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Abstract: The common ragweed (Ambrosia artemisiifolia Linnaeus 1800) is an exceptionally invasive
species. The information on true bugs occurring on ragweed plants is limited in the invasion region.
The objective of this study was to determine the species composition of Heteroptera associated with
A. artemisiifolia, to assess their vectoring potential based on a literature review, and to compare species
similarity in the surveyed fields. Field surveys were conducted in 2020–2021 at 10 sites in southern
Slovakia. Sweeping and visual observations were conducted in field margins, weedy agricultural
fields, and mowed meadows infested with A. artemisiifolia. In the study, food specialization, the
abundance of individual species, and their assignment to families were precisely determined. The
Jaccard similarity index was used to evaluate similarities in species composition among the sites
studied. A total of 2496 true bugs were recorded, representing 47 species of Heteroptera from
12 families. The most common phytophagous species were Nysius ericae ericae (Schilling, 1829)
(Pentatomomorpha, Lygaeidae), Adelphocoris lineolatus (Goeze, 1778), Lygus rugulipennis (Poppius,
1911), Lygus pratensis (Linnaeus, 1758) (Cimicomorpha, Miridae), and a zoophagous species Nabis
(Dolichonabis) limbatus (Dahlbom, 1851) (Cimicomorpha, Nabidae). The species similarities in pair-
wise combined localities were low, with a dominance of highly migratory and polyphagous species
able to traverse the field from the adjacent landscape. A. artemisiifolia is a known host for plant
viruses and phytoplasmas, and several Heteroptera species are carriers of these plant pathogens.
Halyomorpha halys was the only detected vector of phytoplasmas, and its abundance on A. artemisiifolia
was extremely low.

Keywords: insect guild; habitat; invasive weed; vectors; carriers; Cimicomorpha; Pentatomomorpha;
plant pathogens

1. Introduction

The common ragweed (Ambrosia artemisiifolia/Linnaeus 1800/Asteraceae) is an inva-
sive North American plant found in Europe and elsewhere [1–5]. The species has serious
negative impacts on agriculture [6] and human health [7,8] and threatens biodiversity [9].
It produces allergenic pollen that is hazardous to the human respiratory system [10,11],
and is a major cause of allergic rhinitis [12]. The native insect guild that is associated
with common ragweed in Europe is mostly polyphagous and causes little damage. Only
18 insect species have been proposed as candidates for the biological control of A. artemisi-
ifolia in Europe [13]. True bugs/Heteroptera (Insecta: Hemiptera: Heteroptera) are a large,
cosmopolitan suborder of Hemiptera that includes over 45,000 described species. This is a
diverse, abundant, and globally successful group. Their trophic behavior is also diverse,
ranging from herbivores to predators [14]. Most true bugs are phytophagous [15], and the
habitat characteristics are important for the structure of their guilds [16]. Their herbivorous
species include some destructive pests, while their predatory species can be useful in
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agriculture, horticulture, and forestry [15]. Numerous sap-sucking bugs are involved in
plant disease transmission [17,18]. Accurate data on the occurrences of true bugs are scarce,
e.g., on sandy grasslands [19], in agricultural landscapes [20,21], or on litter and soil [22],
but the occurrence of heteropterans on common ragweed in its introduced range in Eurasia
is an area that remains poorly studied [23–26]. Since the occurrence of heteropterans on rag-
weed is common, we hypothesized that they might serve as carriers or vectors of ragweed
diseases. Therefore, we decided to conduct a survey in southern Slovakia to determine the
species composition of Heteroptera on A. artemisiifolia, their trophic preferences, and their
ability to transmit and/or carry diseases. We also investigated the effects of geographic
regions and local habitats on true bugs’ guild.

