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Abstract: Chalcopteryx rutilans Rambur, 1842 (Polythoridae, Odonata) is a species widely distributed
in central Amazonia. Due to its sensitivity to environmental changes, it is a bioindicator species
used to evaluate the environmental conditions of streams in federally protected areas. By sequencing
C. rutilans mitogenome, we report the first whole mitogenome from the Polythoridae family and
the first from an Odonata species endemic to South America. The entire mitogenome has 15,653 bp
and contains 13 protein-coding, 22 tRNA, and two rRNA genes. The nucleotide composition of
the mitogenome is 42.7%, T: 25.5%, C: 19.4%, and G: 12.4%. The AT and GC skews of the mi-
togenome sequence were 0.249 and −0.220, respectively. C. rutilans was recovered as a sister to
Pseudolestes mirabilis Kirby, 1900 (Pseudolestidae), demonstrating the absence of mitogenomes of
species from multiple families in the current literature. Mitogenome data from this study will provide
useful information for further studies on the phylogeny and conservation of Polythoridae.

Keywords: mitogenome; phylogenetic analysis; damselfly; biodiversity; Amazon

1. Introduction

Odonata (Hexapoda: Insecta) is an order of insects known as dragonflies and dam-
selflies. It is divided into three suborders: Zygoptera (about 3000 species), Anisoptera
(about 3000 species), and Anisozygoptera (only three species) [1]. Despite their attractive
coloration and their importance in the food web and biomonitoring of aquatic environ-
ments, genomic knowledge of Odonata is still far behind that of the other insect orders [2]).
The few whole genomes and mitogenomes available are concentrated in research groups
and species found in countries with large economies, such as England, the USA, and
China [3–5]. At the same time, they are rare or absent in poor or developing countries, such
as those in South America.

The genus Chalcopteryx Selys, 1853 (Insecta: Odonata) is an endemic South-American
damselfly of the family Polythoridae (61 species, [1]) that inhabits streams and rivers where
it flies above the water or perches on aquatic macrophytes and on branches of marginal
vegetation and is distinguished by the unique coloration of its hind wings [6]. Their species
lays its eggs on plant debris in the streambed and is characterized by great environmental
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specificity. It is found only in streams and rivers with well-preserved riparian forests, good
environmental conditions, and few anthropogenic disturbances. Because of its sensitivity
to environmental changes, it is a bioindicator species used in the Amazon as part of the
Chico Mendes Institute of Biodiversity Conservation (ICMBio) water monitoring program,
in partnership with local communities, to assess the environmental conditions of rivers in
federally protected areas [7].

Species representing the genus Chalcopteryx are distributed in the states of the cen-
tral and northern regions of Brazil, especially in the Amazon area, as well as in Ar-
gentina, Bolivia, Colombia, Peru, and Venezuela [8,9]. Five species have been described:
Chalcopteryx machadoi Costa, 2005; Chalcopteryx radians Ris, 1914; Chalcopteryx rutilans Ram-
bur, 1842; Chalcopteryx scintillans McLachlan, 1870; and Chalcopteryx seabrai Santos and
Machado, 1961. Chalcopteryx rutilans Rambur, 1842 is a species widely distributed in the
central Amazon. It has a small body size, and both males and females have a conspicuous
black-orange coloration on the pterothorax [10]. The hindwings are very conspicuous, with
an iridescent multicolored reflection (mainly greenish, purple, reddish, and copper), and
when they move, a brief and shiny metallic flash can be seen [11].

Whole mitogenome sequencing provides important information about evolution,
genetic diversity, and species identification by offering higher taxonomic resolution than
single gene regions used in conventional approaches (see [12]). Mitogenomes for the family
Polythoridae are not available in the GenBank (data valid for 24th of April 2023). In this
study, we performed detailed sequencing, annotation, and analysis of the mitogenome of
C. rutilans. In addition, we acquired mitochondrial genome sequences from GenBank for
other Odonata representatives to investigate the phylogenetic position of Polythoridae.
This study is the first time a mitogenome has been reported from the family Polythoridae,
and it is also the first from an Odonata species endemic to South America.

2. Materials and Methods
2.1. Sample Collection and DNA Extraction

Genomic libraries (one from a male and one from a female) were prepared from
specimens of C. rutilans (Figure 1) collected in April 2021 in the Capim River watershed,
Paragominas, Pará, Brazil. Total genomic DNA was extracted from the legs of an adult
individual using the Wizard Genomic DNA Purification Kit (Promega, Madison, WI, USA),
according to the supplier’s instructions, and subsequently quantified using the NanoDrop
1000 spectrophotometer and Qubit 2.0 fluorometer (Thermo Fisher Scientific, Waltham,
MA, USA). The voucher specimens (CHR-01 and CHR-02) were deposited in the natural
history collection of the Museology Course of the Universidade Federal do Pará (UFPA),
Belém, Brazil. The voucher specimens were determined to species level by Leandro Juen,
one of the authors of this article.

