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Abstract: In taxonomy, qualitative methods are commonly used to analyze morphological characters,
which can lead to dramatic changes in higher taxa. Geometric morphometrics (GM) has proven
to be useful for discriminating species in various taxonomy groups. However, the application of
geometric morphometrics in supraspecies classification is relatively scarce. In this study, we tested the
controversial two subgenera classification of Chaetocnema with geometric morphometrics; a total of
203 Chaetocnema species representing 50% of all known species from around the world were selected
for the analysis. We analyzed the shape of the pronotum, elytron, head, aedeagus, and spermatheca.
The results showed that the two traditional subgenera distinctly differed from each other; therefore,
we propose using two subgenera arrangements to facilitate the understanding and taxonomy of the
Chaetocnema species (especially in the Oriental, Palearctic, and Nearctic regions). Additionally, the
morphological diversity of the abovementioned structures of Chaetocnema was analyzed, and it was
found that the highest morphological diversity was in the spermatheca, which was greater than that
in the aedeagus. Our research demonstrated that GM could be useful for detecting morphological
delimitation of the supraspecies taxa. It also showed that GM methods are applicable to insects as
small as 2 mm in body size.

Keywords: morphological diversity; flea beetles; subgenus; taxonomy; quantitative; morphology

1. Introduction

Taxonomy is central to the exploration and understanding of biodiversity [1]. Species
identification and population discrimination are essential for the conservation of biodi-
versity and natural resource management [2]. Traditionally, the diagnostic characters of
many groups were evaluated using qualitative methods. However, quantitative methods
such as geometric morphometrics may be an efficient addition for the discrimination of
supraspecies taxa.

Geometric morphometrics offers a comprehensive and effective approach to the study
of shape via the multivariate statistical analysis of anatomical landmarks or outlines of
biological homology [3–5]. This tool not only has a certain statistical power but also serves
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the purpose of visualizing, interpreting, and communicating results, which presents an
obvious advantage [6–8]. Geometric morphometrics has been used in taxonomy across
different groups (lizards, snakes, beetles, parasitoid wasps, etc.) [7,9–14]. It has been found
to be more powerful compared to traditional morphological analyses for discriminating
between species and populations of ‘morphologically ambiguous’ taxa [10]. However, the
applicability of geometric morphometrics in higher taxa classification is relatively scarce [2].

Chaetocnema Stephens (Chrysomelidae, Galerucinae, Alticini) is a genus including
species with extremely tiny body sizes, usually around 2 mm. It is one of the few genera
with a cosmopolitan distribution and comprises more than 400 species [15]. There have
been exemplary revisional studies in recent years on the Oriental [16], Palearctic [15],
Afrotropical [17,18], and Nearctic species [19]. These studies offer not only descriptive but
also precise graphic morphological data, which make Chaetocnema an excellent group for
quantitative morphological research.

The traditional two subgenera of Chaetocnema (subgenus Chaetocnema s. str. Stephens,
1831 [20] and subgenus Udorpes Motschulsky, 1845 [21]) have been recognized by many
authors, including Maulik [22], Heikertinger and Csiki (world species) [23], Heikertinger
(Palearctic and Oriental species) [24], Gressitt and Kimoto (Chinese and Korean species) [25],
Samuelson (Oceania species) [26], Döberl (Palearctic and Oriental species) [27] and Ruan
et al. (Oriental species) [16]. However, both White [19] and Konstantinov et al. [15] found
that the previous delimitation of the two subgenera was problematic for some species, and
Konstantinov et al. [15] suggested not using any subgeneric classification until rigorous
phylogenetic analysis was conducted. Ruan et al. [16,28,29] tentatively used two subgenera
(subgenus Chaetocnema s. str. and subgenus Udorpes) for Oriental Chaetocnema species
based on the traditionally used characters and the shape of the spermatheca. Alternatively,
Özdikmen [30] proposed another subgeneric arrangement of the Chaetocnema species based
on the shape of the spermatheca, comprising as many as 13 subgenera.

