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Abstract: Contemporary climate change is increasing the occurrence of extreme weather events, heat
waves being common examples. Here, we present visual evidence of mass bleaching in intertidal
seaweeds following an unusually severe cold snap in Atlantic Canada. In February 2023, the air
temperature on the Nova Scotia coast dropped below −20 ◦C for the first time in at least ten years.
Such extreme temperatures lasted for several hours at low tide and were followed by extensive
bleaching in whole thalli of the canopy-forming algae Chondrus crispus and Corallina officinalis. The
loss of these foundation species might negatively impact intertidal biodiversity.
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Foundation species are spatially dominant species that increase habitat complexity
with their body structures and limit local abiotic stress. Thanks to those properties, dense
stands of foundation species often host a high diversity of small species. Examples of such
organisms are trees, shrubs, and seaweeds [1,2]. In particular, canopy-forming seaweeds are
common in rocky intertidal habitats, where they often increase local biodiversity through
the provision of shelter from various stresses [3,4]. Therefore, intertidal macroalgal beds
are vital for coastal biodiversity preservation and ecosystem functioning.

Intertidal habitats experience underwater conditions at high tide and aerial conditions
at low tide every day; therefore, extreme weather events can greatly affect the survival
of intertidal organisms. This concept is becoming increasingly relevant because weather
extremes are intensifying with the ongoing climate change [5,6]. A dramatic example
occurred recently on the NE Pacific coast. In the summer of 2021, a severe heat wave broke
historical records of maximum air temperature and caused a mass mortality of intertidal
organisms on that coast [7].

Although current climate change eminently represents warming on a global scale,
unusually severe cold stress in winter can take place at regional scales. For example, the
winter temperature gradient between the Arctic and middle latitudes is weakening because
Arctic winter temperatures are rising more quickly. This phenomenon is known as Arctic
amplification, and can lead to polar air being transported to middle latitudes in winter,
resulting in cold air outbreaks in Eurasia and North America [8,9]. In early February 2023, a
period of unusually cold weather took place in Atlantic Canada [10]. Although the extreme
conditions did not last for more than two days, air temperatures were markedly negative
and disrupted human activities in many ways [11,12]. This cold snap was followed by
dramatic effects on intertidal macroalgal stands as well.

For instance, the red algae Chondrus crispus Stackhouse (Gigartinaceae) and Corallina
officinalis Linnaeus (Corallinaceae) often form extensive beds in rocky intertidal habitats
in southeastern Nova Scotia [13]. Both species are known to host various invertebrate
species [14,15]; as such, they are prominent foundation species. Our field surveys per-
formed on the 15th of April 2023 at a typical location on this coast, Western Head (N 43.9896,
W 64.6607), revealed extensive bleaching in both algae (Figure 1) in a way not seen in at least
the previous ten years [16]. At two other locations situated north (Duck Reef, N 44.4913,

Diversity 2023, 15, 750. https://doi.org/10.3390/d15060750 https://www.mdpi.com/journal/diversity

https://doi.org/10.3390/d15060750
https://doi.org/10.3390/d15060750
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diversity
https://www.mdpi.com
https://orcid.org/0000-0002-3050-132X
https://orcid.org/0009-0002-0552-4279
https://doi.org/10.3390/d15060750
https://www.mdpi.com/journal/diversity
https://www.mdpi.com/article/10.3390/d15060750?type=check_update&version=3


Diversity 2023, 15, 750 2 of 4

W 63.5270) and south (West Point, N 43.6533, W 65.1309) of Western Head, spanning a
linear distance of 160 km, algal bleaching was also evident. Algal bleaching entails the
loss of photosynthetic pigments and represents disruptive stress due to the inability of
bleached tissues to recover, which leads to mortality [17,18]. In intertidal Gigartinaceae
specifically, bleaching is common in summer as a result of intense heat, irradiance, and
desiccation during low tides. Such seasonal bleaching progresses from a deep red color
of algal fronds in winter, to a yellow-green color in spring, to full loss of color in summer,
which mainly occurs in distal frond areas that are not protected by frond crowding through
self-shading [19]. In the case hereby described for C. crispus, however, the color progression
proceeded from typical deep red in early winter directly to the bleaching of whole thalli
shortly after the February cold snap (Figure 1).
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Figure 1. Whole-thallus bleaching in Chondrus crispus (top left) and Corallina officinalis (top right), 
and extensive bleaching in intertidal beds of these foundation species (bottom) photographed by 
R.A.S. at low tide on the 15th of April 2023 at Western Head, on the open Atlantic coast of Nova 
Scotia, Canada. 
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Figure 1. Whole-thallus bleaching in Chondrus crispus (top left) and Corallina officinalis (top right),
and extensive bleaching in intertidal beds of these foundation species (bottom) photographed by
R.A.S. at low tide on the 15th of April 2023 at Western Head, on the open Atlantic coast of Nova
Scotia, Canada.

At a coastal weather station (Western Head Station, N 43.99, W 64.6642) near the
intertidal habitats that we surveyed at Western Head, air temperature between the 3rd
and 4th of February 2023 dropped below −20 ◦C for the first time in the last ten years [10].
These extreme conditions lasted for several hours and included the period of low tide in
the early hours of the 4th of February. It is therefore likely that severe cold stress may have
occurred at low tide during that time (see a possible example for intertidal corals in [20]).
An additional factor contributing to this widespread bleaching event may have been the
mild thermal conditions in December 2022 and January 2023 relative to the previous ten
winter seasons [10], which may have not allowed algal thalli to acclimate enough to intense
cold stress before the February cold snap struck. Overall, this case of mass bleaching in
intertidal seaweeds after extreme winter air temperatures adds to the more numerous
examples of bleaching documented for subtidal organisms (mainly corals) in relation to
extreme water temperatures often during marine heat waves [21–24].
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While the 2021 NE Pacific heat wave has been attributed to climate change [25], an
equivalent conclusion for the 2023 NW Atlantic cold snap is missing, although it would not
be surprising given that cold spells in eastern North America are thought to be favored by
climate change [9]. Overall, the extensive bleaching experienced by macroalgal beds may
have deprived intertidal environments from prominent foundation species that were able
to host many small species. Whether these stands can regain their historical abundance is
unknown because this depends, among other factors, on the future occurrence of winter
cold spells (and probably summer heat waves as well). As extreme weather events are
expected to increase in frequency with climate change [6,26], the biodiversity of these
coastal ecosystems may experience significant changes in the future.
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