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Abstract: Acid rock drainage (ARD) impacts species composition in mountain streams. The potential
impact for riparian birds experiencing elevated metal uptake by consumption of benthic invertebrates
is concerning but not well studied. We investigated the influence of metal and rare earth element (REE)
content in benthic invertebrates on the presence of breeding birds in an ARD-impacted watershed in
Colorado, USA, where tree swallows in nest boxes had previously been found to have elevated metal
concentrations at some sites. The concentrations of particular REEs in invertebrates were higher
than those for cadmium or lead. Avian point counts indicated that most bird species detected were
present at most sites, and that tree swallows were rarely found. Occupancy models showed that the
availability of shrub or forest habitat was a good predictor for a few habitat-specialists, but metal
and REE concentrations in water and invertebrates were not good predictors of avian presence. For
other species, neither habitat type nor water quality were important predictors. Overall, this study
indicates that the climate-change-driven increases in metals and REEs may not influence the presence
of riparian birds in ARD-impacted streams.
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1. Introduction

Acidic drainage can occur naturally wherever geology puts sulfidic minerals in contact
with air and water and is referred to as acid rock drainage (ARD). Major water quality
concerns arise in regions where mining activities greatly accelerate this weathering process,
which is referred to as acid mine drainage (AMD) [1]. In the late 1800s, during the Colorado
Gold Rush, extensive hard-rock mining took place throughout the Colorado Mineral Belt
in the Rocky Mountains (USA). Many mining claims were abandoned just as quickly as
they were excavated and piles of waste rock or mine tailings are common throughout the
Colorado Rocky Mountains to this day. The US Government Accountability Office has
estimated that there are hundreds of thousands of abandoned mines scattered throughout
the Western United States [2]. These abandoned mines continue to contribute acidic, metal-
enriched water to mountain streams, impairing the aquatic ecosystems and acting as a
source of trace metals to drinking-water supplies [3]. Recent studies have found that rare
earth elements (REEs) are also elevated in ARD-impacted streams in the Colorado Mineral
Belt and that summertime concentrations of both metals and REEs are increasing due to
climate change [4].

A pervasive impact of ARD streams is the reduction in species richness, occurring
across microbial, algal, and invertebrate communities [5,6]. Genomics methods have shown
that microbial taxa in ARD streams are dominated by specialized acidophile organisms [7,8].
Fish and amphibians are often absent due to metal or acid toxicity [9,10]. The drivers for
ARD impacts are not only the acidity itself and metal toxicity but also the precipitation of
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iron and aluminum oxides [11]. In streams with high amounts of metal oxide precipitates
covering the streambed, benthic organisms such as primary producers, periphyton, and
invertebrates can be smothered completely [12,13]. Ecosystem processes, such as litter
decomposition, are also suppressed [14,15]. However, in streams with a low pH and high
dissolved metal concentrations, but without precipitates, a few tolerant species of benthic
invertebrates may be as abundant as in pristine streams. For example, McKnight and
Feder [12] found no difference in the benthic invertebrate abundance in an ARD stream
compared to a nearby pristine stream, and the community was dominated by the stonefly
Zapada haysii which is common in ARD streams.

Benthic macroinvertebrates are often used as bioindicators of stream health, and
studies of acidic drainages have shown that invertebrates accumulate metals in their
bodies [16,17]. There are few studies of REE content in benthic invertebrates and no studies
of REEs’ accumulation in benthic invertebrates in ARD streams. In a study of temperate
lakes in Canada, Amyot et al. [18] found that REE concentrations ranged from 0.1 to 1 ng/g
and that REEs were subject to trophic dilution, with lower concentrations at higher trophic
levels. The accumulation of metals and REEs in benthic invertebrates is of concern from
an ecosystem perspective because of the potential for transport up the food web through
bioaccumulation to fish and other predators [19,20].

There has been little investigation into whether elevated metal or REE concentrations
in streams affect nearby terrestrial organisms. One potential pathway for these elements
to enter terrestrial food chains is the emergence of aquatic insects that spend their larval
stages in streams and can be consumed by birds as adult flying insects. Studies have
shown that birds acquire elevated metals from prey in a variety of environments, including
from aquatic sources [21–23]. Environmental acidification and the resulting increased
mobility of metals, especially cadmium, mercury, and lead, has been a long-term concern
for birds [24,25].

The few studies of ARD effects on terrestrial organisms have addressed concerns
related to ingesting elevated levels of toxic metals such as lead (Pb) and cadmium (Cd),
which may lead to a lower survival in breeding birds. There is some evidence for reduced
density, delayed breeding, and fewer offspring produced by Eurasian dippers (Cinclus
cinclus) and Louisiana waterthrushes (Seiurus motacilla) breeding along acidified streams
in Wales and Pennsylvania, respectively [26,27]. The most acidic streams in the dipper
and waterthrush studies had pH values of 4.5, which is higher than many ARD streams.
In a study of tree swallows (Tachycineta bicolor) occupying nest boxes adjacent to ARD
streams in the Snake River watershed in Colorado (USA), Custer et al. [28] found that at
sites where invertebrates had elevated metal concentrations, nestlings also had elevated,
but not toxic, Pb concentrations in liver tissue. It has not yet been determined whether
ARD affects the behavior, survival, reproduction, or population dynamics of free-living
avian species living adjacent to ARD streams. In a recent study of 35 first- and second-order
stream ecosystems impacted by ARD in the Colorado Mineral Belt, Kraus et al. [29] found
that adult aquatic invertebrates had lower contents of Cd and Pb than the larval stages
living in the streams, reducing the impact of metal transfer to insectivorous riparian spiders.
These lower metal contents could potentially also limit the impact of metal transfer to
insectivorous riparian birds.