Tlanoma Motschulsky, 1845 has been erroneously used as a subgenus name for a very
long time. In fact, Tlanoma is a subjective junior synonym of Chaetocnema in a strict sense, as
pointed out and fully discussed by Konstantinov et al. in 2011 [15]. Therefore, we followed
Konstantinov et al. [15] and used the subgenus name Chaetocnema (s. str.) (type species:
C. concinna) and Udorpes (type species: C. splendens).

To test the traditional subgeneric classification of Chaetocnema, we tentatively attributed
the studied species to either subgenus Chaetocnema s. str. or Udorpes and analyzed the
morphological variations using a geometric morphometric technique. The pronotum,
elytron, head, aedeagus, and spermatheca were selected for analysis as they are commonly
used morphological characters in flea beetles and are frequently illustrated in taxonomic
studies. The research was based on a large dataset consisting of 203 Chaetocnema species
from the Oriental, Palearctic, and Nearctic regions, representing approximately 50% of all
known species from around the world.

2. Materials and Methods
2.1. Taxa Examined

This study analyzed a total of 203 Chaetocnema species, comprising 79 species from
the Oriental region, 75 species from the Palearctic region, and 59 species from the Nearctic
region. Additionally, two outgroup flea beetle species were included in the analysis,
covering 97.16% of all described extant Chaetocnema species from the three biogeographic
regions and approximately 50% of all described extant species worldwide (Table S1). Species
from other biogeographic regions were not included in the analysis due to insufficient
published images. The subgeneric arrangement followed the classification proposed by
Ruan et al. [16] (Figure 1). Images of the species in the geometric morphometric analyses
were collected from previously published studies [15,16,19].
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Figure 1. The morphological differences between subgenus Chaetocnema s.str and Udorpes. (A) Rep-
resentatives of Chaetocnema species, 1–4; subgenus Chaetocnema s. str., 5–8; subgenus Udorpes; 1; C. 
confinis Crotch, 2; C. nigrica Motschulsky, 3; C. picipes Stephens, 4; C. semicoerulea (Koch), 5; C. cylin-
drica (Baly), 6; C. ingenua (Baly), 7; C. concinnipennis Baly, 8; C. concinnicollis (Baly). (B) A typical 
image of the head of the subgenus Chaetocnema s. str. (C. constricta Ruan et al.). (C) A typical image 
of the head of the subgenus Udorpes (C. bella (Baly)). (D) A typical image of the spermatheca of the 
subgenus Chaetocnema s. str. (E) A typical image of the spermatheca of the subgenus Udorpes. (F,G) 
Head of the subgenus Chaetocnema s.str. and Udorpes. 

2.2. Morphological Delimitation of the Two Subgenera of Chaetocnema 
The selected species were assigned to subgenus Chaetocnema s. str. or Udorpes for anal-

ysis based on the following characters. Details of the species information are provided in 
Supplementary File S1. 

Subgenus Chaetocnema s. str.: (1) Frontolateral sulcus of head well developed and 
represented by a row of deep and large punctures; frontal ridge (interantennal space) 

Figure 1. The morphological differences between subgenus Chaetocnema s.str and Udorpes. (A) Rep-
resentatives of Chaetocnema species, 1–4; subgenus Chaetocnema s. str., 5–8; subgenus Udorpes; 1;
C. confinis Crotch, 2; C. nigrica Motschulsky, 3; C. picipes Stephens, 4; C. semicoerulea (Koch), 5; C. cylin-
drica (Baly), 6; C. ingenua (Baly), 7; C. concinnipennis Baly, 8; C. concinnicollis (Baly). (B) A typical image
of the head of the subgenus Chaetocnema s. str. (C. constricta Ruan et al.). (C) A typical image of the
head of the subgenus Udorpes (C. bella (Baly)). (D) A typical image of the spermatheca of the subgenus
Chaetocnema s. str. (E) A typical image of the spermatheca of the subgenus Udorpes. (F,G) Head of the
subgenus Chaetocnema s.str. and Udorpes.

2.2. Morphological Delimitation of the Two Subgenera of Chaetocnema

The selected species were assigned to subgenus Chaetocnema s. str. or Udorpes for
analysis based on the following characters. Details of the species information are provided
in Supplementary File S1.

