
Citation: Malakoff, H.; Tőzsér, D.;

Tóthmérész, B.; Magura, T.

BugTracker: Software for Tracking and

Measuring Arthropod Activity.

Diversity 2023, 15, 846. https://

doi.org/10.3390/d15070846

Academic Editors: Paolo Solari,

Giorgia Sollai, Roberto Massimo

Crnjar, Anita Giglio, Piero G.

Giulianini and Michael Wink

Received: 9 June 2023

Revised: 7 July 2023

Accepted: 8 July 2023

Published: 10 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diversity

Article

BugTracker: Software for Tracking and Measuring
Arthropod Activity
Hajnalka Malakoff 1,2,3 , Dávid Tőzsér 2,4 , Béla Tóthmérész 2,3 and Tibor Magura 2,5,*

1 Juhász-Nagy Pall Doctoral School of Biology and Environmental Sciences, University of Debrecen, Egyetem
Sq. 1, H-4032 Debrecen, Hungary; roffa.hajnalka.91@gmail.com

2 Department of Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem Sq. 1,
H-4032 Debrecen, Hungary; tozser.david@windowslive.com (D.T.); tothmerb@gmail.com (B.T.)

3 MTA-DE Biodiversity and Ecosystem Services Research Group, Egyetem Sq. 1, H-4032 Debrecen, Hungary
4 Circular Economy Analysis Center, Hungarian University of Agriculture and Life Sciences, Páter Károly Str. 1,

H-2100 Gödöllő, Hungary
5 ELKH-DE Anthropocene Ecology Research Group, Egyetem Sq. 1, H-4032 Debrecen, Hungary
* Correspondence: magura.tibor@science.unideb.hu

Abstract: The automated video tracking of the activity/movement of an experimental organism
is essential for reliable, repeatable quantitative analyses in behavioral ecology and also in other
disciplines. There are only some open-access, open-source automated tracking software applications
that can track unmarked organisms. Moreover, several of these software applications are substantially
affected by brightness and differences in the lighting conditions of the video recording. Our Python-
based software, called BugTracker, uses the latest innovations in computer vision technologies to
solve these problems. By analyzing videos with considerably different lighting conditions with
BugTracker and other available software, we demonstrate that our software could reliably track the
studied organisms of any size and speed. Additionally, the results provide accurate measures of
the organism’s movements. BugTracker is the most reliable currently available, easy-to-use, and
automated tracking software compatible with the Windows, Linux, and MacOS operating systems.

Keywords: behavior; activity; locomotion; open field test; video; tracking; Python programming
language

1. Introduction

Global anthropogenic activities, such as agriculture, forestry, and urbanization, are
leading to significant changes in environments and creating patchworks of modified land
types [1]. Alterations in environmental parameters trigger pressures on organisms living
there, modifying their life history (phenology, body condition, and productivity) and
behavioral parameters (activity, exploratory, and boldness) [2,3]. Changes in behavior
are possibly the fastest way to react to unfavorable changes in environmental conditions;
thus, behavioral studies are nowadays widespread [4]. In many disciplines, including
behavioral ecology, ethology, and evolutionary ecology, a key question concerns how to
quantify the activity/movement of the studied organisms. However, movement is also a
crucial parameter, and a proxy is frequently used to evaluate the effect of human-associated
stressors, chemicals, and pharmaceuticals [5]. Therefore, precise and accurate methods
for measuring movements using noninvasive techniques are highly requested [6]. One
common way to study the movement of arthropods is with artificial laboratory test arenas
using video recordings over short periods (minutes) [7].

The availability of video-making products and powerful personal computers that are
capable of complex, frame-by-frame analyses is making it increasingly feasible to record
and measure animal movements [8]. Thus, even with a small investment or by using a cell
phone, we can make a video recording of their movements. The fast transfer of data enables

Diversity 2023, 15, 846. https://doi.org/10.3390/d15070846 https://www.mdpi.com/journal/diversity

https://doi.org/10.3390/d15070846
https://doi.org/10.3390/d15070846
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diversity
https://www.mdpi.com
https://orcid.org/0009-0006-0682-1821
https://orcid.org/0000-0002-7627-9496
https://orcid.org/0000-0002-4766-7668
https://orcid.org/0000-0002-9130-6122
https://doi.org/10.3390/d15070846
https://www.mdpi.com/journal/diversity
https://www.mdpi.com/article/10.3390/d15070846?type=check_update&version=1


Diversity 2023, 15, 846 2 of 10

video recordings to be sent directly to a computer. Thus, we can even process these data in
real time, or we can automate the processes and perform multiple analyses simultaneously
with high precision and accuracy.