The present study was conducted in the same watershed as the study by
Custer et al. [28] and assessed the potential impacts to all riparian birds in a large montane
watershed with both pristine and metal-impacted sub-watersheds. The two objectives
were to determine (i) both the trace metal and REE contents of benthic invertebrates in the
watershed to obtain more complete information on ARD impacts, and (ii) whether birds
breeding in riparian forests and wetlands in the watershed are less likely to occupy sites
adjacent to the ARD-impacted streams compared to the pristine streams. Given that climate
change is expected to continue to exacerbate the impacts of ARD [30], the results of this
study help to establish the degree of impact of ARD on both aquatic and terrestrial wildlife.
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2. Methods
2.1. Study Area

This study builds on the extensive and ongoing record of water-quality monitoring
and hydrologic studies in the Snake River watershed (e.g., [4,12,31–33]). For this study,
the lowest point of the watershed was defined as the confluence of the Snake River and
Peru Creek, forming a watershed with an area of 80 km2 (Figure 1). Within each sub-
watershed, valleys are dominated by spruce-fir forest, with riparian willow shrublands
near the streams. At higher elevations, the dominant land-cover types are alpine turf and
exposed bedrock or scree (based on personal observation and the USGS GAP/LANDFIRE
National Terrestrial Ecosystems dataset). Runoff in the watershed is dominated by spring
snowmelt, as recorded by a United States Geological Survey (USGS) stream gage (09047500)
seven kilometers downstream of the study area (Figure S1). Flow in the Upper Snake River
is well correlated with flow at the USGS gage [3].
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Figure 1. Map of the Snake River watershed in Summit County, Colorado, showing the sites
where water-quality samples and benthic invertebrates were sampled and where avian point counts
were conducted.

Snake River and Peru Creek are identified on Colorado’s 2022 303(d) list of impaired
water bodies due to high concentrations of zinc, cadmium, copper, and lead [34]. The Upper
Snake River contains naturally-occurring ARD due to underlying acid-producing schists
and gneisses [35]. The pH has ranged between 3.4 and 5.3 since 1980 [3,36]. Monitoring
records since 1980 for the Upper Snake indicate that warmer summer temperatures have
driven increasing concentrations of sulfate, zinc, manganese, other trace metals, and
REEs [3,4]. A “tributary of interest” contributes significantly to the trace metal and REE
load in the Upper Snake [4,33]. The elevated concentrations of REEs have made REEs an
emerging concern for the watershed [4,37].

In contrast to the Upper Snake, the water quality in Deer Creek is good, despite
the presence of abandoned mines [38]. The pH values since 1980 have ranged between
6.2 and 7.6.
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At the confluence of the Upper Snake with Deer Creek, the pH increases rapidly
and there is subsequent precipitation of aluminum and iron oxides. The pH below the
confluence has ranged between 4.8 and 6.8 since 1980 [39–41]. Peru Creek, which joins the
Lower Snake 4.3 km downstream of the confluence of the Upper Snake and Deer Creek, is
heavily impacted by AMD from abandoned mines. The main AMD source in Peru Creek is
the Pennsylvania Mine, which was recently remediated to improve water quality.

The Rocky Mountains of Colorado include a wide array of avifauna. In riparian
habitats above 3000 m (10,000 feet), common species are the American robin (Turdus
migratorius), Wilson’s warbler (Cardellina pusilla), Lincoln’s sparrow (Melospiza lincolnii),
and the white-crowned sparrow (Zonotrichia leucophrys) [42]. In spruce-fir forest above
3000 m, common species again include the American robin, as well as the mountain
chickadee (Poecile gambeli), golden-crowned kinglet (Regulus satrapa), ruby-crowned kinglet
(Regulus calendula), yellow-rumped warbler (Setophaga coronata), dark-eyed junco (Junco
hyemalis), and Cassin’s finch (Haemorhous cassinii) [42].

Twenty study sites were established with five sites along each of four main streams
in the Snake River watershed: Deer Creek, the Upper Snake, the Lower Snake, and Peru
Creek (Figure 1). Sites were numbered from upstream to downstream (i.e., D1 was the
highest site on Deer Creek, LS5 was the lowest site along the Lower Snake). Six of the
sites corresponded to sites used by Custer et al. [28] and Yang [36]: D1 = Upper Deer
(Custer et al. site), D3 = Middle Deer, D4 = Lower Deer, US1 = Upper Snake, US4 = Middle
Snake, and LS4 = Montezuma. Using satellite imagery, additional sites were selected to
ensure at least 600 m between sites. Given that the home ranges of the birds commonly
found in the area are much less than 600 m, this buffer meant that the double-counting of
birds was unlikely. A GPS unit (Garmin GPSmap 64) was used for navigation in the field.
Final sites were determined based on access and proximity to the stream. The elevations of
the sites ranged from 3047 to 3465 m (10,000 to 11,370 feet) above sea level. Photos of select
sites are provided in Figure S1. For each site, bird counts were conducted between 23 and
140 m away from the stream. The bird counts could not be conducted directly adjacent to
the stream because the sound of running water negatively impacted the observer’s ability
to detect birds.