Subgenus Chaetocnema s. str.: (1) Frontolateral sulcus of head well developed and
represented by a row of deep and large punctures; frontal ridge (interantennal space)
convex, impunctate or with extremely minute punctures, usually narrow; frons impunctate
or only punctate at sides near frontolateral sulcus. (2) Vertex of head without punctures



Diversity 2023, 15, 918 4 of 17

at middle; most species with only a few punctures on each side near the eyes. (3) Sides of
spermathecal receptacle not sinuated, spermatheca usually pear-shaped, flask-shaped, or
cylindrical. Species list: C. aenigmatica, C. alutacea, C. appendiculata, C. arizonica, C. babai,
C. baoshanica, C. basalis, C. bicolor, C. bicolorata, C. blatchleyi, C. breviuscula, C. brunnescens,
C. californica, C. cheni, C. chlorophana, C. compressa, C. concinna, C. conducta, C. confinis, C. con-
stricta, C. coyei, C. crenulata, C. dapitanica, C. delarouzeei, C. densa, C. depressa, C. deqinensis,
C. discreta, C. dispar, C. duvivieri, C. ectypa, C. elongatula, C. excavata, C. extenuata, C. falla-
ciosa, C. fortecostata, C. fulvida, C. furthi, C. fusiformis, C. gentneri, C. gracilis, C. granulicollis,
C. granulosa, C. granulosa, C. hainanensis, C. heptapotamica, C. hongkongensis, C. jinxiuen-
sis, C. kanmiyai, C. kimotoi, C. kingpinensis, C. koreana, C. labiosa, C. livida, C. longipunctata,
C. lubischevi, C. magnipunctata, C. major, C. mandschurica, C. melonae, C. montivaga, C. nebu-
losa, C. nigrica, C. nigrilata, C. obesula, C. opulenta, C. orientalis, C. parafusiformis, C. pelagica,
C. philippina, C. picipes, C. pulicaria, C. puncticollis, C. punctifrons, C. purerulea, C. quadricollis,
C. repens, C. resplendens, C. rileyi, C. sabahensis, C. salixis, C. scheffleri, C. schlaeflii, C. semi-
coerulea, C. septentrionalis, C. serpentina, C. shabalini, C. simplicifrons, C. sticta, C. subbasalis,
C. subconvexa, C. subviridis, C. sumatrana, C. taiwanensis, C. tibialis, C. tonkinensis, C. trans-
baicalica, C. trapezoidus, C. tristis, C. vesca, C. wallacei, C. warchalowskii, C. yaosanica, C. yiei,
C. yulongensis, and C. yunnanica.

Subgenus Udorpes: (1) Frontolateral sulcus of head absent or obsolete; frontal ridge
(interantennal space) flattend and evenly punctate, usually wide; frons evenly punctate.
(2) Vertex entirely covered with numerous large and deep punctures. (3) Sides of spermath-
ecal receptacle sinuated. Species list: C. acuminata, C. acupunctata, C. aequabilis, C. aerosa,
C. afghana, C. albiventris, C. alticola, C. angustifrons, C. angustula, C. anisota, C. arenacea, C. arida,
C. aridula, C. balanomorpha, C. belka, C. bella, C. belli, C. bergeali, C. borealis, C. bretinghami,
C. coacta, C. cognata, C. concinnicollis, C. concinnipennis, C. confusa, C. costata, C. costulata,
C. cribrata, C. cribrifrons, C. cylindrica, C. denticulata, C. difficilis, C. eastafghanica, C. flori-
dana, C. franzi, C. fuscata, C. glabra, C. gottwaldi, C. grandis, C. greenica, C. hortensis, C. igori,
C. imitatrix, C. ingenua, C. irregularis, C. jelineki, C. kabakovi, C. klapperichi, C. kumaoensis,
C. latapronotus, C. leonhardi, C. ljudmilae, C. malayana, C. mannerheimii, C. megachora, C. megas-
ticta, C. merguiensis, C. midimpunctata, C. minitruncata, C. minuta, C. modesta, C. modiglianii,
C. montenegrina, C. nocticolor, C. obesa, C. obliterata, C. oblonga, C. opacula, C. ordinata, C. pa-
ganettii, C. paragreenica, C. paraumesaoi, C. perturbata, C. pinguis, C. procerula, C. producta,
C. prolata, C. protensa, C. psylloides, C. pusaensis, C. reteimpunctata, C. rufofemorata, C. sahlbergii,
C. shanxiensis, C. singala, C. sinuata, C. splendens, C. subcoerulea, C. sulcicollis, C. tarsalis,
C. tbilisiensis, C. texana, C. truncata, C. umesaoi, C. ussuriensis, C. westwoodi, and C. zangana.