Automated monitoring systems provide a solution to either detect behaviors that
occur only for a short period and then blend into each other or involve long periods of
inactivity or possibly require continuous attention [9]. Reducing human resources can
minimalize calculation and processing errors and promote task parallelization. Today,
several software applications provide solutions for modeling and processing ecological
problems and tasks. Although most of these pieces of software are parts of a prewritten
standard process, there are always experiment-specific steps that pose a challenge to
existing ones, possibly requiring the modification of the existing code in ways that are
not supported by the code that has already been written and would use incompatible
algorithms. Most of them are well suited to particular arenas and animals but are not
capable of tracking arthropods of any species, shape, or size, regardless of the arena shape.
Also, some software is proprietary, which means its creator prohibits users from freely
sharing or modifying it, and its usage usually costs money. Based on these aforementioned
issues, the prospect is given to open-source programs created with modern coding tools
that enable the easy and quick development of solutions for a given task.

There are software applications that are capable of tracking one or multiple
animals [10–13]. However, they use different methods for tracking than what we pro-
vide in this study. They detect an object based on contrast, basically segmenting focal
objects from the background. Because of this, the examined area should be substantially
brighter than the trackable animal. So, these programs are substantially affected by bright-
ness and differences in lighting conditions in the area. Here, we propose an open-source
tracking software, BugTracker, which uses a more robust and complex algorithm for tracking
than the threshold- or contrast-based alternatives. Below, we summarize the functions of
the software, offer examples of its applications, compare its characteristics and performance
to other tracking software, and discuss its strengths and limitations.

2. Materials and Methods
2.1. Software

BugTracker was created to use a newer algorithm for tracking than existing solutions
and to be optimized for testing a specified behavioral parameter, which can be used to
facilitate the measurement and evaluation process and increase repeatability. It uses the
CSRT (discriminative correlation filter with channel and spatial reliability) algorithm; thus,
it is less affected by brightness and differences in the lighting conditions in the area.

BugTracker is a Python-based program that uses the open-source OpenCV software
library (https://opencv.org, accessed on 11 April 2020) for computer vision algorithms to
identify shapes and track objects. Python is a simple and easy-to-understand programming
language for nontechnical users, and it is very popular in science [14,15]. Because of the
increasing popularity and usage of the R programming language among ecologists, we
also intend to create an R version of the software.

The goal of the OpenCV software library is to provide tools for solving computer
vision problems. This includes a large variety of algorithms both for low-level image
processing, like object recognition and tracking functions, and high-level algorithms, such
as face recognition, pedestrian detection, feature matching, and tracking [16].

The software is designed to run multiple instances at once, but there is no GUI
(graphical user interface) available yet for the configuration. It is easy to install and
configure, even for nontechnical users. It does not require any programming knowledge to
use it. BugTracker is available under GNU General Public License v3.0, with an installation
and usage guide accessible on GitHub: https://github.com/Roffagalaxis/Bugtracker
(accessed on 29 March 2023). We chose GitHub because of its popularity within and
outside of academia, which increases the probability of it being discovered by people with
programming knowledge. Making your research publicly accessible in this way leads to

https://opencv.org
https://github.com/Roffagalaxis/Bugtracker


Diversity 2023, 15, 846 3 of 10

higher citation counts and a larger impact [17]. If the complete research project is hosted on
a free-to-use site like GitHub, it becomes more easily reproducible and transparent, as how
the code and data changed during the journey from idea to publication can be reviewed.
With a public repository, anyone can retrieve the previous status of the research at any
time [18].

2.2. Defining the Testing Area

The first step in the usage of the BugTracker software is to identify the analyzed area.
We can define a square area manually, or we can use automatic detection, which works
with any shape if the area has a visible barrier.

Manual setting uses the following codes:

initarea = cv2.selectROI(framename, image, fromCenter = False, showCrosshair = True)
for i in range (0, area [2], step_ver):
cv2.line(image, (area [0] + i, area [1]), (area [0] + i, area [3] + area [1]), (0, 255, 0), 1)
for i in range (0, area [3], step_hor):
cv2.line(image, (area [0], area [1] + i), (area [2] + area [0], area [1] + i), (0, 255, 0), 1)

Algorithm for manual setting:

1. Stop the video and evoke the mouse control for the user to select the area.
2. Draw the vertical lines of the squares.
3. Draw the horizontal lines of the squares.
4. The user can later adjust these lines with the W, A, S, and D keys on the keyboard at

any time while the video is running.