2.2. Sample Collection, Observations, and Analytical Methods

In order to address the first objective of this study, water and benthic macroinvertebrate
samples were collected from both acidic and relatively pristine sites and analyzed for
concentrations of trace metals and rare earth elements (REEs). Water-quality data in the
Snake River, Deer Creek, and Peru Creek were collected at 14 sites (D1, D2, D3, D4, D5,
US1, US3, US4, LS1, LS3, LS5, P1, P2, P4; see Figure 1) between 17 July and 26 July 2017.
The mean daily discharge at USGS gage 09047500 was between 96 and 124 cfs on the four
sampling days, with higher flows during the first week (Figure S1). Ten sites were visited
twice and four sites were only visited once due to access constraints. Specific conductance,
water temperature, and pH were measured with YSI meters. Water samples (150 mL
volume) were collected in acid-washed HDPE bottles, filtered on the day of collection
through 0.45 µm glass-fiber filters, and acidified to below pH 2 with Fisher Scientific Trace
Metal Grade nitric acid.

Benthic macroinvertebrates were collected with a Surber sampler at all sites except
P2, where the stream was too deep and fast for the sampler [43]. The contents of the net
were placed in a white tray and macroinvertebrates were picked out, placed in a zip-top
bag, and frozen immediately. If the number of invertebrates was low, the Surber sampler
was deployed a second time to ensure sufficient mass for analysis, thereby allowing for
comparison with previous studies in this watershed that used similar methods. Invertebrate
samples were stored in a −10 ◦C freezer before being freeze dried. The dried invertebrates
were separated from any detritus with forceps and the dry mass of each sample was
recorded. On two occasions (the second visit to P4 and the only visit to LS5), no benthic
macroinvertebrates were detected. The smallest mass of benthic macroinvertebrates was



Diversity 2023, 15, 712 5 of 25

2.2 milligrams at LS1; the largest was 84.6 milligrams at D4. Due to the low mass of some
samples, invertebrates from the two sampling dates for D1, D4, LS1, P1, US1, US3, and US4
were combined, for a total of 13 samples. These samples were then digested in a microwave
digestor with Fisher Scientific (Waltham, MA, USA) Trace Metal Grade nitric acid.

Both macroinvertebrate and water samples were analyzed for concentrations of
57 cations, trace metals, and REEs using inductively coupled plasma mass spectrome-
try (ICP-MS). The concentrations of eight commonly measured trace metals (aluminum
[Al], cadmium [Cd], copper [Cu], iron [Fe], manganese [Mn], nickel [Ni], lead [Pb], and
zinc [Zn]) and 16 rare earth elements (REEs) are reported here. One water sample and
one macroinvertebrate sample were run as duplicates to confirm the analytical error of the
ICP-MS, which was also confirmed by comparison to standards. The maximum percent
error for the water sample was 4.17% (europium), with an average error of 1.60%. The
maximum percent error for the macroinvertebrate sample was 11.11% (lutetium), with an
average error of 2.01%. The error values were consistently low; thus, metal concentrations
are reported without adjustments for error.

In order to address the second objective of this study, the entire suite of bird species in
the watershed was observed to gain a broad picture of the community-wide effects of ARD
in the terrestrial system. Avian point counts were conducted during three weeks of the
avian breeding season in the summer of 2017. Point counts took place between 9 June and
30 June, 2017, based on nesting dates reported in Yang [36]. Water sampling did not take
place concurrently with the avian point counts; during the avian breeding season, the water
levels were too high to use the Surber sampler. Each site was visited on three separate days
for a total of three counts per site. Surveys took place between ten minutes after sunrise and
10 a.m. During each eight-minute count, all individual birds of all species were recorded
that were seen or heard. The avian abundance data were converted to presence–absence
detection histories for all species that were detected at more than 4 of the 20 sites (>20%
naïve occupancy).

The survey-specific covariates recorded for each count included the Julian date, start
time, start temperature (from a Garmin tempe wireless temperature sensor), and categorical
indices for wind (0 = smoke rises vertically; 1 = smoke drifts; 2 = leaves rustle, wind felt
on face; 3 = leaves and small twigs in constant motion; 4 = raises dust, small branches are
moved; 5 = small trees in leaf begin to sway), sky (0 = few clouds; 1 = partly cloudy or
variable sky; 2 = cloudy), and noise (1 = quiet; 2 = wind rustles leaves; 3 = distant roar of
water; 4 = nearby roar of water). In order to reduce the number of modeled parameters,
wind was converted to a binary variable with values of 0 and 1 comprising one category
and values of 2 or greater comprising the other. Noise was similarly divided into two
categories: values of 1 or 2 comprised the first category and values of 3 or 4 comprised
the second.