It should be noted that although C. cylindrica and C. concinnicollis have narrow frontal
ridges, they have sinuated spermathecal receptacles, and the vertex is densely covered
with large punctures. Therefore, they were assigned to the subgenus Udorpes. Although
C. orientalis and C. conducta have relatively wide and flat frons, they could be attributed to
the subgenus Chaetocnema s. str. because their spermathecal receptacle is not sinuated, and
there are very few punctures on the vertex. Although C. depressa has large punctures all
over the vertex, it could be attributed to the subgenus Chaetocnema s. str. because its frontal
ridge is narrow and its spermathecal receptacle is not sinuated. Nearly all the species in
the subgenus Chaetocnema s. str. from the Nearctic region have wide frons, but they were
placed in the subgenus Chaetocnema s. str. because their frontolateral sulcus is present and
there are very few punctures on the vertex and frons.

2.3. Data Analysis

Seven characters of the five structures were examined and analyzed. The pronotum,
elytron, aedeagus in lateral view, aedeagus in ventral view, spermathecal receptacle, and
spermathecal pump were represented by one curve on the outline, which was resampled
into 50, 50, 50, 50, 35, and 30 equally spaced semi-landmarks (SLM), respectively (Figure 2,
Supplementary File S2). The head was represented by two curves in the frontal view: one
started on the upper end of the superorbital sulcus, which almost touched the margin of
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the eye, and ended at the lower part of the frontal lateral sulcus, which is situated at the
same horizontal level as the lower part of the antennal socket. Each of these curves was
resampled into 10 equally spaced semi-landmarks (Figure 2, Supplementary File S2).
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Figure 2. The curves used in the geometric morphometric analysis. (A) Pronotum: one curve
resampled into 50 semi-landmarks; (B) elytron: one curve resampled into 50 semi-landmarks; (C) head
(represented by the grooves on the head): two curves resampled into 20 semi-landmarks; (D) aedeagus
in lateral view: one curve resampled into 50 semi-landmarks; (E) aedeagus in ventral view: one
curve resampled into 50 semi-landmarks; (F) spermathecal receptacle: one curve resampled into
35 semi-landmarks; (G) spermathecal pump: one curve resampled into 30 semi-landmarks.

The curves were digitized using tpsDig 2.05 software [31]. The data files used for the
morphological analysis were prepared by converting semi-landmarks into landmarks in
text files [32–34]. The landmark configurations were scaled, translated, and rotated against
the consensus configuration using the Procrustes superimposition method [3]. The principal
component analysis (PCA) and the canonical variate analysis (CVA) were performed using
MorphoJ 1.06a software [35] (Figures 3–8). The variability in the shape space was assessed
using PCA. The morphological diversity was quantified as the Procrustes variance in PCA
(Figures 5 and 6, Tables S1 and S2), which measures the dispersion of all observations
around the mean shape of the respective taxa [6,36]. The statistical significance of pairwise
differences was determined using permutation tests (10,000 replications) with the Procrustes
and Mahalanobis distances in CVA (Tables 1, 2 and S3); both tests were used to assess
significance because p-values can differ due to the anisotropy (directional dependency) of
the shape variation [37]. The Mahalanobis distance indicates how different an individual
is from the others in the sample, thus reflecting how well the groups are separated from
each other. The Procrustes distance is a measure of the absolute magnitude of the shape
deviation, indicating the significance of the shape differences between the average group
shapes. In this paper, there would be a significant difference if the obtained p-values for the
Mahalanobis distance and the Procrustes distance among groups were less than 0.05. The
mean configuration (average shapes) of the analyzed structures for each subgenus were
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presented to visualize the shape variation (Figure 3H), and lollipop graphs of deformation
were used to portray the resulting shape variations along the first two PC axes (Figure 4H).
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Figure 7. Principal component analysis (PCA) of the different characters of the three faunas. Oriental,
Palearctic, Nearctic Chaetocnema, and outgroups are marked with green, blue, red, and purple, respec-
tively. The 90% equal frequency ellipses containing 90% of the data points are shown. (A) Pronotum;
(B) elytron; (C) head; (D) aedeagus in lateral view; (E) aedeagus in ventral view; (F) spermathecal
receptacle; (G) spermathecal pump.