2. Materials and Methods

Heteropterans were collected with an insect net (30 cm diameter) by sweeping the
canopy of A. artemisiifolia or by beating the plants (3 × 30 plants per locality). The species
caught in situ were euthanized in the field with ethyl acetate (C4H8O2). The insects
were monitored at 10 localities in southern Slovakia in 2020 and 2021 (Table 1, Figure 1).
Screening was conducted from mid-July (beginning of flowering) to mid-late August (end
of flowering) in three habitat types—field margins, weedy agricultural fields, and mowed
meadows. The localities had low elevation, sandy-loam, or loamy soils, warm to very warm
climates, moderately moist to very dry areas, and mild to cool winters [27]. The aerial
distance between the westernmost (Balvany) and easternmost locality (Malé Trakany) was
310 km. The Jaccard similarity index was used to assess the true bugs species’ composition
similarities between the two localities [28,29]. The trophic preferences and vectoring ability
were determined using information published in the literature. Relevant entomological
identification keys were used to identify the true bugs, and the identification was confirmed
by Heteroptera expert Jozef Cunev, Nitra, Slovakia.

Table 1. Geographical coordinates and habitat characteristics of the studied localities in southern
Slovakia in 2020–2021.

Locations Latitude,
Longitude

Altitude
(m/a.s.l.) Habitats, Geo Relief Climate Region

Western Slovakia

Balvany (Figure 2) 47◦50′24′ ′ N,
17◦59′57′ ′ E 110 Field margins, plane Warm, very dry, mild winter

Malá nad Hronom
(Figure 3)

47◦51′25′ ′ N,
18◦40′40′ ′ E 140 Weedy agricultural field,

hilly country Warm, very dry, mild winter

Sikenička (Figure 4) 47◦55′42′ ′ N,
18◦41′34′ ′ E 140 Field margins,

hilly country Warm, very dry, mild winter

Central Slovakia

Gemerský Jablonec
(Figure 5)

48◦11′57′ ′ N,
19◦59′22′ ′ E 239 Mowed meadow,

hilly country
Warm, moderate humid,

cool winter

Tachty (Figure 6) 48◦09′23′ ′ N,
19◦56′59′ ′ E 262 Field margins,

hilly country
Warm, moderate humid,

cool winter

Eastern Slovakia

Brehov (Figure 7) 48◦29′59′ ′ N,
21◦48′29′ ′ E 112 Field margins,

hilly country Warm, dry, cool winter

Malé Trakany
(Figure 8)

48◦23′58′ ′ N,
22◦07′54′ ′ E 110 Field margins, plane Warm, dry, cool winter

Strážne (Figure 9) 48◦22′23′ ′ N,
21◦50′47′ ′ E 100 Weedy agricultural

field, plane Warm, dry, cool winter
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Table 1. Cont.

Locations Latitude,
Longitude

Altitude
(m/a.s.l.) Habitats, Geo Relief Climate Region

Svätuše 48◦25′16′ ′ N,
21◦55′10′ ′ E 110 Field margins, plane Warm, dry, cool winter

Vel’ký Horeš
(Figure 10)

48◦22′22′ ′ N,
21◦54′10′ ′ E 100 Weedy agricultural

field, plane Warm, dry, cool winter
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Figure 10. Weedy agricultural field in Vel’ký Horeš (photo P. Tóth).

3. Results and Discussion

During the field surveys in 2020–2021 at 10 localities throughout southern Slovakia, 2496
Heteroptera individuals were detected in sweep samples from stands of invasive A. artemisiifolia.
A total of 47 species from the 12 families Nabidae, Miridae, Tingidae (Cimicomorpha), Corei-
dae, Rhopalidae, Stenocephalidae, Berytidae, Lygaeidae, Oxycarenidae, Rhyparochromidae,
Pentatomidae, and Scutelleridae (Pentatomomorpha) were detected (Table 2).
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Table 2. True bugs (Hemiptera: Heteroptera) fauna of flowering Ambrosia artemisiifolia during 2020–2021 in southern Slovakia.

Infraorder/Family/Species Food
Specialization References
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CIMICOMORPHA

NABIDAE

Nabis (Dolichonabis) limbatus
Dahlbom, 1851 zoophagous (Wachmann et al.