The site-specific covariates were metrics of either habitat or water quality. Habitat
variables were derived from remote-sensing data, specifically the USGS GAP/LANDFIRE
National Terrestrial Ecosystems dataset (https://gapanalysis.usgs.gov/gaplandcover/
data/, accessed on 1 March 2018). Landcover for the state of Colorado was imported into
ArcMap along with the study site locations. The first habitat covariate was the landcover
type, reclassified as either forest, shrub, or grass. The percent of forest and the percent of
wetland shrub were determined around each point at 100-, 200-, and 300-m scales. Finally,
elevation (as recorded on a Garmin GPSmap) was included as a habitat variable, because
species richness usually decreases with altitude [44]. The Snake River watershed may be at
the altitudinal limit of some species. Water-quality covariates were based on the metal and
REE concentrations in water or benthic macroinvertebrates.

2.3. Data Analysis

The effects of dissolved metals on biota can be additive [45], and an additive measure
of toxicity is more conservative in that it likely overestimates organisms’ exposure to
harmful conditions. For this study, the “cumulative criterion unit” (CCU) was used and

https://gapanalysis.usgs.gov/gaplandcover/data/
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was calculated as the ratio of the measured metal concentration to the U.S. Environmental
Protection Agency (EPA) criterion value for that metal, summed for all metals [46]:

CCU = ∑
mi
ci

where mi is the total dissolved metal concentration and ci is the criterion value for the
ith metal. CCU values are unitless. Values above 1.0 are likely to cause harm to aquatic
organisms [46]. The Colorado Water Quality Control Commission (Regulation No. 33)
chronic criterion values were used as the criterion values for Al, Cd, Cu, Mn, Ni, Pb, and Zn,
which are hardness dependent and varied with the calcium and magnesium concentrations.
The Al standard is for total recoverable metal, but the measurements were made of the
dissolved phase and the Al criterion is likely too high. Colorado does not have an Fe
standard; thus, the national EPA Criteria Continuous Concentration (CCC), was used—this
standard is not hardness dependent and is equal to 1000 µg/L [47]. Chronic values were
used instead of acute standards because the chronic values represent a higher threshold,
making the CCU a more conservative estimate of toxicity. Only the trace metals were
included in the CCU because criterion values for REEs do not exist. Metals that were below
the ICP-MS detection limit were not included in the CCU calculation.

In order to evaluate potential spatial autocorrelation, Moran I values were calculated
for the dissolved metal and REE concentrations at the stream sites and in the benthic
macroinvertebrates, as well as for bird species. The coordinates of the sample sites were
used to create a matrix of Euclidean distances for each pair of sites. The inverse of this
matrix was used with the Moran I function to determine the Moran I value for each analyte.

A univariate regression was used to determine whether the dissolved metal and
REE concentrations were a significant predictor of the invertebrate metal concentration.
Separate regressions were conducted for the 9 sites in metal-impacted sub-watersheds and
the 5 Deer Creek sites with neutral pH, because these two groups of sites were dominated
by invertebrate species in different functional feeding groups. At sites where benthic
macroinvertebrate samples from different weeks were combined, the concentrations were
averaged across weeks. Data were log-transformed prior to regression. Only regressions
with significant p-values (alpha = 0.05) are reported. Regressions, and all other statistical
analyses, were conducted in R version 3.4.2 [48].

Occupancy models were used to relate habitat and trace metal and REE exposure
variables to the presence of various avian species. In order to avoid the multicollinearity
of covariates in occupancy models, aggregate metrics were chosen as site-specific covari-
ates. Principal component analyses (PCAs) were conducted on centered and scaled metal
concentrations in water and in invertebrates to reduce the dimensionality of the multi-
variate dataset while retaining most of the dataset’s original variation. The first principal
components (PC1) of dissolved metals and REEs in water samples and all metals and
REEs in benthic macroinvertebrates were used as site-specific covariates. The CCU (the
additive measure of trace-metal concentrations in water) and the concentrations of Pb
in invertebrates were also used as predictor variables. Pb was chosen because Pb was
the only metal shown to have some cellular-level effects on nesting tree swallows in the
Snake River watershed [28]. Occupancy models cannot use sites with missing site-specific
covariates, and water and invertebrates were collected for only 14 of the 20 sites; thus,
values for the missing sites were interpolated. Table S1 lists all the candidate covariates
used in model selection.

The R packages ‘unmarked’ and ‘AICcmodavg’ were used to build occupancy models
for each bird species using an information theoretic approach [49]. A pre-defined list of
candidate models was ranked using the Akaike’s Information Criterion (AIC) to account
for small sample sizes, such that:

AICc = −2 log
(

L
(
θ̂
))

+ 2K
(

n
n − K − 1

)



Diversity 2023, 15, 712 7 of 25

where L refers to the maximum likelihood for the parameter estimates θ̂, given the data and
model structure; K is the number of estimated parameters; and n is the sample size [49].
Lower AICc values indicate a more parsimonious model. For a given species, candidate
models were ranked according to AICc and the difference was calculated between the low-
est AICc value and other models’ AICc values, known as the ∆ AICc or “AICc difference”.
Models with a ∆ AICc of less than 2 are considered to have substantial support for being
the actual best model, while models with a ∆ AICc between 4 and 7 have considerably less
support [49]. The weights based on the ∆ AICc were calculated such that all the individual
weights summed to 1 for a given dataset:

wi = exp(− 1
2

∆i)
/∑R

r=1 exp(− 1
2

∆i)

where R is the number of candidate models. Higher weights indicate a higher “weight of
evidence” for a model being the actual best model, given the set of candidate models [49].