The automatic mode searches for object contours based on border following algo-
rithms [19]. A border following algorithm is a core technique for processing digital images.
It derives a series of coordinates from the boundary between an I-pixel and a connected
component of an O-pixel (i.e., background). These techniques have been thoroughly studied
because of their many uses in computer vision [20–27].

The automatic area detector method uses the following codes for detecting the test
arena and squares:

gray = cv2.cvtColor (image, cv2.COLOR_BGR2GRAY)
blur_gray = cv2.GaussianBlur (gray, (5, 5), 0)
edges = cv2.Canny (blur_gray, 50, 150)
contours, hierarchy = cv2.findContours (edges, cv2.RETR_EXTERNAL,
cv2.CHAIN_A-PROX_NONE)

Algorithm for automatic area detection:

1. Convert image to grayscale format.
2. Apply binary thresholding.
3. Find contours based on the border following algorithms.

Using various videos, we examined the effect of light conditions on the automatic
area detection efficiency for open field tests. We concluded that the ideal conditions for
recording video are cold light from a vertical 90◦ angle or using a lightbox in order to create
as little shadow as possible around the studied animal (Figure 1).



Diversity 2023, 15, 846 4 of 10

Figure 1. Steps of the process of arthropod tracking. For details of this particular open field test, see
Section 2.4 (Examples of the Software’s Applications).

2.3. Tracking the Defined Test Organism

After defining the test area, we need to focus on short-term and model-free object
tracking, which is an open and actively studied problem [28–30]. Localizing a target in
a continuously moving video requires significant computer resources. The results also
depend on various factors like distinguishability from the background, lighting conditions,
presence of shadows, fast object movement, disappearances, or deformations [31–34].

Currently available software solutions mostly use two types of detection techniques:
static and dynamic background subtraction. The static one uses a reference frame or video,
where only the background is visible without any animals. The dynamic technique works
with moving or decaying average models, where detection counts on illumination or other
gradual changes to the frame [35].

OpenCV includes the following built-in tracking algorithms:

• cv2.TrackerCSRT_create;
• cv2.TrackerKCF_create;
• cv2.TrackerMIL_create;
• cv2.legacy.TrackerBoosting_create;
• cv2.legacy.TrackerTLD_create;
• cv2.legacy.TrackerMedianFlow_create;



Diversity 2023, 15, 846 5 of 10

• cv2.legacy.TrackerMOSSE_create.

Based on a preliminary test, the built-in CSRT (discriminative correlation filter with
channel and spatial reliability) tracker works with the best accuracy. The CSRT algorithm
uses a spatial reliability map to find the examined object that is most suitable for tracking.
The spatial reliability map is estimated using a graph labeling algorithm. This grants a sig-
nificantly wider search region, the possibility to use complex backgrounds, and improved
nonrectangular object tracking [36,37].

It was also chosen because it handles special cases like object crosses or disappearances,
and there is no limit to the size of the examined individual, so it is also suitable for tracking
the movements of both small and large animals.

The main functions of any of the above trackers are:

initTracker = cv2.selectROI (showedframe, image, fromCenter = False, showCrosshair = True)
tracker.init (sourceframe, initTracker)
(success, box) = tracker.update (sourceframe)

Algorithm to call tracking:

1. Stop the video and evoke the mouse control for the user to select the outline of the
object they intend to track.

2. Start the tracking based on these boundaries.
3. Each frame looks for the object, and it reports back whether it finds it and the outline

where it was found.

The user sets the outline of an animal to track, and the program will continue the
tracking until the input video is finished.

2.4. Examples of the Software’s Applications

BugTracker was optimized on videos created by Magura and his colleagues. They
collected rove beetles along a rural–urban gradient, in and near Debrecen city (Eastern
Hungary). Eight forest stands were selected along the gradient: four rural sites, and four in
urban areas. The rural sites were located in a large forest of 1082 hectares in old (>130 years)
forest stands, where English oak (Quercus robur) was the dominant species. All urban sites
were isolated fragments of a once-continuous old forest (>130 years) dominated by English
oak (Quercus robur). The rove beetles were sampled during their main activity periods using
live pitfall traps. The traps were checked twice a week, from early April to late June. The
collected beetles were transported to the laboratory, where standard conditions (24 ◦C, 40%
relative humidity, and natural L:D cycle) were provided. In the laboratory, the beetles were
left to rest with access to water but no food [38]. After the resting period, the activity of the
beetles was individually tested in a novel environment, also called an open field test [39,40].
In the test arena, each beetle was covered with a Petri dish, and when it stopped moving,
the Petri dish was lifted, and the movement of the beetle was recorded for the next 90 s
with a GoPro HERO6 camera (CHDHX-601-FW) [38].