2006 [30]) 53 185 4 7 14 2 25 12 2 32 336 13.46

Nabis rugosus (Linnaeus, 1758) zoophagous (Wachmann et al.
2006 [30]) 1 1 0.04

MIRIDAE

Adelphocoris lineolatus (Goeze,
1778)

phyto, poly
(Fabaceae, eggs
are laid to some

Asteraceae)

(Puchkov
1972 [31]) 70 149 5 32 20 6 53 35 11 100 481 19.27

Adelphocoris vandalicus (Rossi,
1790)

phyto, poly (incl.
Asteraceae) [32] 1 1 0.04

Adelphocoris seticornis (Fabricius,
1775)

phyto, oligo
(Fabaceae)

(Wachmann et al.
2004: [30]) 1 3 4 0.16

Deraeocoris (Deraeocoris) ruber
(Linnaeus, 1758) zoophagous [33] 1 1 0.04

Deraeocoris (Camptobrochis)
punctulatus (Fallén, 1807)

phytozoophagous
(mostly

Solanaceae)
[34,35] 1 2 3 0.12
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Table 2. Cont.
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Lygocoris (Lygocoris) pabulinus
(Linnaeus, 1761) phyto, poly (Southwood &

Leston 1959 [36]) 1 1 1 3 0.12

Lygus pratensis (Linnaeus, 1758) phyto, poly (incl.
Asteraceae)

(Lu & Wu
2008 [31]) 47 37 18 6 5 4 23 12 6 13 171 6.85

Lygus rugulipennis Poppius, 1911

phyto, poly
(Asteraceae

among the most
important)

[37] 54 92 2 3 6 1 2 3 1 25 189 7.57

Orthops (Orthops) campestris
(Linnaeus, 1758)

phyto, oligo
(Apiaceae)

(Wachmann et al.
2004 [30]) 1 3 2 1 7 0.28

Orthotylus sp. various,
indefinite 50 50 2.00

Stenodema (Brachystira) calcarata
(Fallén, 1807)

phyto, poly
(Poaceae rarely
Cyperaceae and

Juncaceae)

[38] 2 1 2 5 0.20

Trigonotylus pulchellus (Hahn,
1834)

phyto, poly
Amaranthaceae,
Fabaceae, Vitis

vinifera

(Lodos et al. 2003
[39]) 3 11 1 1 3 6 2 4 31 1.24
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Table 2. Cont.
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TINGIDAE

Corythucha ciliata (Say, 1832) phyto, oligo
(Platanus spp.) [40] 1 1 0.04

Dictyla echii (Schrank, 1782) phyto, oligo
(Boraginaceae) [41] 1 1 0.04

PENTATOMOMORPHA

COREIDAE

Coreus marginatus marginatus
(Linnaeus, 1758)

phyto, poly
(Polygonaceae,

Asteraceae)

(Putshkov 1962
[42]) 5 1 6 0.24

Gonocerus juniperi
(Herrich-Schaeffer, 1839)

phyto, oligo
(Cupressaceae) [40] 1 1 0.04

RHOPALIDAE

Brachycarenus tigrinus Schilling,
1829

phyto, poly
(mostly

Brassicaceae,
Chenopodi-

oideae,
Amaranthaceae,

Ericaceae)

[43] 7 7 0.28
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Corizus hyoscyami hyoscyami
(Linnaeus, 1758)

phyto, poly (incl.
Asteraceae) [44] 1 1 0.04

Chorosoma schillingii (Schilling,
1829)

phyto, oligo
(Poaceae) [45] 1 1 0.04

Myrmus miriformis miriformis
(Fallén, 1807)

phyto, oligo
(Poaceae) [46] 2 2 0.08

Stictopleurus abutilon abutilon
(Rossi, 1790)

phyto, oligo
(Asteraceae) [47] 3 1 4 0.16

Stictopleurus punctatonervosus
(Goeze, 1778)

phyto, oligo
(Asteraceae) [46] 1 4 1 6 0.24

Rhopalus (Rhopalus)
parumpunctatus Schilling, 1829

phyto, poly (incl.
Asteraceae) [46,48] 7 1 1 9 0.36

Rhopalus (Rhopalus) subrufus
(Gmelin, 1790)

phyto, poly (incl.
Asteraceae, some

preference for
Lamiaceae)

[46,48] 3 3 6 0.24

STENOCEPHALIDAE

Dicranocephalus medius (Mulsant
a Rey, 1870)

phyto, oligo
(Euphorbia) [48] 3 3 0.12
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Table 2. Cont.
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BERYTIDAE