A hierarchical method was used in which only the survey-specific covariates were
modeled before proceeding to the overall best model selection. For the forest and shrub
covariates, the best scale was determined, before proceeding to overall model selection.
Site-specific covariates that measured similar characteristics (e.g., PC1 of dissolved metals
and CCU, or PC1 of invertebrate metals and Pb in invertebrates) were not included in
the same model to avoid multicollinearity. Although these covariates measure similar
characteristics, it was necessary to test all covariates since, for example, the CCU does not
include information on REEs. The “best” models were defined as those with a ∆ AICc
of less than 3. These “best” models may have unstable parameters or a low predictive
skill; therefore, the model-averaged coefficient estimates (betas) and their 95% confidence
intervals for parameters found in the “best” models were determined. A variable was
considered to be a stable predictor of occupancy if the 95% confidence interval for the beta
estimate did not overlap zero. The predictive skill of the best models was also evaluated
by conducting a leave-one-out cross-validation (LOOCV) on both the best model and
the null model (the model with no survey- or site-specific parameters). The best model
was trained on all data points except one; the occupancy of the left-out point was then
predicted based on the observed survey- and site-specific covariates and compared to the
observed occupancy. This step was repeated by dropping each point in turn to calculate
the root-mean-square error (RMSE) for each model.

3. Results
3.1. Trace-Metal and REE Concentrations in Water and Benthic Invertebrates

All results are presented in downstream order, beginning with the Upper Snake, Deer
Creek, the Lower Snake, and finally Peru Creek. The complete results for pH, specific
conductance, hardness, and dissolved trace-metal concentrations are presented in Table S1.
All dissolved REE concentrations can be found in Table S2. The total mass of the combined
benthic invertebrate samples and the sampling effort are presented in Table S3. Trace-metal
and REE concentrations in invertebrates can be found in Tables S4 and S5, respectively.
All of the Moran I values for dissolved trace metals and REEs and for trace metals and
REEs in benthic invertebrates were determined to have an absolute value of less than 0.3,
and for most of the trace metals and REEs in invertebrates the p values exceeded 0.05
(Tables S6 and S7). Similar to Pearson coefficients, Moran I values can range from 1 to −1
and the low Moran I values for these analytes indicate a random spatial distribution.

Stoneflies in the genus Zapata dominated the Upper Snake and Peru Creek, whereas the
most abundant benthic macroinvertebrates in Deer Creek were Baetis mayflies, consistent
with previous observations in this watershed (Table S8). Invertebrate biomass in the
Lower Snake was extremely sparse. As a result of the difference in the functional feeding
group of the dominant species in acidic versus neutral pH streams, these streams were
analyzed separately.
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In the Upper Snake, the pH values were very acidic: between 3.05 and 3.23. The pH
values were slightly basic throughout Deer Creek, ranging from 7.66 to 8.05 (Figure 2). In the
Lower Snake, below the confluence of Deer Creek, the pH values were less acidic, returning
to circum-neutral below the inflow of Saints John Creek (see Figure 1). The pH values along
Peru Creek ranged from 4.31 to 5.27, with higher values below tributary inflows.
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The Upper Snake had the highest specific conductance, ranging between 189.5 and
286.5 µS (Figure 2). Specific conductance was much lower in Deer Creek. The Lower Snake
had intermediate values between 126.9 and 147.5 µS. Specific conductance in Peru Creek
ranged between 167.3 and 230.4 µS.

The CCU values based on the trace-metal concentrations are shown in Figure 3.
Dissolved trace-metal and REE concentrations followed a similar pattern throughout the
watershed. Figures 4 and 5 present the dissolved concentrations of REEs with high and
medium maximum concentrations, respectively. All the REEs in the high category were
“light-group” REEs, defined as having an atomic number between 57 and 64.

The concentrations of trace metals in invertebrates are presented in Figure 6, and the
concentrations of the more abundant REEs in invertebrates are presented in Figures 7 and 8.
In the invertebrates, the concentrations of trace metals and REEs did not follow patterns as
clear as were observed in the dissolved concentrations. In general, the REEs that had low
dissolved concentrations were also low in invertebrates.
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Concentrations of trace metals and REEs in the Upper Snake increased downstream
(Figures 4 and 5). A large increase—usually a doubling or tripling in concentration—
occurred for Al, Cd, Mn, Ni, Zn, and most REEs between US3 and US4 at the inflow of
the “tributary of interest”. The concentrations of many elements were higher at US4 than
at any other site. Iron concentrations overall were extremely high and decreased from a
maximum of 2508 µg/L at US1 to 1696 µg/L at US4. CCU values averaged 58.5 at US1 and
US3, and leapt to 132.8 at US4 (Figure 3).

In the Upper Snake, the Mn, Zn, and most REE concentrations in invertebrates in-
creased downstream, but there was no marked increase at US4, below the tributary of
interest (Figures 6–8). Meanwhile, Al, Cu, Ni, Pb, Eu, Lu, and Sc peaked at US3 and had
lower concentrations at US4. Iron was distinct in that it decreased downstream, with
extremely high invertebrate Fe concentrations at US1 of 34,900 µg/g dry mass. Other
elements that had maximum concentrations in invertebrates in the Upper Snake were Pb,
Ce, Nd, Gd, Sm, and Eu.
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Figure 5. Dissolved Dy, Er, Gd, Pr, Sc, and Sm concentrations in water samples. These REEs had
medium (between 1 and 3 µg/L) maximum concentrations. Certain concentrations of gadolinium
and erbium in Deer Creek were below ICP-MS detection limits.