The current version of the BugTracker software was designed to automate the process-
ing of this test in the best possible way, as this test is often used to evaluate exploratory
behavior [41–43]. In the basic videos, the software worked with a preset test environment,
which consisted of an open box (364 × 230 mm) whose bottom was divided into 35 equal-
sized squares [38]. The software was created in such a way that the grid lines could be
added to the grids already placed at the bottom of the box, but this part can be omitted
using the software, as it can create its grid structure during the session.

2.5. Software Output

The current version of the software provides basic information for the user, including
a graph of the trajectory of the bug’s movement and the number of visited cells of the grid.
After the video evaluation, we can print both the graph of the trajectory and the number
of visited cells (see Figure 1). The number of visited cells is a vital parameter during an
ecological study [38].



Diversity 2023, 15, 846 6 of 10

2.6. Comparing the Properties of BugTracker with Other Similar Software

We compared the properties of our software to the other, currently available alterna-
tives to highlight the differences. The main properties of the programs are summarized in
Table 1.

Table 1. Main properties of the programs used to compare their performances.

Software Environment Interface Open Source Method Visualization
Process

Object Crosses
Handling

BugTracker Python,
OpenCV

Terminal-
based/Command-

based
Yes CSRT Yes Yes, by tracker

Tracktor [10] Python,
OpenCV

Command-
based Yes

Dynamic
background
subtraction

Yes No

ToxTrac [11] C++, OpenCV GUI No
Dynamic

background
subtraction

No

Yes, by
matching

similarities of
the trajectory

Pathtrackr [13] R Command-
based Yes

Static
background
subtraction

Yes No

Environment—programming language and library used; Interface—type of interactive user interface;
Methods—computer vision technology used in the software; Visualization process—whether the user can
follow the tracking process with the software; Object crosses handling—whether the software can solve crosses
of movement paths or disappearances.

2.7. Video Quality

For the comparison, we used video recordings with the following lighting and camera
stability parameters: (1) video recording with ideal lighting conditions (next to the ceiling
lamps, an additional external lighting source directed towards the test arena) and a fixed
camera (using a tripod); (2) video recording with moderate lighting conditions (using only
ceiling lamps without an additional external lighting source) and a fixed camera (using
a tripod); and (3) video recording with moderate lighting conditions (using only ceiling
lamps without an additional external lighting source) and a nonfixed, hand-held camera.

The outline of the insect was set after the Petri dish was lifted during the set-up of
ToxTrax and Bugtracker for the best possible results. There is no similar setting in Tracktor
and Pathtrackr.

3. Results

We compared the performance of our software to the currently available alternatives
using the same videos with the various lighting and camera stability conditions. Based
on our testing, none of the example video recordings could be calibrated well using
Tracktor, so the software did not produce accurate tracking results for the videos. After
proper calibration, ToxTrac worked precisely on the video recordings with the ideal and
moderate lighting conditions and a fixed camera, but it failed on the hand-held video
recording. Pathtracker was able to track the animal with the ideal lighting conditions
with a fixed camera, but it could not continuously track the animal’s movements under
moderate lighting conditions with a fixed camera. In addition, the video recording with
a hand-held camera under moderate lighting conditions could not be processed by this
program at all. Our software, BugTracker, was able to precisely track the target animals
during the whole video recordings with various lighting and camera stability conditions
(Figure 2). The number of visited squares, a recognized measure of activity and exploration
in arthropods [38], counted by the four animal-tracking software applications were also



Diversity 2023, 15, 846 7 of 10

markedly different for the video recordings under suboptimal parameters (i.e., moderate
lighting conditions and/or a nonfixed, hand-held camera; Table 2).

Figure 2. Performance of four tracking programs using the same video recordings with different
lighting and camera stability conditions. Recorded movement paths: Tracktor (a–c); ToxTrac (d–f);
Pathtrackr (g–i); BugTracker (j–l).