Berytinus (Berytinus) minor minor
(Herrich-Schaeffer, 1835)

phyto, poly
(mainly

Fabaceae)
[48,49] 1 1 0.04

LYGAEIDAE

Lygaeus equestris (Linnaeus,
1758)

phyto, mono
(Vincetoxicum
hirundinaria)

[50] 1 1 2 0.08

Nysius ericae ericae (Schilling,
1829)

phyto, poly (incl.
Asteraceae) [48,51] 63 1004 1 2 11 19 1100 44.07

Nysius helveticus
(Herrich-Schaeffer, 1850)

phyto, poly (incl.
Asteraceae) [48] 1 1 0.04

Nysius senecionis senecionis
(Schilling, 1829)

phyto, oligo
(Asteraceae,

preference for
Senecio)

[48,52] 2 2 0.08

OXYCARENIDAE

Metopoplax origani (Kolenati,
1845)

phyto, oligo
(Asteraceae) [53] 4 5 3 12 0.48
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Table 2. Cont.
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RHYPAROCHROMIDAE

Rhyparochromus vulgaris
(Schilling, 1829)

phyto, poly (seed
feeder) [48,54] 2 2 0.08

PENTATOMIDAE

Aelia acuminata (Linnaeus, 1758) phyto, oligo
(Poaceae) [55] 12 1 1 14 0.56

Aelia klugii Hahn, 1833 phyto, oligo
(Poaceae) [56] 1 1 0.04

Aelia rostrata (Boheman, 1852) phyto, oligo
(Poaceae) [57] 2 2 0.08

Carpocoris (Carpocoris)
purpureipennis (De Geer, 1773)

phyto, poly (incl.
Asteraceae) [58,59] 2 1 3 0.12

Dolycoris baccarum (Linnaeus,
1758)

phyto, poly (incl.
Asteraceae) [60] 4 4 0.16

Eurydema (Eurydema) oleracea
(Linnaeus, 1758)

phyto, oligo
(Brassicaceae) [58] 1 4 5 0.20

Eysarcoris ventralis (Westwood,
1837)

phyto, poly (incl.
Asteraceae) [61] 1 1 0.04

Graphosoma italicum (Müller,
1766)

phyto, oligo
(Apiaceae) [62] 1 1 3 5 0.20
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čk

a

G
em

er
sk

ý
Ja

bl
on

ec

Ta
ch

ty

B
re

ho
v

M
al

é
Tr

ak
an

y

St
rá

žn
e

Sv
at

uš
e

V
el

’k
ý

H
or

eš

T
O

TA
L

R
el

at
iv

e
O

cc
ur

re
nc

e
(%

)

Peribalus (Peribalus) strictus
strictus (Fabricius, 1803)

phyto, poly (incl.
Asteraceae) [63] 2 2 0.08

Piezodorus lituratus (Fabricius,
1794)

phyto, poly
(mainly

Fabaceae)
[48] 1 1 0.04

Halyomorpha halys Stål, 1855 phyto, poly (incl.
Asteraceae) [64] 2 2 0.08

Zicrona caerulea (Linnaeus, 1758) zoophagous [65] 2 1 3 0.12

SCUTELLERIDAE

Eurygaster testudinaria
testudinaria (Geoffroy, 1785)

phyto, poly
(mostly Poaceae,
Cyperaceae, incl.

Asteraceae)

[48,66] 2 2 0.08

296 1594 32 54 50 18 134 78 32 208 2496 100.00
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The phytophagous true bugs guild was the most abundant, with 41 species (2102 specimens).
The polyphagous guild comprised 23 different species (2029 specimens). These species were
generalists with a wide range of host plants; therefore, it was difficult to determine their trophic
preferences in detail. However, a more detailed analysis of trophic relationships revealed the dom-
inance of polyphagous species with a trophic affinity for Asteraceae (16 species, 1979 specimens).
The most common polyphagous species without a trophic affinity to Asteraceae was Trigonotylus
pulchellus (Hahn, 1834) which occurred at most of the localities examined in this study. The
remaining polyphagous species occurred in low numbers and at random in the habitats studied.
The abundance of specialized species (oligophagous and monophagous) was extremely low
compared to generalists. A total of 17 oligophagous species (71 specimens) were identified, of
which only 4 (24 specimens) were trophically linked to Asteraceae. The trophic preferences of
monophagous species (2 specimens) were not associated with Asteraceae (Table 2).