In Deer Creek, trace-metal and REE concentrations were relatively low (Figures 3–5).
Cadmium, Ni, Pb and all REEs were below 1 µg/L; Al, Cu, Mn, and Zn were all below
11 µg/L; and the highest Fe concentration was 124 µg/L. Metal concentrations were
relatively constant going downstream. CCU values at all Deer Creek sites were low
(Figure 3).

Despite the relatively low dissolved metal and REE concentrations, the highest concen-
trations of a few trace metals and REEs in invertebrates in the whole watershed occurred in
Deer Creek (Figures 6–8): Cd peaked at 4.12 µg/g dry mass at D5; Pr peaked at 1.93 µg/g at
D1; and La peaked at 8.43 µg/g at D1. Manganese and Zn concentrations in invertebrates
were also higher in Deer Creek than in the Upper Snake and REE concentrations were
within the same range.
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Figure 7. Ce, La, Nd, and Y concentrations in benthic macroinvertebrates. These REEs had high
maximum concentrations in water samples. Maximum concentrations in invertebrates were also high
(>6 µg/g).

In the Lower Snake, trace-metal and REE concentrations were less than in the Upper
Snake (Figures 3–5). White aluminum oxide precipitate was observed on the streambed at
LS1. CCU values ranged between 17.2 and 39.7 in the Lower Snake.

In the Lower Snake, invertebrate trace-metal and REE concentrations were intermedi-
ate or high compared to those for the headwater streams (Figures 6–8). Concentrations of
several metals (Al, Mn, Cu, and Ni) and REEs (Sc, Y, Dy, Er, Yb, Tb, Lu, Ho, and Tm) were
higher in the Lower Snake than at any other study site. Most metals and REEs decreased in
concentration between LS1 and LS3. No invertebrates were found at LS5, which was the
study site below the inflow of Saints John Creek.

In Peru Creek, the dissolved concentrations of many trace metals and REEs were
higher at P1 than at any other site in the watershed (Figures 3–5), with Pb concentrations
being particularly high. The concentrations of all trace metals and REEs decreased between
P1 and P2, where a major tributary joins Peru Creek. P1 had the highest CCU value (95.1).
CCU values at P2 and P4 were similar and averaged 46.4.

In Peru Creek, trace-metal and REE concentrations in invertebrates (Figures 6–8) were
consistently low at P1 and increased at P4, which is the opposite pattern of the dissolved
concentrations. Although dissolved Pb concentrations were the highest in Peru Creek,
Pb concentrations in invertebrates were not. Zinc was the only metal that had higher
invertebrate concentrations in Peru Creek than in other streams.
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Figure 8. Dy, Er, Gd, Pr, Sc, and Sm concentrations in benthic macroinvertebrates. These REEs
had medium maximum concentrations in water samples. Most of these elements also had medium
maximum (between 1 and 2 µg/g) concentrations in invertebrates, but Gd and Sc were high (>6 µg/g)
relative to other REEs. Concentrations of scandium at D1 were below the ICP-MS detection limits.

3.2. Relationships among Trace-Metal and REE Concentrations in Water and Invertebrates

The PCA of dissolved metal and REE concentrations indicated that each of the four
basins had distinct characteristics—sites were neatly clustered by basin (Figure 9A). The
first principal component explained 82% of the variation in dissolved metal concentrations
and separated out the two sites with the highest metal and REE concentrations (P1 and
US4) from the other sites. The loadings on PC1 (Figure 9B) were all positive, indicating
that the overall magnitude of metal and REE concentrations drove the variation along PC1.
The second PC explained 15% of the variation and separated the Upper Snake from the
other basins, especially Peru Creek. The metal loadings on PC2 indicated that differences
in Fe and Pb influenced the clusters in Figure 9A. Metal and REE loadings are presented in
Table S6.
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The PCA of trace-metal and REE concentrations in benthic macroinvertebrates did
not show a distinct clustering by basin (Figure 10A). The first PC explained 60% of the
variation. The loadings on PC1 were all negative, indicating that the overall magnitude of
the concentrations drove the variation along PC1. Thus, because the concentrations in Deer
Creek and the Upper Snake were similar, the PCA did not separate these two streams. The
second PC explained 21% of the variation. The arrows for Fe, Zn, and Mn were the shortest,
indicating that they had less of an influence than other elements (Figure 10B). Pb was the
trace metal most strongly aligned with the REEs. Metal and REE loadings in invertebrates
are presented in Table S7.
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Figure 10. PCA plot of metals in benthic macroinvertebrates. In (A), the number after the point
indicates which week the point was sampled, or whether it was a combined sample from both weeks.
In (B), loadings have been standardized.

