifically, all sounds
outside the 200–1300 Hz frequency range and 0.1–0.4 s duration range were removed.

In the second phase, a sound recognition algorithm was trained to differentiate be-
tween P. kundagungan vocalisations and non-target signals that remained after filtering.
Each candidate signal was converted into a multidimensional feature representing its
unique audio signature. Each candidate signal was then manually listened to, and its repre-
sentative multidimensional feature was categorised as either a P. kundagungan vocalisation
or a non-target signal.

In the third phase, all raw audio recordings were filtered as in phase one and then
passed through our final sound recognition algorithm trained in phase two. This process
autonomously identified and time-stamped candidate P. kundagungan vocalisations and
non-target signals in all audio recordings. These data were used to examine the relation-
ships between daily totals of P. kundagungan vocalisations and measured environmental
variables.

2.4. Recogniser Performance Assessment

We calculated the performance and error rate in our recogniser using a randomly
selected subset of raw audio recordings from the primary analysis. Thirty-eight randomly
selected ten-minute audio recordings (6.3 h) were analysed with our automated recogniser.
Each P. kundagungan vocalisation identified by our automated recogniser was manually lis-
tened to and defined as either correctly or incorrectly identified. We also manually listened
to the 6.3 h of audio to identify P. kundagungan vocalisations missed by our automated
recogniser. A single observer (LB) completed all manual listening using Sennheiser HD4.40
headphones and was visually assisted through simultaneously viewing a spectrogram of
the audio. From this, two metrics for recogniser performance were calculated: precision
and recall [29]. Precision is the proportion of P. kundagungan vocalisations identified by our
automated recogniser that are true and is calculated as follows:

Precision =
tp

tp + f p

where tp is the number of correctly identified vocalisations and fp is the number of incor-
rectly identified vocalisations. Recall is the proportion of correctly identified vocalisations
detected or missed by our automated recogniser and is calculated as follows:

Recall =
tp

tp + f n

where fn is the number of missed P. kundagungan vocalisations [29].

2.5. Statistical Analysis

Generalised additive models (GAMs) were used to examine the relationships between
daily totals of P. kundagungan vocalisations and measured environmental variables. Models
were fit using the ‘mgcv’ package version 1.8 [30] in R version 3.5.3 [31]. All GAMs were
developed using a Tweedie distribution (p = 1.5) with a log link function and included a
random effect for both site and season. A first-order autoregressive structure for date was
incorporated to account for temporal autocorrelation. Candidate models were assessed
using Akaike’s Information Criterion (AIC) and Akaike’s weight of evidence (wi).

3. Results

A total of 8760 h of audio recordings were collected from six sites during season one
(2016/2017) and five sites during season two (2017/2018). Equipment failures and logistical
constraints prevented audio from being recorded for the full duration of the study period,
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with 1672.8 recording days missed across all six sites over two years (Figure 3). A total
of 5836 P. kundagungan vocalisations were used to train the sound recognition algorithm.
The sound recognition algorithm detected 1,899,682 P. kundagungan vocalisations in these
recordings. The recogniser performance assessment demonstrated that the algorithm had a
precision of 0.95 and a recall of 0.22. The majority of missed calls occurred when multiple P.
kundagungan were calling simultaneously or during intense chorusing events.
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Figure 3. Months of the year audio was recorded at study sites over both breeding seasons. Season
1 = 2016/2017; Season 2 = 2017/2018.

3.1. Annual and Daily Calling Activity

There were strong diel and seasonal calling activity patterns for P. kundagungan.
Monthly calling activity peaked in October with 44% of the total calls detected during this
month (Figure 4). Calling activity was detected in all months that audio was recorded;
however, there was a 47-fold increase in calling activity from August to September and a
71% decrease from November to December. Most calls (87%) occurred between the begin-
ning of September and the end of November (Figure 4). A clear pattern of diurnal calling
activity was observed from September through to January, with two distinct peaks. The
first peak was approximately two hours after sunrise and the second was approximately
two hours before sunset, with the first peak 14% larger than the second. Calling activity
was detected during all hours of the day and night; however, calling activity was more
common in daylight hours (Figure 4).
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Figure 4. Diel and monthly calling activity in audio recordings made at six sites between July 2016
and March 2018. (A) The average number of P. kundagungan calls detected within a 10 min recording,
per hour for each month (note the y-axis varies across months from a maximum of 0.6 to 300). (B) The
average number of P. kundagungan calls detected per 10 min recording at each site for each month
(note logarithmic scale of x-axis). The month of May was not sampled. Error bars indicate standard
error in plots (A,B).

3.2. The Influence of Environmental Variables on Calling Activity

Over the duration of this study, observed environmental variables ranged substantially.
Daily rainfall ranged from 0.0–70.0 mm, rainfall in the previous seven days ranged from
0.0–94.5 mm, the daily average of substrate temperature ranged from 8.1–19.9 ◦C, the
minimum daily substrate temperature ranged from 6.1–19.6 ◦C and day length ranged
from 10.3–13.9 h.