Table 1. The p-values for the Mahalanobis distances and the Procrustes distances of the seven
characters between subgenus Chaetocnema s. str. and Udorpes. MD: Mahalanobis distances; PD:
Procrustes distances.

Pronotum Elytron Head Aedeagus in
Lateral View

Aedeagus in
Ventral View

Spermathecal
Receptacle

Spermathecal
Pump

p-values for MD <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
p-values for PD <0.0001 0.3499 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
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Figure 8. Canonical variate analysis (CVA) of the different characters of the three faunas. Oriental,
Palearctic, Nearctic Chaetocnema, and outgroups are marked with green, blue, red, and purple, respec-
tively. The 90% equal frequency ellipses containing 90% of the data points are shown. (A) Pronotum;
(B) elytron; (C) head; (D) aedeagus in lateral view; (E) aedeagus in ventral view; (F) spermathecal
receptacle; (G) spermathecal pump.

Table 2. The p-values for the Mahalanobis distances and the Procrustes distances of the seven
characters among Oriental (OR), Palearctic (PA), and Nearctic (NE) Chaetocnema. MD: Mahalanobis
distances; PD: Procrustes distances.

Pronotum Elytron Head
Aedeagus
in Lateral

View

Aedeagus
in Ventral

View

Spermathecal
Receptacle

Spermathecal
Pump

OR vs. PA p-values for MD <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
p-values for PD <0.0001 <0.0001 <0.0001 <0.0001 0.0002 0.6871 0.0030

OR vs. NE p-values for MD <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 - -
p-values for PD <0.0001 <0.0001 0.0003 0.0797 0.0773 - -

PA vs. NE p-values for MD <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 - -
p-values for PD <0.0001 0.3282 0.0015 0.0001 0.0003 - -

3. Results
3.1. Morphological Differences between Subgenera Chaetocnema s. str. and Udorpes

The two subgenera showed significant differences in pronotum, head, aedeagus, and
spermatheca shapes, with p-values for both Mahalanobis and Procrustes distances of less
than 0.05 (Table 1). The average shapes of the elytron between the two subgenera were not
significantly different, with a p-value of 0.3499 for the Procrustes distance. However, the



Diversity 2023, 15, 918 11 of 17

morphological boundaries of elytra of the two subgenera were distinctly separated from
each other, according to the p-value for the Mahalanobis distance.

Based on the average shapes of the two subgenera (Figure 3H), the pronotum of
subgenus Chaetocnema s. str. was wider than Udorpes. The frons of subgenus Udorpes were
noticeably wider than those of Chaetocnema s. str. The aedeagus in the lateral view of the
subgenus Udorpes exhibited a more curved shape compared to Chaetocnema s. str., and the
shape of the aedeagus in the ventral view of the subgenus Udorpes appeared wider than
Chaetocnema s. str. The spermathecal receptacle of the subgenus Chaetocnema was pear-
shaped and not sinuated, whereas in Udorpes it was sinuated. The apex of the spermathecal
pump of subgenus Udorpes was more flattened than that of Chaetocnema s. str.

These results strongly support the two subgenera arrangement of Chaetocnema in
our analysis.