The clustering of sites in the PCA for tissue concentrations in benthic invertebrates was
not similar to the clustering in the PCA for dissolved concentrations. A notable example is
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the comparison for Cd and Pb, which are known toxicants. Dissolved lead concentrations
were lower than those for Cd, but in invertebrates, Pb concentrations were much higher.
For REEs, however, high dissolved concentrations (Figures 4 and 5) generally corresponded
to high concentrations in invertebrates (Figures 6 and 7). The exceptions were Gd and Sc,
which had medium dissolved concentrations (Figure 5) but were high in invertebrates. In
fact, concentrations of Ce, Gd, La, Nd, Sc, and Y in invertebrates were as high or higher
than concentrations of Cd and Pb.

Regressions for acidic sites in the Upper Snake, Peru Creek, and the Lower Snake
showed that dissolved concentrations were generally poor predictors of those metals and
REEs in benthic macroinvertebrates (primarily the shredder Zapata). One exception was
Fe (Table 1), with iron concentrations in invertebrates at acidic sites positively correlated
with dissolved iron concentrations (p = 0.010). In contrast, the concentrations of Cd and
Pb in invertebrates were negatively correlated with the dissolved concentrations of these
two metals. This negative relationship may reflect the protective effect of the low pH
and high Fe concentrations associated with higher concentrations of Cd and Pb. For all
other elements, including REEs, there were no positive or negative significant relationships
between the dissolved and invertebrate concentrations (results not shown).

Table 1. r2 and p-values for significant univariate regressions of log-transformed concentrations of
metals in water and invertebrates for acidic sites on the Snake River and Peru Creek (n = 7 except
for cadmium, where n = 5). Water concentrations were averaged across sites for those sites where
invertebrate samples were combined; * indicates a significant p-value (alpha = 0.05).

Metal Direction of
Relationship Adjusted r2 p-Value

Relationships for acidic sites

Cadmium Negative 0.829 0.020 *
Iron Positive 0.717 0.010 *
Lead Negative 0.516 0.042 *

In Deer Creek, where dissolved metal and REE concentrations were low and the
dominant invertebrate is a collector–gatherer/scraper (Baetis), there were no elements with
significant relationships between concentrations in the water and invertebrates.

3.3. Riparian Bird Distribution and Occupancy Models

Twelve bird species were detected during point counts. Table 2 provides scientific and
common names for these species, as well as the naïve occupancy (i.e., the number of sites
where the species was detected in at least one survey divided by the number of sites). Eight
species were detected at more than 20% of the study sites.

Complete abundance data for all twelve species is provided in Tables S11–S13. The
Moran I values for the bird species were all less than 0.065, indicating that the data did not
exhibit spatial autocorrelation (Table S14). The American robin and dark-eyed junco were
detected at all Deer Creek sites, four sites each in the Upper Snake and Peru Creek, and
three sites in the Lower Snake. Lincoln’s sparrow was found at four of five sites along Deer
Creek, three in the Lower Snake, and only two each in the Upper Snake and Peru Creek.
The mountain chickadee was found at all sites in both Deer Creek and the Upper Snake,
but only three sites each along the Lower Snake and Peru Creek. The ruby-crowned kinglet
was detected at all Deer Creek sites, four Upper Snake sites, and only three sites each along
the Lower Snake and Peru Creek. The white-crowned sparrow and Wilson’s warbler were
detected at four of five sites in all basins except Peru Creek, where they were only detected
at one site. The yellow-rumped warbler was found at all Upper Snake sites but only three
Deer Creek sites, three Peru Creek sites, and two Lower Snake sites.
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Table 2. Birds detected in the Snake River watershed. Naïve occupancy refers to the ratio of sites
where the species was detected in at least one survey. Occupancy models were not built for the
greyed-out species.

Common Name Scientific Name Naïve Occupancy
American Crow Corvus brachyrhynchos 0.20
American Robin Turdus migratorius 0.80

Dark-eyed Junco Junco hyemalis 0.80

Lincoln’s Sparrow Melospiza lincolnii 0.55

Mountain Chickadee Poecile gambeli 0.80
Northern Flicker Colaptes auratus 0.05
Pine Grosbeak Pinicola enucleator 0.05

Ruby-crowned Kinglet Regulus calendula 0.75
Steller’s Jay Cyanocitta stelleri 0.10

White-crowned Sparrow Zonotrichia leucophrys 0.65

Wilson’s Warbler Cardellina pusilla 0.65

Yellow-rumped Warbler Setophaga coronata 0.65

Values for site-specific covariates and survey-specific covariates are reported in
Tables S15 and S16, respectively. Sites along the Snake River and Deer Creek were a mix of
forest and wetland shrub habitat, with one high-elevation site (US1) classified as grass. All
Peru Creek sites were dominated by forest habitat. The percent of shrub habitat tended
to decrease as the scale increased from 100 m to 300 m, whereas forest habitat tended to
increase as the radius increased.