There is a clear relationship between calling activity and substrate temperature
(Table 1). The best-supported model suggested that the daily minimum substrate tem-
perature and daily calling activity were correlated with peak calling activity occurring at
13.8 ◦C (Figure 5). The best-supported model explained 42.3% of the variance in calling
activity. The next-best-supported model included the addition of rainfall.
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Table 1. Summary of model selection statistics examining variables associated with mountain frog
(Philoria kundagungan) calling activity. edf = effective degrees of freedom; AIC = Akaike’s Information
Criterion; ∆AIC = AIC − AIC of the top model; precipitation = daily rainfall; precipitation7 = rainfall
in the preceding seven days; temperature = daily mean of substrate temperature; minimum tempera-
ture = daily minimum of substrate temperature. See Supplementary Material for model outputs.

Model edf AIC ∆AIC

Minimum temperature 11.65 23,653.52 0.00
Minimum temperature + Precipitation 13.81 23,702.40 48.88

Minimum temperature + Precipitation7 13.21 23,766.99 113.47
Temperature 11.57 23,875.15 221.63

Precipitation7 8.20 23,912.72 259.20
Temperature + Precipitation 13.73 23,920.04 266.52

Precipitation 10.54 23,941.22 287.70
Temperature + Precipitation7 12.57 24,149.59 496.07
Day Length + Precipitation 13.10 24,165.91 512.39

Day Length 10.86 24,193.22 539.70
Constant 4.00 25,404.02 1750.50
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4. Discussion

This study shows that the daily and seasonal calling activity of P. kundagungan is
strongly related to the temperature of the substrate. We used a novel, automated approach
that allowed insights that would not have been previously possible. The analysis of calling
patterns is based on more than 1.8 million P. kundagungan calls, automatically detected in
8760 h of recorded audio across two seasons. Our recogniser had an impressive accuracy
rate of 95% for correctly identifying P. kundagungan calls, surpassing previous research that
employed the same software (e.g., [32,33]). Despite the low recall rate of 22%, most missed
calls occurred when multiple P. kundagungan were calling simultaneously or during intense
chorusing events. There may be potential to increase the recall rate of our recognizer to
account for chorusing events; however, due to the high precision of the recogniser and
the large dataset collected, the data was sufficient to analyse the calling phenology of
P. kundagungan.

We provide a highly detailed baseline with which to detect changes in P. kundagungan
calling phenology over time and in the face of climate change [17]. Our results also have
important implications for further studies of P. kundagungan allowing targeted surveys
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to be appropriately timed. Further, we demonstrate that using bioacoustics is a reliable
method for examining the vocal behaviour in amphibians. Given that the vocalisations of
P. kundagungan are indistinguishable from those of P. loveridgei, P. pughi, P. richmondensis
and P. knowlesi [18,19], our algorithm and method could be utilised in multispecies calling
phenology studies.

4.1. Diel and Seasonal Calling Activity

Calling is an energetically costly exercise for amphibians; as such, the timing of calling
is synchronised to maximise reproductive effort. Understanding the factors that drive
calling onset may provide insights into shifts associated with climate variability from year to
year. From June through to August, P. kundagungan calling activity was minimal, primarily
diurnal and did not occur in any regular pattern. During September (Austral spring), calling
activity increased dramatically and formed a diurnal cycle comprising two distinct peaks
of activity that lasted until calling activity decreased in January. While the onset of calling
activity differed, a similar two-peak diurnal cycle was documented in a closely related
species, Philoria richmondensis [34]. The remaining Philoria species are thought to also call
diurnally [18,19,21]. This pattern is unusual in Australian amphibians as these are also the
noisiest times of the day in many ecosystems, due to insect and avian vocalisations. Recent
research suggests that diurnal calling patterns are evolutionarily conserved behaviours that
are likely to have initially evolved with a species’ ability to avoid diurnal predation, either
via producing toxins or cryptic behaviour [35,36]. Accordingly, the similarities in diurnal
calling behaviour observed within the Philoria may have evolved alongside an ability to
avoid diurnal predation through calling and breeding within concealed burrows.

While P. kundagungan diel calling patterns were similar to P. richmondensis, the timing
of seasonal calling activity differed. Due to year-round detections of P. kundagungan calling
activity, a specific date representing the onset of the core calling season cannot be attained.
Instead, we attribute the 47-fold increase in calling activity observed in September as the
beginning of the core calling season, which peaked in October and continued until the
beginning of February, where we recorded an 80% decline in calling activity that occurred
with increasing temperatures. This is consistent with assertions that P. kundagungan breeds
in the spring [21]. The core calling season in P. richmondensis follows a similar pattern and
is also similar in length; however, both the start date and peak date of P. richmondensis core
calling season occur approximately one month earlier than in P. kundagungan, with calling
activity intensifying in August, peaking in September and then slowly declining until the
beginning of February [34]. Similarly, core seasonal calling activity in P. loveridgei is thought
to begin in November [18,34,37]. Calling in anurans is generally limited to situations where
environmental conditions are conducive to breeding and oviposition [25,38]. While P.
kundagungan, P. knowlesi, P. loveridgei and P. richmondensis populations are all isolated from
each other due to intervening lowland habitats (valleys and plains), they are all located
on mountain tops in relatively close proximity, with very similar rainforest habitats and
climatic conditions [18,27,34]. The variation in seasonal calling activity observed between
these species is likely to be caused by each species requiring a slightly different set of
environmental conditions to sustain breeding activity, differences in prevailing long-term
climatic conditions at the times of the studies, or differences in substrate temperatures.