Diversity 2023, 15, 846 8 of 10

Table 2. The number of visited squares counted manually and with the four animal-tracking software
applications using video recordings with different lighting and camera stability conditions. The
values highlighted in red indicate that the application was unable to track the arthropod’s movement.
The values marked in orange indicate incorrect results, while the values highlighted in green indicate
correct results for the visited square numbers.

Software

Video with Ideal
Lighting Conditions
and a Fixed Camera

Recording the
Movements of
Pardosa alacris

(Lycosidae)

Video without an
External Light

Source and a Fixed
Camera Recording
the Movements of

Armadillidium
vulgare

(Armadillidiidae)

Video without an
External Light
Source and a

Nonfixed, Moving,
Hand-Held Camera

Recording the
Movements of
Pardosa alacris

(Lycosidae)
Manual counting 21 16 12

Tracktor [10] 0 0 0
ToxTrac [11] 21 17 7

Pathtrackr [13] 21 14 0
BugTracker 21 16 12

4. Discussion
Future Software Developments

An open-source software allows users and developers to use the knowledge of the
software for their personalized experiments. The most important duty is to develop a proper
GUI (graphical user interface) and an R version of the software to help the adaptation of
the software among entomologists and other researchers.

The length of the trajectory, average acceleration, and speed are also useful information
for researchers analyzing animal movements. We would like to include the measurement
of these parameters in the software. Tracking multiple individuals at the same time in the
same arena is also planned.

An improved version of our software can even be suitable for processing UAS camera
recordings and for tracking location changes and behavioral patterns recorded on aerial
photographs. Nowadays, the use of UAS in scientific research is increasing rapidly, as it
can provide researchers with a completely new perspective.

Since the CSRT tracker does not need a constant background, it is not only suitable
for tracking the movement of living beings but could be used for tracking vehicles. An
advanced version of our software could also be suitable for following a live recording.
Implementing this feature also means that we could track the movement of a species like
Silpha tristis (Silphidae) for weeks in a closed terrarium. Even if the beetle hid somewhere,
the tracker could continue tracking it when it came out of hiding. From these data, we
could determine when and how much distance it moves during a day or week. We could
examine whether it moves less when it becomes older.

5. Conclusions

With the use of the BugTracker software, human resources can be optimized during
open field experiments. It can reduce calculation and processing errors caused by human
factors and promote task parallelization. During studies, arthropods are not limited by
species, shape, or size either; the movements of Acinophus ammophilus (Carabidae), which is
a large beetle (20–28 mm), or even small ones, such as Armadillidium vulgare (Armadillidiidae)
with a 0.7–18 mm length, can be monitored effectively. We armed the software with the
recent tracking algorithms, which provide better results under unfavorable conditions
than the existing solutions and are optimized for testing a specified behavioral parameter,
which can facilitate the evaluation. Since the code for this software is open and available
on GitHub, it is easily accessible and can be used by anyone in the Python environment.
Its development is quite broad because of the use of the Python programming language,



Diversity 2023, 15, 846 9 of 10

as it is simple and understandable, even for novice programmers, and later it can also be
properly integrated into R, thus making it even more widely available to users.

Author Contributions: Conceptualization, H.M., B.T. and T.M.; methodology, H.M., B.T. and T.M.;
software, H.M.; validation, H.M.; formal analysis, H.M. and T.M.; investigation, H.M. and T.M.;
resources, H.M. and T.M.; data curation, H.M. and T.M.; writing—original draft preparation, H.M.;
writing—review and editing, B.T., D.T. and T.M.; visualization, H.M.; supervision, B.T. and T.M.;
project administration, H.M. and T.M.; funding acquisition, H.M., D.T., B.T. and T.M. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was partly supported by the National Research, Development, and Innovation
Fund, grant numbers: OTKA K-131459 (Magura, Tibor) and OTKA-PD-138806 (Tőzsér, Dávid).

Institutional Review Board Statement: Ethical review and approval were waived for this study
because its protocol did not involve invasive measurements in animals.

Informed Consent Statement: Not applicable.

Data Availability Statement: Codes, usage guide, and example videos are available on GitHub:
https://github.com/Roffagalaxis/Bugtracker (accessed on 29 March 2023).