3.2. Morphological Diversity of Different Characters in Chaetocnema

The first two principal components of the seven characters (pronotum, elytron, head,
aedeagus in lateral view, aedeagus in ventral view, spermathecal receptacle, and spermath-
ecal pump) from all analyzed Chaetocnema species accounted for 87.55%, 94.37%, 84.58%,
73.85%, 79.33%, 84.35%, and 71.95%, respectively, of the variation among the species. This
indicated that the first two components could effectively represent the main shape variation
for all of the characters analyzed. The first two principal components were plotted to
illustrate the variation along the two axes, with 90% equal-frequency ellipses containing
approximately 90% of the specimens in each group (Figures 4 and 7).

Based on the lollipop graphs of deformation, the results indicated that the main shape
change of the pronotum was observed in the posterior margin and posterolateral angles,
whereas a secondary shape change was observed in the length/width ratio and anterior
margin. The elytron showed the main shape change in the length/width ratio, with a
secondary shape change observed in the humeral and apical parts. For the head, the main
shape change was observed in the angle between the supraorbital sulci, with a secondary
shape change in the width of the frontal ridge (interantennal space). In the aedeagus
in lateral view, the main shape change was observed in the curvature and a secondary
shape change could be observed in the length/width ratio. The main shape change of the
aedeagus in the ventral view was observed in the length/width ratio, and a secondary
shape change was observed in the base. The spermathecal receptacle showed the main
shape change in the length/width ratio, with a secondary shape change in the lateral
curvature. Finally, the main shape change in the spermathecal pump was observed at the
apex (Figure 4H).

Based on the PCA results, the morphological diversity of these seven characters was
not equal in Chaetocnema (Figure 5, Table S2). The highest morphological diversity and
most apparent differentiation among species were found in the spermatheca (spermathecal
receptacle and spermathecal pump). The head was the third most diverse character,
followed by the pronotum, aedeagus in lateral view, elytron, and aedeagus in ventral view.
There was a minor difference in the morphological diversity of the pronotum and aedeagus
between the two subgenera (Figure 5, Table S2). Subgenus Chaetocnema s. str. exhibited
much greater morphological diversity than Udorpes in the head, elytron, and spermathecal
pump, but much smaller morphological diversity than that of Udorpes in the spermathecal
receptacle. The aedeagus in the ventral view showed the lowest morphological diversity
among the seven characters in both subgenera. The highest morphological diversity in both
subgenera was found in the spermatheca, specifically in the spermathecal pump among the
subgenus Chaetocnema s. str. Species and the spermathecal receptacle among the subgenus
Udorpes species.

3.3. Morphological Differences of Oriental, Palearctic, and Nearctic Chaetocnema Species

This study observed the greatest morphological diversity in Oriental species in the
spermathecal pump, whereas the aedeagus in the ventral view showed the least diversity. In
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Palearctic species, the greatest morphological diversity was observed in the spermathecal
receptacle, whereas the aedeagus in the ventral view showed the least diversity. The
greatest morphological diversity in Nearctic species was observed in the head, whereas
the aedeagus in the ventral view showed the least diversity. The spermatheca (including
the spermathecal receptacle and the spermathecal pump) demonstrated obviously greater
morphological diversity compared to other characters in Oriental and Palearctic species.
Additionally, the head exhibited significant morphological variations in Chaetocnema for all
three regions. The morphological diversity of the aedeagus in the lateral view was greater
than that in the ventral view for all three regions (Figure 6, Table S3).

This study found that for most morphological features, the morphological variations
in the Palearctic species were greater than those of the Oriental and Nearctic species. This
result was consistent with the size of 90% equal-frequency ellipses, where the ellipse of the
Palearctic species was always the largest (Figure 7).

All of the p-values for both the Mahalanobis distances and the Procrustes distances
between the three geological groups were less than 0.05 for the pronotum and the head
(Table 2), indicating significant differences in the pronotum and the head between the
three geological groups. It can also be seen from the p-values that there were significant
differences in aedeagus (both in the lateral and ventral view) between Oriental and Palearc-
tic, and Nearctic and Palearctic Chaetocnema. There were significant differences in the
elytron between Palearctic and Oriental, and Nearctic and Oriental Chaetocnema. Addition-
ally, there were significant differences in the spermathecal pump between Oriental and
Palearctic Chaetocnema.