4.2. Environmental Factors

These results suggest that substrate temperature is responsible for triggering the
onset of the core P. kundagungan calling season and, together with increasing substrate
moisture, drives the peak in calling activity. While calling was recorded across a wide
range of temperatures, rapid increases in calling activity in spring did not commence
until the mean daily substrate temperature warmed to approximately 11 ◦C, and the most
favourable substrate temperature for calling activity was 13.8 ◦C. Willacy et al. [34] found
that air temperature was the primary driver of calling activity in the closely related species
P. richmondensis; however, the study concluded that substrate temperature was likely to
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be a more accurate predictor of calling but was not measured. Temperature is often a key
variable affecting the calling and breeding activity in amphibians [39].

Rainfall was an important factor in two of the three best supported models. The
increase in P. kundagungan calling activity during and after rainfall was likely the species’
response to the increase in suitable oviposition sites made possible by additional moisture.
The tail end of winter (August) is also the driest time of the year in the region, and as a
result, the availability of suitable oviposition sites within the breeding habitat was likely to
be at a seasonal minimum. The typical increase in rainfall in October and November likely
increases the availability of suitable oviposition sites and, in turn, facilitates an increase
and subsequent peak in P. kundagungan calling activity. Due to their general dependency
on moisture, calling activity in frog species is commonly associated with rainfall [21].

4.3. Implications of Ongoing Climate Change

Climate change projections indicate that over the coming decades, eastern Australia
will experience further increases in temperatures, with more frequent and longer-lasting
heatwaves and further decreases in cool-season rainfall with more frequent periods of
drought [40–42]. This region’s long-term average seasonal conditions are characterised by
cold and dry winters followed by spring, which sees a gradual increase in temperature
and a slow increase in rainfall, including early-season storms. This is followed by warm
and wet summers, then gradually returns to cold and dry weather patterns by late au-
tumn. However, climate change is already altering these seasonal conditions [43], causing
significant implications for P. kundagungan, and may ultimately challenge the species’ persis-
tence [14,17]. There are many reports of species shifting their distribution to higher latitudes
or higher elevations in order to follow favourable thermal conditions [40,42,44]. However,
P. kundagungan has a highly restricted and naturally fragmented montane distribution and
has limited dispersal ability [27], so it has no opportunities to shift its distribution to higher
latitudes or higher elevations as temperatures increase [17]. As temperature (substrate
warming to 11 ◦C) is responsible for triggering the onset of the core breeding season in
P. kundagungan, projected increases in average temperatures in June, July and August are
likely to cause the core breeding season to start earlier in the dry season and, in turn, cause
a mismatch between favourable thermal conditions and the start of the rainy season. With
less water availability in streams, this scenario could result in an overall decrease in suitable
oviposition sites and thus a reduced rate of recruitment.

Climate change has already caused a decrease in cool-season rainfall and more frequent
droughts in eastern Australia [43]. These trends are projected to worsen over the coming
decades [42,43] and have already been implicated in P. kundagungan population declines.
Heard et al. [14] found that P. kundagungan was much more likely to call from streams with
higher water availability and suggested that in addition to fire impacts in 2019/2020, a
decrease in P. kundagungan occupancy and abundance observed in 2020/2021 may have
been due to reduced breeding activity during drought. Our results provide additional
evidence of the link between P. kundagungan calling activity and climate. Given that the
species already has a low reproductive output [21], these potential consequences of ongoing
climate change are likely to contribute to the population declines forecasted by Bolitho and
Newell [17] over the next three decades.

5. Conclusions

This study shows that calling activity in P. kundagungan can be predicted based on
the substrate temperature of the species’ habitat and rainfall and adds to the growing
literature concerning the effects of climate on breeding phenology. The results of this
study show that temperature and rainfall affect calling activity (indicative of breeding) in
P. kundagungan and given future climate change projections, there are clear implications
for the species’ long-term persistence. Although this study is focused on a single species,
vocalisations of P. kundagungan vary little from P. loveridgei, P. pughi, P. richmondensis and P.
knowlesi [18,19], allowing our algorithm to be used for multispecies bioacoustic monitoring
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in future studies. Substrate temperature and moisture (rainfall) should be incorporated
into future monitoring programs.
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