The four most abundant herbivorous species were Nysius ericae ericae (Schilling, 1829)
(Pentatomomorpha: Lygaeidae) 44.07%, Adelphocoris lineolatus (Goeze, 1778) 19.27%, Lygus
rugulipennis (Poppius, 1911) 7.57%, and Lygus pratensis (Linnaeus, 1758) 6.85% (Cimicomor-
pha: Miridae). All of the species are polyphagous with trophic relationships to Asteraceae,
and are widespread and native to Europe [31]. In Italy, N. ericae ericae was common in dry
grasslands with shrubs and invasive plant invasion [26]. N. ericae has also been identified
as a feeder on green mustard pods, and is a carrier of the plant pathogen Nematospora
coryli [67]. According to Judd and Hodkinson [68], this species is associated with Aster-
aceae on early successional sites, sand dunes, marshes, heaths, and wastelands, and on
abandoned or weedy agricultural fields. Despite their polyphagy, many species of mirid
bugs (Miridae) show specific feeding preferences for host plants and plant parts [69].
A. lineolatus shows a strong preference for Medicago sativa—a host plant that is important
for overwintering and early season development [70,71]. The preferred host plants of
L. rugulipennis are nitrophilous wild plants (Urtica dioica, Artemisia vulgaris, Tripleuros-
permum inodorum, Matricaria matricarioides, and Senecio vulgaris), and the most reported
cultivated host plants are Fabaceae (Medicago sativa and Trifolium pratense), which symbioti-
cally fix nitrogen [37]. L. pratensis is biologically and ecologically close to L. rugulipennis,
has a similar range of host plants, and often co-occurs with the latter, although usually in
smaller numbers [72]. The four most common herbivore species are known to be vectors or
carriers of plant pathogens (viruses, phytoplasmas, bacteria, and fungi) (Table 3).

Table 3. Vectoring potential and presence of viruses and Mollicutes in true bugs (Hemiptera: Het-
eroptera) associated with flowering Ambrosia artemisiifolia during 2020–2021 in Slovakia.

Infraorder/Family/Species Food
Specialization Carrier/Vector References Abundance

(pcs)
Abundance

(%)

CIMICOMORPHA

MIRIDAE

Adelphocoris lineolatus
(Goeze, 1778)

phyto, poly
(Fabaceae, eggs are

laid to some
Asteraceae)

Ca. P. solani (16Sr XII) (carrier) [73]
481 19.27

Aster yellows phytoplasma
(16SrI-C and 16SrI-F) (carrier) [74]

Lygocoris (Lygocoris)
pabulinus (Linnaeus,

1761)
phyto, poly Erwinia amylovora (pear shoots)

(vector) [75] 3 0.12

Lygus pratensis
(Linnaeus, 1758)

phyto, poly (incl.
Asteraceae)

Ca. P. solani (16Sr XII) (mixed
sample of L. pratensis and L.

rugulipennis) (carrier)
[76]

171 6.85Potato leaf roll virus (PLRV),
Potato virus Y (PVY), Potato
virus S (PVS), Potato virus M
(PVM), Potato virus A (PVA)

(carrier)

[77,78]
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Table 3. Cont.

Infraorder/Family/Species Food
Specialization Carrier/Vector References Abundance

(pcs)
Abundance

(%)

Lygus rugulipennis
(Poppius, 1911)

phyto, poly
(Asteraceae among

the most
important)

Potato leaf roll virus (PLRV),
Potato virus M (PVM) (vector)

(Turka 1978
[17])

189 7.57

X-disease 16SrIII-B (in larva)
(carrier) [79]

Ca. P. solani (16Sr XII) (carrier) [73]
Aster yellows phytoplasma

(16SrI-C and 16SrI-F) (carrier) [74]

Pseudomonas syringae pv.
aptata (sugar beet) (carrier)