2.2. Mitogenome Sequencing, Assembly, Annotation and Bioinformatic Analyses

The genomic libraries were prepared using the Illumina DNA Prep Kit (Illumina,
San Diego, CA, USA) according to the manufacturer’s instructions with a short insert
size of 500 bp. Libraries were then sequenced on a NextSeq550 Illumina platform using a
paired-end High Output Kit v2 (300 cycles) (Illumina).

Raw sequencing data were filtered to remove adapters and low-quality sequences,
yielding approximately 14 Gb. Genome assembly was performed using MEGAHIT [13] and
SOAPdenovo [14]. Protein-coding genes (PCGs), ribosomal RNAs (rRNAs), and transfer
RNAs (tRNAs) locations were predicted by using MITOS Web Server 2 [15]. The AT and GC
skews were calculated according to the following formulas: AT skew = (A − T)/(A + T)
and GC skew = (G − C)/(C + G) [16]. The tandem repeat units of the control region (CR)
were identified with the Tandem Repeats Finder Server (http://tandem.bu.edu/trf/trf.
advanced.submit.html; accessed on 13 June 2023; with default settings, except “Minimum
Alignment Score To Report Repeat”= 40) [17]. The arrangement of genes encoding rRNA
proteins, comparative relative synonymous codon usage (RSCU), and CR organization

http://tandem.bu.edu/trf/trf.advanced.submit.html
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analysis were performed using an in-house Python script. For these analyses, we used
the following mitogenomes deposited in Genbank: Euphaea formosa Hagen in Selys, 1869
(HM126547), Ischnura elegans (Vander Linden, 1820) (KU958378), Matrona basilaris Selys,
1853 (MK722304), Mesopodagrion tibetanum McLachlan, 1896 (MK951671), Platycnemis foliacea
Selys, 1886 (KP233804), and Pseudolestes mirabilis Kirby, 1900 (FJ606784).
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Figure 1. Example of a stream (A) and habitats (B) where the species Chalcopteryx rutilans (C) can be
found in the wild (Capim River Basin, Pará, Brazil). Source: CMP.

2.3. Molecular Phylogenetic Analysis

Phylogenetic analysis of concatenated PCGs from all available Zygoptera mitogenomes
(GenBank, 10 April 2023) was performed using the MAFFT alignment program with default
parameters (Geneious® version 9.0.5 software, [18]) and the IQ-TREE web server [19] using
the ultra-fast bootstrap algorithm with 10,000 replicates and automatic model selection
(GTR + F + I + G4). To show that there are no mitogenomes in South America, information
from the deposited sequences was used to indicate the origin of the related specimens. The
genome sequence data supporting the results of this study are freely available in NCBI’s
GenBank (https://www.ncbi.nlm.nih.gov/; accessed on 13 June 2023) under the accession
number OQ868370.

3. Results and Discussion
3.1. Mitogenome Organization and Nucleotide Composition

The complete mitochondrial genome of C. rutilans was sequenced and assembled
(Figure 2). The mitogenome has 15,653 bp and contains 13 protein-coding, 22 tRNA, and
two rDNA genes. Nucleotide compositions are 42.7%, T: 25.5%, C: 19.4%, and G: 12.4%.

https://www.ncbi.nlm.nih.gov/
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The AT and GC skewness of the mitogenome sequence was 0.249 and −0.220, showing the
A-skew and C-skew.
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The start and termination codons were (respectively) assigned to ND2 (ATT/TAA), COX1
(ATG/T--), COX2 (ATG/T--), ATP8 (ATC/TAA), ATP6 (ATG/TAA), COX3 (ATG/T--), ND3
(ATA/TAG), ND5 (ATT/TAA), ND4 (ATG/TAG), ND4L (ATG/TAA), ND6 (ATA/TAA), Cytb
(ATG/TAA), and ND1 (ATT/TAG) (Table 1).

Table 1. Mitochondrial genome organization and gene content of C. rutilans with detailed description
of gene boundaries, gene length (in bp), as well as start and stop codons for protein-coding genes
and anticodons for tRNA genes. Strand: heavy (H) and light (L).

Region Start Stop Strand Length Intergenic
Nucleotides

Anticodon and Start
Codon/Stop Codon

tRNA-lle 1 69 H 69 −3 GAT
tRNA-Gln 67 134 L 68 0 TTG
tRNA-Met 135 206 H 72 0 CAT

ND2 207 1202 H 996 −2 ATT/TAA
tRNA-Trp 1201 1268 H 68 −8 TCA
tRNA-Cys 1261 1324 L 64 0 GCA
tRNA-Tyr 1325 1392 L 68 33 GTA

COX1 1426 2959 H 1534 0 ATG/T--
tRNA-Leu2 2960 3033 H 74 0 TAA

COX2 3034 3721 H 688 0 ATG/T--
tRNA-Lys 3722 3793 H 72 −1 CTT
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Table 1. Cont.