Acknowledgments: We thank Maria Toth and Panna Boros for supporting the development of
BugTracker.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kerr, J.T.; Currie, D.J. Effects of human activity on global extinction risk. Conserv. Biol. 1995, 9, 1528–1538. [CrossRef]
2. Wong, B.B.M.; Candolin, U. Behavioral responses to changing environments. Behav. Ecol. 2015, 26, 665–673. [CrossRef]
3. Cote, J.; Clobert, J.; Fogarty, S.; Sih, A. Personality-dependent dispersal: Characterization, ontogeny and consequences for spatially

structured populations. Philos. Trans. R. Soc. B 2010, 365, 4065–4076. [CrossRef] [PubMed]
4. Sih, A. Understanding variation in behavioural responses to human-induced rapid environmental change: A conceptual overview.

Anim. Behav. 2013, 85, 1077–1088. [CrossRef]
5. Seehausen, O.; Alphen, J.J.M.; Witte, F. Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science

1997, 277, 1808–1811. [CrossRef]
6. Dell, A.I.; Bender, J.A.; Branson, K.; Couzin, I.D.; de Polavieja, G.G.; Noldus, L.P.J.J.; Pérez-Escudero, A.; Perona, P.; Straw, A.D.;

Wikelski, M.; et al. Automated image-based tracking and its application in ecology. Trends Ecol. Evol. 2014, 29, 417–428. [CrossRef]
[PubMed]

7. Zaller, J.G.; Kerschbaumer, G.; Rizzoli, R.; Tiefenbacher, A.; Gruber, E.; Schedl, H. Monitoring arthropods in protected grasslands:
Comparing pitfall trapping, quadrat sampling and video monitoring. Web Ecol. 2015, 15, 15–23. [CrossRef]

8. Richard, F.O.; Margaret, C.T. Monitoring animals’ movements using digitized video images. Behav. Res. Meth. Instr. 1988, 20,
485–490. [CrossRef]

9. Martin, B.R.; Prescott, W.R.; Zhu, M. Quantitation of rodent catalepsy by a computer-imaging technique. Pharmacol. Biochem.
Behav. 1992, 43, 381–386. [CrossRef]

10. Sridhar, V.H.; Roche, D.G.; Gingins, S. Tracktor: Image-based automated tracking of animal movement and behaviour. Methods
Ecol. Evol. 2019, 10, 810–820. [CrossRef]

11. Rodriguez, A.; Zhang, H.; Klaminder, J.; Brodin, T.; Andersson, P.L.; Andersson, M. ToxTrac: A fast and robust software for
tracking organisms. Methods Ecol. Evol. 2017, 9, 460–464. [CrossRef]

12. Yamanaka, O.; Takeuchi, R. UMATracker: An intuitive image-based tracking platform. J. Exp. Biol. 2018, 221, jeb182469. [CrossRef]
[PubMed]

13. Harmer, A.M.T.; Thomas, D.B. pathtrackr: An r package for video tracking and analysing animal movement. Methods Ecol. Evol.
2019, 10, 1196–1202. [CrossRef]

14. Vineesh, C.; Nehemiah, S. A review on using Python as a preferred programming language for beginners. Int. Res. J. Eng. Technol.
2021, 8, 4258–4263. Available online: https://www.irjet.net/archives/V8/i8/IRJET-V8I8505.pdf (accessed on 29 March 2023).

15. Málik-Roffa, H. Ízeltlábúak Viselkedés Kutatását Támogató Szoftver Fejlesztése Python Nyelven (Development of Software
Supporting the Research of Arthropod Behavior in Python). Master’s Thesis, GAMF Faculty of Engineering and Computer
Science John von Neumann University„ Kecskemét, Hungary, 2021.

16. Pulli, K.; Baksheev, A.; Kornyakov, K.; Eruhimov, V. Real-time computer vision with OpenCV. Commun. ACM 2012, 55, 61–69.
[CrossRef]

17. Piwowar, H.A.; Day, R.S.; Fridsma, D.B. Sharing detailed research data is associated with increased citation rate. PLoS ONE 2007,
2, e308. [CrossRef]

https://github.com/Roffagalaxis/Bugtracker
https://doi.org/10.1046/j.1523-1739.1995.09061528.x
https://doi.org/10.1093/beheco/aru183
https://doi.org/10.1098/rstb.2010.0176
https://www.ncbi.nlm.nih.gov/pubmed/21078658
https://doi.org/10.1016/j.anbehav.2013.02.017
https://doi.org/10.1126/science.277.5333.1808
https://doi.org/10.1016/j.tree.2014.05.004
https://www.ncbi.nlm.nih.gov/pubmed/24908439
https://doi.org/10.5194/we-15-15-2015
https://doi.org/10.3758/BF03202701
https://doi.org/10.1016/0091-3057(92)90166-D
https://doi.org/10.1111/2041-210X.13166
https://doi.org/10.1111/2041-210X.12874
https://doi.org/10.1242/jeb.182469
https://www.ncbi.nlm.nih.gov/pubmed/29954834
https://doi.org/10.1111/2041-210X.13200
https://www.irjet.net/archives/V8/i8/IRJET-V8I8505.pdf
https://doi.org/10.1145/2184319.2184337
https://doi.org/10.1371/journal.pone.0000308