(Bilewicz-
Pawińska
1967 [69])

Orthops (Orthops)
campestris (Linnaeus,

1758)

phyto, oligo
(Apiaceae) Stemphylium radicinum (vector) (Bech 1967

in [80]) 7 0.28

PENTATOMOMORPHA

LYGAEIDAE

Nysius ericae ericae
(Schilling, 1829)

phyto, poly (incl.
Asteraceae)

Nematospora coryli (on Brassica
juncea) (carrier) [67] 1100 44.07

PENTATOMIDAE

Halyomorpha halys
(Stål, 1855)

phyto, poly (incl.
Asteraceae)

Paulownia witches’ broom
phytoplasma (16SrI-D) (vector) [81] 2 0.08

L. pratensis has been identified as a carrier of potato viruses—potato leaf roll virus
(PLRV), potato virus Y (PVY), potato virus A (PVA), potato virus S (PVS), and potato virus
M (PVM) [77,78]. The recognized vectors for these viruses are aphids. PVRL is transmitted
in a persistent circulative manner; all the other viruses are non-persistently transmitted
and spread through tubers as well as mechanically [82–85]. A. artemisiifolia serves as a
reservoir for the PVY virus [77,78]. L. rugulipennis and A. lineolatus were recently identified
as new carriers of Ca. Phytoplasma solani [73]. Although Ca. P. solani has a broad host
plant range, including weeds [86], direct evidence of A. artemisiifolia as a host plant has
only recently been confirmed [87]. Asteraceae (including A. artemisiifolia) are known to
be hosts for the Aster yellows phytoplasma (AYp). This phytoplasma was detected in
A. lineolatus and L. rugulipennis collected in southern Moravia (Czech Republic) [74]. In
another study conducted in vineyards in the same region, AYp was not present in these
two true bugs [73]. The X-disease phytoplasma found in L. rugulipennis infects most Prunus
species and potentially a wide host range of herbaceous plants, including annual and
perennial weeds [88]. Recently, a phytoplasma of the X-disease group, ribosomal subgroup
16SrIII-B, was detected in some perennial herbaceous plants of the Asteraceae family,
Echinacea purpurea (L.) Moench, which is native to North America [89], Cirsium arvense
(L.) Scop. [90], and Arnica montana L., native to Europe [91]. It is important to note that
the isolation of phytoplasmas from A. lineolatus, L. rugulipennis, and L. pratensis does not
guarantee their ability to transmit the disease [17]. The vectoring ability of Stephanitis typica
(Tingidae), the only Cimicomorpha species previously classified as a phytoplasma vector,
has not been confirmed [92]. True bug species belonging to the infraorder Cimicomorpha
(Heteroptera) are characterized by a non-sheath-forming cell rupture feeding type [93]. Non-
phloem feeding Lygus species preferentially feed on plant meristem tissue or developing
reproductive organs [94]. The plant meristematic tissue is usually free of pathogens [95].
Meristematic tissues in terminal buds are the main source of auxin [96]. A loss of auxin-
producing tissues due to feeding by Lygus bugs can lead to altered vegetative growth.
Altered plant architecture is a result of suppressed apical dominance and an increased
growth of lateral branches from the axillary buds [94]. These morphological changes can
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be referred to as corymb-like plant habits with a flat-topped appearance, as described for
Arabidopsis thaliana (L.) Heynh. inflorescence [97].