Region Start Stop Strand Length Intergenic
Nucleotides

Anticodon and Start
Codon/Stop Codon

tRNA-Asp 3793 3856 H 64 0 GTC
ATP8 3857 4018 H 162 −7 ATC/TAA
ATP6 4012 4689 H 678 −1 ATG/TAA
COX3 4689 5475 H 787 0 ATG/T--

tRNA-Gly 5476 5539 H 64 0 TCC
ND3 5540 5893 H 354 −2 ATA/TAG

tRNA-Ala 5892 5967 H 76 −1 TGC
tRNA-Arg 5967 6036 H 70 −3 TCG
tRNA-Asn 6034 6104 H 71 4 GTT
tRNA-Ser 6109 6176 H 68 −1 GCT
tRNA-Glu 6176 6240 H 65 −2 TTC
tRNA-Phe 6239 6306 L 68 0 GAA

ND5 6307 8035 L 1729 0 ATT/TAA
tRNA-His 8036 8101 L 66 0 GTG

ND4 8102 9439 L 1338 −7 ATG/TAG
ND4L 9433 9726 L 294 2 ATG/TAA

tRNA-Thr 9729 9798 H 70 23 TGT
tRNA-Pro 9822 9891 L 70 11 TGG

ND6 9903 10,400 H 498 −1 ATA/TAA
CYTB 10,400 11,533 H 1134 −2 ATG/TAA

tRNA-Ser2 11,532 11,594 H 63 16 TGA
ND1 11,611 12,546 L 936 16 ATT/TAG

tRNA-Leu1 12,563 12,628 L 66 0 TAG
16S rRNA 12,629 13,930 L 1302 4
tRNA-Val 13,935 14,004 L 70 0 TAC
12S rRNA 14,005 14,755 L 751 0

Control region 14,756 15,653 H 898 0

Gene order and orientation, as well as the distribution of genes on the heavy and light
strands, were identical to the mitogenome of the representants of other Zygoptera families,
such as Megapodagrionidae, Euphaedidae, Pseudolestidae, Calopterygidae, Platycnemidi-
dae, and Coenagrionidae. Although not necessary in principle, we show a simple way to
illustrate this similarity between families in Figure 3.
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3.2. Protein-Coding Genes (PCGs)

The overall length of the PCGs in the C. rutilans mitogenome was 11,128 bp, ranging
from 162 bp (ATP8) to 1729 bp (ND5). Most PCGs used the conventional start codon ATG
and ended with the codon TAN (Table 1). As shown in Figure 4, the RSCU was biased for
most amino acids. Comparative summaries of the RSCU of the mitogenomes for families
of Zygoptera show that they are very similar. In addition, synonymous codon preferences
were conserved for all seven species.
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3.3. Transfer and Ribosomal RNA Genes

The mitogenome of C. rutilans has two rRNAs and 22 typical tRNAs. The 16S rRNA
and 12S rRNA have sizes of 751 and 1302 bp, respectively. Compared with other Zygoptera
mitogenomes, the tRNA genes are totally conserved. Among them, 14 tRNAs were encoded
on the heavy strand and the remaining eight on the light strand. As seen in Figure 5, the
22 tRNAs have a typical cloverleaf secondary structure, and their sizes ranged from 63 bp
(tRNA-Ser2) to 76 bp (tRNA-Ala). The total lengths of the 22 tRNAs were 1511 bp.
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3.4. Control Region (CR)

Like other Zygoptera mitogenomes, the CR was located between 12S rRNA and tRNA-
Leu (898 bp) (Figure 6). In C. rutilans, this region was strongly A + T rich, with a base
composition of A = 50.4%, T = 32.1%, C = 11.0%, and G = 06.5%. The control region varied
in size among species (Figure 6), ranging from 407 bp in P. mirabilis to 1512 bp in M. basilaris.
All species had at least one tandem repeat region (Figure 6, Table S1). In C. rutilians, a
29 bp tandem repeat unit extends across one more copy in the first repeat region. In the
second repeat region, a 33 bp tandem repeat unit extends across a copy with a third partial
copy. In addition, there are other conserved elements such as poly-A stretches (positions:
14,980–15,009 bp; 15,460–15,476 bp; 15,478–15,488 bp) and microsatellite-like elements
(TTA)3 (position: 15,326–15,334 bp) that are potentially useful markers for analyzing the
geographic structure of populations. Although high A + T rich nucleotide content and
tandemly repeated sequences are not discussed in the published mitogenomes of Zygoptera,
the features may be involved in the initiation of replication in the mitochondrial genome,
as has been suggested in other invertebrates (e.g., [20,21]).