Diversity 2023, 15, 846 10 of 10

18. Jones, Z.M. Git/GitHub, transparency, and legitimacy in quantitative research. Political Methodol. 2013, 21, 6–7.
19. Suzuki, S.; Be, K. Topological structural analysis of digitized binary images by border following. Comput. Vision Graph. 1985, 30,

32–46. [CrossRef]
20. Rosenfeld, A.; Kak, A.C. Digital Picture Processing, 2nd ed.; Academic Press: New York, NY, USA, 1982; Volume 2.
21. Rosenfeld, A. Connectivity in digital pictures. J. Assoc. Cornput. Mach. 1970, 17, 146–160. [CrossRef]
22. Yokoi, S.; Toriwaki, J.; Fukumura, T. An analysis of topological properties of digitized binary pictures using local features. Comput.

Graph. Image Process 1975, 4, 63–73. [CrossRef]
23. Li, Z.; Yokoi, S.; Toriwaki, J.; Fukumura, T. Border following and reconstruction of binary pictures using grid point representation.

Trans. Inst. Electron. Commun. Eng. Jpn. 1982, J65, 1203–1210.
24. Pavlidis, T. Algorithms for Graphics and Image Processing, 1st ed.; Computer Science Press, Inc.: Rockville, MY, USA, 1982.
25. Morrin II, T.H. Chain-link compression of arbitrary black-white image. Comput. Graph. Image Process 1976, 5, 172–189. [CrossRef]
26. Agui, T.; Iwata, I. Topological structure analysis of pictures by digital computer. Syst. Comput. Controls 1979, 10, 10–19.
27. Pavlidis, T. Structural Pattern Recognition; Springer: Berlin/Heidelberg, Germany, 1977.
28. Wu, Y.; Lim, J.; Yang, M.H. Online object tracking: A benchmark. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, Portland, OR, USA, 23–28 June 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 2411–2418. [CrossRef]
29. Kristan, M.; Pflugfelder, R.; Leonardis, A.; Matas, J.; Porikli, F.; Cehovin, L.; Nebehay, G.; Fernandez, G.; Vojir, T.; Gatt, A.; et al.

The Visual Object Tracking VOT2013 Challenge Results. In Proceedings of the 2013 IEEE International Conference on Computer
Vision Workshops, Washington, DC, USA, 2–8 December 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 98–111. [CrossRef]

30. Kristan, M.; Pflugfelder, R.; Leonardis, A.; Matas, J.; Cehovin, L.; Nebehay, G.; Vojir, T.; Fernandez, G.; Lukežič, A.; Dimitriev, A.;
et al. The Visual Object Tracking VOT2014 Challenge Results. In Proceedings of the Computer Vision—ECCV 2014 Workshops,
Zurich, Switzerland, 6–7 September 2014; ECCV 2014, Lecture Notes in Computer Science. Agapito, L., Bronstein, M., Rother, C.,
Eds.; Springer: Cham, Switzerland, 2015. [CrossRef]

31. Kristan, M.; Matas, J.; Leonardis, A.; Felsberg, M.; Cehovin, L.; Fernandez, G.; Vojir, T.; Hager, G.; Nebehay, G.; Pflugfelder, R.
The Visual Object Tracking VOT2015 Challenge Results. In Proceedings of the 2015 IEEE International Conference on Computer
Vision Workshop (ICCVW), Santiago, Chile, 7–13 December 2015; IEEE: Piscataway, NJ, USA, 2015. [CrossRef]

32. Liang, P.; Blasch, E.; Ling, H. Encoding color information for visual tracking: Algorithms and benchmark. IEEE Trans. Image Proc.
2015, 24, 5630–5644. [CrossRef] [PubMed]