According to the Procrustes distances, the average shapes of Nearctic and Palearctic
Chaetocnema had the greatest difference compared to the other region pairs in the pronotum
(Table S4). However, the average shapes of this pair had the smallest difference in the head.
The average shape of the aedeagus in the lateral view of the Oriental Chaetocnema was
more similar to that of the Nearctic species than to the Palearctic species. The Mahalanobis
distances for the pronotum, head, and aedeagus in the lateral view between Palearctic and
Nearctic Chaetocnema were the largest among all region pairs, consistent with the smallest
overlaps of these three characters between Palearctic and Nearctic Chaetocnema compared
to the other region pairs (Table S4, Figure 8).

4. Discussion
4.1. The Subgenera Arrangement and Morphological Diversity of Chaetocnema

In this study, we evaluated the validity of the two subgenera of Chaetocnema using
geometric morphometrics with five external and internal structures (pronotum, elytron,
head, spermatheca, and aedeagus). Additionally, we revealed the morphological diversity
of Chaetocnema in the Oriental, Palearctic, and Nearctic regions. According to the CVA
analyses of the two subgenera, the studied specimens were clustered into two groups for
all seven shape variables.

Significant differences were observed between the subgenus Chaetocnema s. str. And
Udorpes in the pronotum, head, aedeagus, and spermatheca. Surprisingly, the shapes of the
pronotum were also significantly different between these two subgenera, although it was
hard to attribute the species to either subgenus by measuring the width of the pronotum.
The average shape of the pronotum of the subgenus Chaetocnema s. str. Was wider than that
of the subgenus Udorpes. These results strongly support the distinct differences between the
two traditional subgenera. Özdikmen [30] pointed out that the shapes of the spermatheca
could be classified into as many as 13 groups, based on which he proposed 13 subgenera
for the genus Chaetocnema. However, this subgeneric classification was based merely on
the shape of the spermatheca. For a more comprehensive subgeneric classification, more
characters should be taken into consideration, especially those on the head, such as the
width of the frontal ridge, the presence or absence of the frontolateral sulcus, and the
abundance or deficiency of punctures on the vertex and frons. These characters exhibit
significant morphological diversity and can be helpful in distinguishing subgeneric groups.
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The morphological diversity of the seven characters examined was not equivalent. The
highest morphological diversity and most evident differentiation among species was found
in the spermatheca, followed by the head. The morphological diversity of spermatheca
was even higher than that of aedeagus among the Chaetocnema species. This indicates that
female genitalia, like spermatheca, are also very useful and have excellent diagnostic value
in taxonomy. Similar scenarios have been observed in other insect groups. For instance,
in Cydnidae (Hemiptera), the spermathecal characters have great taxonomic value at
specific, generic, and supra-generic levels [38]; in dung beetles (Scarabaeidae: Scarabaeinae),
the spermathecal structures play an important role in separating and diagnosing the
tribes [39]; in Carabidae, Curculionidae, and Elateridae, the spermatheca contributes to
the recognition of species and genera [40–42]. In various taxa of Chrysomeloidea, the
spermatheca provides characters for diagnosis at various ranks (including subfamilies,
genera, and species) [43–49].

The male genitalia have been well-studied and treated as one of the most important
structures providing diagnoses in many insect groups because of their rapid divergence due
to sexual selection [50–54]. However, our analysis showed that the aedeagus of Chaetocnema
has rather low diversity among the seven characters. This may be explained as follows: in
the ventral view, the basal half of the aedeagus of Chaetocnema usually has a similar shape,
cylindrical in general, and the variation usually only occurs in the apical part; in the lateral
view, the aedeagus usually has similar ventrally curved outlines.

The grooves on the head also have great morphological diversity, which provides
important information regarding subgenera delimitation. The main shape variations were
in the angle between the supraorbital sulci and the width of the frontal ridge, as shown by
the PCA results.