Since phytoplasmas are phloem-limited, phloem-feeding insects can potentially ac-
quire and transmit the pathogen [98]. Phloem feeding is usually associated with the
formation of stylet salivary sheaths [99]. In Heteroptera, the formation of salivary sheaths
is a common feature of the infraorder Pentatomomorpha, but their target sites include
mesophyll or reproductive tissue (mature seeds, developing endosperm) in addition to
vascular tissue. In the case of seed feeding, sheath formation is minimal [17]. Aster yel-
lows phytoplasma (ribosomal subgroup Srl-A) has recently been detected in the seeds
and seedlings of Zea mays L. [100], Brassica napus L., and B. rapa L. [101]. Many Lygaeidae
species feed on nutrient-rich seeds, but also on plant sap [102,103]. The most numerous
seed-feeding species in our collection was N. ericae ericae. Their ability to acquire phytoplas-
mas from seeds or other plant parts is not known, but phytoplasmic DNA was found in
two Lygaeoidea species, Nysius vinitor Bergroth and Oxycarenus maculatus Stal [104,105].
However, there is evidence that phytoplasmas may be pathogens or beneficial symbionts of
hemipteran insects [106]. In Slovakia, the highly polyphagous invasive Halyomorpha halys
Stål, 1855 (Pentatomomorpha: Pentatomidae) was present in the guild of species associated
with A. artemisiifolia. H. halys transmits the Paulownia witches’ broom phytoplasma. Phyto-
plasma isolates found from China, Korea, and Japan belonged to ribosomal subgroup 16SrI
(Aster yellows and related phytoplasmas) [81].

The fifth most abundant species was the predatory true bug Nabis (Dolichonabis)
limbatus Dahlbom, 1851 (Nabidae), with a relative abundance of 13.46%. Nabids are preda-
tors of leafhoppers (Auchenorrhyncha), aphids (Sternorrhyncha), leaf beetles (Coleoptera:
Chrysomelidae), and the eggs and larvae of Lepidoptera. Several species are also predators
of Miridae, especially on the genus Lygus [107]. N. limbatus occurred at all of the observed
localities, except Svätuše. In Svätuše, only one specimen of N. rugosus (Linnaeus, 1758) was
found at the field margins. There is evidence that nabids respond to habitat manipulation.
Higher populations are found in more diverse agroecosystems where insecticides are not
used [108]. Since there is evidence that nabids feed on plants to obtain water [109], the use
of systemic insecticides may negatively affect their populations [110].

A few specimens of Zicrona caerulea (Linnaeus, 1758) (Pentatomidae) found at two
surveyed localities were predaceous. The species is usually associated with Oenothera
biennis L. (Onagraceae), infested by herbivores outside of agricultural land. O. biennis may
act as a companion plant that maintains this predatory true bug in the field margin and
inside the crop field [65].

The predominantly phytophagous Miridae included a zoophagous species, Deraeo-
coris (Deraeocoris) ruber (Linnaeus, 1758), and a few specimens of the zoophytophagous
Deraeocoris (Camptobrochis) punctulatus (Fallén, 1807). D. punctulatus was most abundant on
solanaceous plants [35], and frequently fed on the whitefly Bemisia tabaci (Gennadius, 1889)
(Hemiptera: Aleyrodidae) [111]—an important and versatile vector of plant viruses [112].

The highest similarity of true bug species was observed in pair combinations of distant
localities with low species diversity—Sikenička, Gemerský Jablonec, and Strážne (60–70%)
(Table 4). These localities were situated in different geographical areas of south Slovakia
(the western, central, and eastern parts) with a warm humid climate that has been defined
as very dry, dry and moderately humid, with mild to cool winters (Table 1). The lowest
similarity of true bug species was found in the pair combination of locality Svätuše, with
all others (8–27%) differing in habitat, georelief, and humidity (Tables 1 and 4). During
the studied period (2020–2021), the localities in western Slovakia (Balvany, Malá nad
Hronom, and Sikenička) had a mean annual temperature of 11.6 ◦C and a mean annual
precipitation of 485 mm; the localities in central Slovakia (Gemerský Jablonec and Tachty)
had a mean annual temperature of 10.8 ◦C with a mean annual precipitation of 636 mm;
and the localities in eastern Slovakia (Strážne, Vel’ký Horeš, Svätuše, Brehov, and Malé
Trakany) had a mean annual temperature of 10.6 ◦C with a mean annual precipitation of
620 mm [113,114]. Regardless of the mean annual temperature, precipitation, and winter
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season, most of the pair-wise combined localities had low species similarity with a median
of Jaccard index as 28% (ranging from 8 to 70%) (Table 4). This suggests differences in the
Heteroptera species composition at the localities studied, and a weak relationship with
selected habitats and A. artemisiifolia.