Diversity 2023, 15, x FOR PEER REVIEW 9 of 12 
 

 

microsatellite-like elements (TTA)3 (position: 15,326 bp–15,334 bp) that are potentially 
useful markers for analyzing the geographic structure of populations. Although high A + 
T rich nucleotide content and tandemly repeated sequences are not discussed in the pub-
lished mitogenomes of Zygoptera, the features may be involved in the initiation of repli-
cation in the mitochondrial genome, as has been suggested in other invertebrates (e.g., 
[20,21]). 

 
Figure 6. Organization of the control region in the complete mitogenomes of C. rutilans and six other 
species from different Zygoptera families. 

3.5. Phylogenetic Relationships 
Based on the collected mitogenomes, we reconstructed the phylogenetic relation-

ships within Odonata, including 26 Zygoptera species and one species from Anisoptera 
(Anax imperator Leach in Brewster, 1815) and Anisozygoptera (Epiophlebia superstes Selys, 
1889) as the outgroup (Figure 7). This mitogenome is not only the first mitogenome of the 
family Polythoridae but also the first of the so-called ‘Calopterygoidea Group 2’ defined 
by Dijkstra et al. [22] and continued by Bybee et al. [23], comprising nine families exclu-
sively from the Neotropics and Afrotropics. The phylogeny resulting from our study 
(PCGs) is also consistent with that found by Kohli et al. [24] (transcriptome), with the 
superfamily Calopterygoidea recovered as monophyletic, which differs from the phylog-
eny proposed by Dijkstra et al. [22] (nuclear and mitochondrial genes) and Bybee et al. 
[23] (anchored hybrid enrichment-AHE). 

Figure 6. Organization of the control region in the complete mitogenomes of C. rutilans and six other
species from different Zygoptera families.

3.5. Phylogenetic Relationships

Based on the collected mitogenomes, we reconstructed the phylogenetic relation-
ships within Odonata, including 26 Zygoptera species and one species from Anisoptera
(Anax imperator Leach in Brewster, 1815) and Anisozygoptera (Epiophlebia superstes Selys,
1889) as the outgroup (Figure 7). This mitogenome is not only the first mitogenome of the
family Polythoridae but also the first of the so-called ‘Calopterygoidea Group 2’ defined by
Dijkstra et al. [22] and continued by Bybee et al. [23], comprising nine families exclusively
from the Neotropics and Afrotropics. The phylogeny resulting from our study (PCGs) is
also consistent with that found by Kohli et al. [24] (transcriptome), with the superfamily
Calopterygoidea recovered as monophyletic, which differs from the phylogeny proposed
by Dijkstra et al. [22] (nuclear and mitochondrial genes) and Bybee et al. [23] (anchored
hybrid enrichment-AHE).
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Figure 7. Phylogenetic tree of Zygoptera based on 13 PCGs derived from IQ-tree, with information
on the origin of the sequenced specimens. Values near the nodes are maximum likelihood ultrafast
bootstrap values.

In this study, C. rutilans was recovered as a sister to Pseudolestes mirabilis (Insecta:
Odonata), a species of the monospecific family Pseudolestidae endemic to China [25]. Fol-
lowing other phylogenies [17,18], several other families such as Philogeniidae, Protolestidae,
and Dicteriadidae should be represented between these two named species in our phy-
logeny, but no genomic data are available. This highlights that mitogenomes (or even
single gene sequences) for several tropical families are not yet available in global databases,
as is the case for several insect orders, e.g., Trichoptera, Ephemeroptera, Plecoptera, and
Diptera (e.g., [26,27]). As other authors have noted (e.g., [28]), more mitogenomes from
other Odonata species are needed to provide a better estimate of phylogeny using this type
of data.

4. Conclusions

Chalcopteryx rutilans is the first species of its family whose mitogenome has been
sequenced. This mitogenome contains 13 protein-coding, 22 tRNA, and two rRNA genes. It
has a similar structure and gene order to other deposited Zygoptera species. Phylogenetic
analysis showed that it was recovered as a sister to Pseudolestes mirabilis (Odonata: Pseu-
dolestidae), demonstrating the absence of mitogenomes from species in several families in
the current literature. Mitogenome data from this study will provide useful information for
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further studies on the phylogeny of Zygoptera, databases for phylogeny, DNA barcoding
and metabarcoding, etc.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/d15080908/s1, Table S1. Comparison of the control region in
C. rutilans and six other species from different Zygoptera families.
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