Different morphological characters usually experience unequal selective pressures [34],
which may partly explain the observed variation in morphological diversity among the
seven characters. Concerning the morphological diversity of Chaetocnema from the three
biogeographic regions, the morphological diversity of the Palearctic species was greater
than that of the Oriental and Nearctic species for most characters, which is consistent with
the species richness. This difference in diversity may be due to the larger geological range,
more diverse environment, and climate of the Palearctic Region.

4.2. Geometric Morphometrics in the Classification of Higher Taxa

Discrete characters are commonly used in traditional taxonomy. However, when
dealing with difficult taxonomic problems and a lack of discrete characters, geometric
morphometrics can be used to gain valuable insight. In the field of botany and biology, the
application of geometric morphometrics contributes to increasing scientific rigor in describ-
ing the important aspects of the phenotypic dimension of biodiversity [55]. For example,
Viscosi and Cardini [55] applied geometric morphometrics to leaf morphology to explore
its potential use in botany and facilitate its use in taxonomy. Ibañez et al. [2] evaluated the
applicability of GM methods in the taxonomy of mullets at the genera, species, geographic
variant, and stock levels. Karanovic et al. [56] investigated the taxonomic problem of a
subterranean copepod species complex using both the barcoding mitochondrial COI gene
and geometric morphometrics. Li et al. [57] found that geometric morphometric analyses
supported the valid status of the new species of soldier beetles (Coleoptera, Cantharidae).
White et al. [58] evaluated the intraspecific and interspecific morphological variations in
hominins using three-dimensional geometric morphometric methods. In our study, we
used geometric morphometrics to distinguish substantial deformations in specific parts of
the five structures (pronotum, elytron, head, aedeagus, and spermatheca). These shape-
based morphological measurements played an important role in evaluating morphological
diversity and resolving taxonomic problems.

Higher taxa are biological entities that are relatively easy to identify, and the origin
of a new higher taxon has a long-term phylogenetic trend, involving the evolutionary
changes in a large number of features [59,60]. Taxonomy is crucial for exploring and
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understanding biodiversity [1] and the significance of higher taxa in studying biodiversity
patterns has been confirmed [61]. The higher-level elements effectively reflect the natural
evolutionary process [34,62–65]. In this study, the geometric morphometric analysis of
the five structures provides valuable information regarding the subgenera taxonomy of
Chaetocnema, demonstrating the potential of geometric morphometrics in supraspecies
taxa taxonomy.

5. Conclusions

In this study, we conducted a geometric morphometric analysis of the five frequently
used structures for representative species of Chaetocnema, and the results strongly supported
the traditional arrangement of the two subgenera in Chaetocnema. Based on our findings,
we propose using the two subgenera arrangement to facilitate the taxonomic work of
the genus, especially in the Oriental, Palearctic, and Nearctic regions. Additionally, we
found the highest morphological diversity in the spermatheca, which was greater than
that of the aedeagus. This indicates that female genitalia, like spermatheca, are also very
useful in species descriptions and have excellent diagnostic value in taxonomy. For most
features, the morphological variations in the Palearctic species were greater than those of
the Oriental and Nearctic species, probably due to the larger geological range, and more
diverse environment and climate. Despite Chaetocnema species being usually tiny in body
size (sometimes as small as 1.3 mm), our study indicated that geometric morphometrics
could be applied to insects with tiny body sizes. Although the results are based only on
the subgenera level and are limited to the morphological characters of the five structures,
our study shows that geometric morphometrics could be useful in supraspecies taxa
classification as well as species discrimination.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/d15080918/s1. Supplementary File S1: Consists of four tables. Table S1.
List of species in the geometric morphometric analysis. Table S2. Morphological diversity (MD)
of the seven characters of the genus Chaetocnema and two subgenera. Table S3. Morphological
diversity (MD) of the seven characters of Oriental, Palearctic, and Nearctic Chaetocnema. Table S4. The
Mahalanobis distances and Procrustes distances for the seven characters among Oriental, Palearctic,
and Nearctic Chaetocnema. Supplementary File S2: Shapes in the GM analysis: (1) outlines of the
spermatheca of the subgenus Chaetocnema s. str. And Udorpes; (2) curves on the head of the subgenus
Chaetocnema s. str. And Udorpes.
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