33. Smeulders, A.; Chu, D.; Cucchiara, R.; Calderara, S.; Dehghan, A.; Shah, M. Visual tracking: An experimental survey. IEEE Trans.
Pattern Anal. Mach. Intell. 2014, 36, 1442–1468. [CrossRef] [PubMed]

34. Mueller, M.; Smith, N.; Ghanem, B. A Benchmark and Simulator for UAV Tracking. In Computer Vision—ECCV 2016. ECCV 2016.
Lecture Notes in Computer Science; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer: Cham, Switzerland, 2016. [CrossRef]

35. Panadeiro, V.; Rodriguez, A.; Henry, J.; Wlodkowic, D.; Andersson, M. A review of 28 free animal-tracking software applications:
Current features and limitations. Lab. Anim. 2021, 50, 246–254. [CrossRef]

36. Lukezic, A.; Vojir, T.; Cehovin, L.; Matas, J.; Kristan, M. Discriminative Correlation Filter with Channel and Spatial Reliability. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017;
pp. 6309–6318. [CrossRef]

37. Farkhodov, K.; Lee, S.H.; Kwon, K.R. Object Tracking using CSRT Tracker and RCNN. In Proceedings of the BIOIMAGING,
Valletta, Malta, 24–26 February 2020; pp. 209–212.

38. Magura, T.; Horváth, R.; Mizser, S.; Tóth, M.; Nagy, D.D.; Csicsek, R.; Balla, E. Urban individuals of three rove beetle species are
not more exploratory or risk-taking than rural conspecifics. Insects 2022, 13, 757. [CrossRef]

39. Réale, D.; Reader, S.M.; Sol, D.; McDougall, P.T.; Dingemanse, N.J. Integrating animal temperament within ecology and evolution.
Biol. Rev. 2007, 82, 291–318. [CrossRef]

40. Kortet, R.; Hedrick, A.N.N. A behavioural syndrome in the field cricket Gryllus integer: Intrasexual aggression is correlated with
activity in a novel environment. Biol. J. Linn. Soc. 2007, 91, 475–482. [CrossRef]

41. Schuett, W.; Delfs, B.; Haller, R.; Kruber, S.; Roolfs, S.; Timm, D.; Willmann, M.; Drees, C. Ground beetles in city forests: Does
urbanization predict a personality trait? PeerJ 2018, 6, e4360. [CrossRef]

42. Jones, K.A.; Godin, J.G.J. Are fast explorers slow reactors? Linking personality type and anti-predator behaviour. Proc. R. Soc. B
Biol. Sci. 2010, 277, 625–632. [CrossRef] [PubMed]

43. Labaude, S.; O’Donnell, N.; Griffin, C.T. Description of a personality syndrome in a common and invasive ground beetle
(Coleoptera: Carabidae). Sci. Rep. 2018, 8, 17479. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/0734-189X(85)90016-7
https://doi.org/10.1145/321556.321570
https://doi.org/10.1016/0146-664X(75)90022-2
https://doi.org/10.1016/0146-664X(76)90026-5
https://doi.org/10.1109/CVPR.2013.312
https://doi.org/10.1109/ICCVW.2013.20
https://doi.org/10.1007/978-3-319-16181-5_14
https://doi.org/10.1109/ICCVW.2015.79
https://doi.org/10.1109/TIP.2015.2482905
https://www.ncbi.nlm.nih.gov/pubmed/26415202
https://doi.org/10.1109/TPAMI.2013.230
https://www.ncbi.nlm.nih.gov/pubmed/26353314
https://doi.org/10.1007/978-3-319-46448-0_27
https://doi.org/10.1038/s41684-021-00811-1
https://doi.org/10.1007/s11263-017-1061-3
https://doi.org/10.3390/insects13080757
https://doi.org/10.1111/j.1469-185X.2007.00010.x
https://doi.org/10.1111/j.1095-8312.2007.00812.x
https://doi.org/10.7717/peerj.4360
https://doi.org/10.1098/rspb.2009.1607
https://www.ncbi.nlm.nih.gov/pubmed/19864291
https://doi.org/10.1038/s41598-018-35569-z
https://www.ncbi.nlm.nih.gov/pubmed/30504923

	Introduction 
	Materials and Methods 
	Software 
	Defining the Testing Area 
	Tracking the Defined Test Organism 
	Examples of the Software’s Applications 
	Software Output 
	Comparing the Properties of BugTracker with Other Similar Software 
	Video Quality 

	Results 
	Discussion 
	Conclusions 
	References