Table 4. Jaccard similarity index (%) of true bug species on Ambrosia artemisiifolia by pairwise
compared sites and quantitative characteristics of the heteropteran guild. Heteroptera were collected
throughout southern Slovakia in 2020–2021.
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Balvany • 24 50 43 28 33 28 46 17 37

Malá n/Hronom 9/28 * • 23 22 15 17 27 27 8 21

Sikenička 6/12 7/30 • 60 40 50 22 67 27 50

GemerskýJablonec 6/14 7/22 6/10 • 33 40 17 70 12 42

Tachty 4/14 4/33 4/11 4/12 • 50 33 36 23 38

Brehov 5/12 6/30 5/8 5/10 5/8 • 23 44 18 33

MaléTrakany 7/25 11/37 5/23 5/24 7/21 6/20 • 26 25 28

Strážne 6/13 8/30 6/9 7/10 4/11 5/9 6/23 • 13 46

Svätuše 5/16 5/36 4/14 4/16 5/13 4/13 8/24 4/15 • 17

Vel’kýHoreš 6/16 7/34 6/12 6/14 5/12 5/12 7/24 6/13 5/17 •
* The number of same species on both sites/amount of all species in both sites. • not applicable—data for the
same location.

We studied three habitats; the most predominant ones were field margins, ragweed/weed-
infested agricultural fields, and a mowed meadow, in three geographical areas of southern
Slovakia (Table 1). No relationship between habitats or climate region and Heteropterans
species similarity using the Jaccard index were found. Therefore, we are of the opinion that the
composition of the landscape surrounding each field studied had a stronger influence on the
composition and abundance of insect species than the field vegetation itself. The main reason
for this could be the prevalence of polyphagous species and the presence of oligophagous
species without a trophic affinity to Asteraceae (Table 2). Like other pest species, heteropterans
are good flyers and colonizers that use and traverse different habitat types during their life
cycle [115]. In the summer, A. artemisiifolia provided a suitable food source (maturing seeds on
the main inflorescence and terminal buds on lateral shoots) for both infraorder representatives.
Weeds are an important alternative food source, and play a significant role in promoting
biodiversity in agroecosystems [116,117].

4. Conclusions

The studied localities in southern Slovakia showed low species similarity of true
bugs with a Jaccard index median of 28%, and a weak relationship with habitats and
A. artemisiifolia. The community of true bugs was composed of 16 species of the infraorder
Cimicomorpha (51.48%) and 31 species of infraorder Pentatomomorpha (48.52%). The
Cimicomorpha species, Adelphocoris lineolatus and Lygus pratensis, were recorded at all
10 localities, with Nabis limbatus at 9, and Lygus rugulipennis and Trigonotylus pulchellus
at 8 localities. Nysius ericae ericae occurred at 6 localities and accounted for 90.83% of all
Pentatomomorpha species. The remaining species occurred irregularly. Therefore, we
assume that the landscape surrounding each studied field had a stronger influence on the
species composition and abundance of the true bugs than the vegetation of the field. We
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found that 69.6% of the polyphagous species had trophic relationships with Asteraceae.
The most numerous herbivorous Cimicomorpha species (A. lineolaris, L. rugulipennis, and L.
pratensis) are known to be carriers of plant viruses or phytoplasmas. The only documented
vector of phytoplasmas is Halyomorpha halys (Pentatomomorpha), which transmits Aster
yellows and related phytoplasmas to Paulownia trees. A. artemisiifolia is a known reservoir
for several plant viruses and phytoplasmas, including Aster yellows disease. From our
results and the literature review, we can conclude that Heteroptera remains a less important
vector of phytoplasmas. A. artemisiifolia serves as an important reservoir for plant pests
and provides an alternative food source for true bugs in the summer, after crop harvest.
Therefore, it plays an important role in maintaining populations of polyphagous true bugs
in the studied agricultural habitats in southern Slovakia.
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52. Stehlík, J.L.; Vavřínová, I. Results of the investigations on Hemiptera in Moravia made by the Moravian Museum (Lygaeidae I).
Acta Musei Morav. Sci. Biol. 1997, 81, 231–298.

53. Redei, D. True Bug (Heteroptera) Assemblages of Medicinal and Aromatic Plants. Ph.D. Thesis, Corvinus University, Budapest,
Hungary, 2007.
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