Using these habitat parameters, plus the water and invertebrate parameters, occupancy
models were built for the eight species detected at more than 20% of the study sites. One
clear relationship emerged from these models. Three wetland-shrub habitat specialists were
detected in the watershed: Wilson’s warbler, Lincoln’s sparrow, and the white-crowned
sparrow. None of these three species were detected at US5, LS5, P2, P4, or P5 (among other
sites), which were the only five sites with zero percent shrub within 100 m. Otherwise,
these species were commonly detected at Deer Creek, Upper Snake, and Lower Snake
sites with shrub habitat, indicating that habitat, but not water quality or invertebrate prey
quality, is an important factor for these species during the breeding season. There were no
obvious patterns in the occurrence of the other five species. The American robin is a habitat
generalist while the dark-eyed junco, mountain chickadee, ruby-crowned kinglet, and
yellow-rumped warbler all prefer forest habitats. However, all these species were found at
sites with a variety of values for percent forest and shrub. The best models for each species
(models with a ∆ AICc of less than 3) are listed in Table 3, and model-averaged estimates
of the coefficients (betas) for parameters in those models are found in Table 4. For certain
species, one or two models were clearly better than the others. For others, the AICc weights
offered support for a suite of models. The site-specific covariates that appeared in the set
of best models varied by species and included both water quality and habitat variables.
The 95% confidence intervals for all site-specific covariates, for all species, included zero,
indicating that none of these variables were stable predictors of occupancy. However, this
outcome may be due to the small sample size. Despite having wide confidence intervals,
many of the parameter estimates make sense based on the known habitat preferences for
particular species. Finally, the leave-one-out cross-validation (LOOCV) results showed that
the best models for four of the eight species did a better job at predicting occupancy than
the null models for those species (Table 5).
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Table 3. Occupancy models with a ∆ AICc of less than 3 for each species. Models are named based
on their site-specific (Ψ) and survey-specific covariates (p), and Ψ(.), p(.) indicates models with
no covariates.

Species Model Names AICc ∆ AICc Weight Cumulative
Weight

American Robin Ψ(Elevation), p(Stemp) 77.715 0.000 0.825 0.825

Dark-eyed Junco

Ψ(.), p(Stemp) 85.609 0.000 0.318 0.318

Ψ(.), p(.) 86.950 1.341 0.163 0.481

Ψ(Elevation), p(Stemp) 87.948 2.339 0.099 0.579

Ψ(InvertPb), p(Stemp) 88.294 2.685 0.083 0.662

Ψ(Forest300), p(Stemp) 88.590 2.981 0.072 0.734

Ψ(Shrub100), p(Stemp) 88.598 2.989 0.071 0.805

Lincoln’s Sparrow
Ψ(Shrub300), p(Julian) 54.974 0.000 0.462 0.462

Ψ(Forest100), p(Julian) 56.801 1.827 0.185 0.647

Mountain
Chickadee

Ψ(.), p(Julian) 67.352 0.000 0.253 0.253

Ψ(PC1inverts), p(Julian) 68.214 0.861 0.165 0.418

Ψ(Shrub100), p(Julian) 68.459 1.106 0.146 0.564

Ψ(Elevation), p(Julian) 68.805 1.453 0.123 0.686

Ruby-crowned
Kinglet

Ψ(.), p(Julian + Noise) 81.668 0.000 0.376 0.376

Ψ(PC1inverts), p(Julian + Noise) 84.364 2.696 0.098 0.473

White-crowned
Sparrow

Ψ(Forest100 + InvertPb), p(Julian) 55.342 0.000 0.463 0.463

Ψ(Shrub100 + InvertPb), p(Julian) 55.348 0.006 0.462 0.925

Wilson’s Warbler
Ψ(Shrub300), p(.) 58.425 0.000 0.417 0.417

Ψ(Forest100), p(.) 58.453 0.028 0.411 0.828

Yellow-rumped
Warbler

Ψ(.), p(Noise) 80.543 0.000 0.182 0.182

Ψ(.), p(.) 80.747 0.204 0.164 0.346

Ψ(Forest300 + CCU), p(Noise) 81.047 0.504 0.141 0.487

Ψ(Forest300), p(Noise) 81.159 0.617 0.133 0.620

Ψ(CCU), p(Noise) 81.619 1.077 0.106 0.726

Ψ(PC1water), p(Noise) 82.484 1.941 0.069 0.795

Ψ(PC1inverts), p(Noise) 82.659 2.117 0.063 0.858

Ψ(Elevation), p(Noise) 83.096 2.554 0.051 0.909

Ψ(Shrub300), p(Noise) 83.374 2.831 0.044 0.953

Table 4. Modeled-averaged parameter coefficient estimates from occupancy models. Both site-specific
(Ψ) and survey-specific (p) covariates are included. Only estimates of parameters in occupancy models
with a ∆ AICc of less than 3 are included. An asterisk (*) indicates a stable estimate, i.e., the confidence
interval does not overlap zero.

Species Parameter Model-Averaged
Beta Estimate

95% Confidence
Interval

American Robin
Elevation (Ψ) 34.37 −128.79–197.54

Stemp (p) 0.07 −0.01–0.14
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Table 4. Cont.

Species Parameter Model-Averaged
Beta Estimate

95% Confidence
Interval

Dark-eyed Junco

Elevation (Ψ) 1.22 −2.19–4.64

InvertPb (Ψ) −0.09 −0.42–0.24

Forest300 (Ψ) −0.02 −0.17–0.12

Shrub100 (Ψ) −0.02 −0.11–0.07

Stemp (p) −0.07 −0.15–0

Lincoln’s Sparrow

Shrub300 (Ψ) 0.15 −0.01–0.3

Forest100 (Ψ) −0.03 −0.08–0.03

Julian (p) 0.33 * 0.06–0.59

Mountain Chickadee

PC1inverts (Ψ) 0.78 −0.92–2.48

Shrub100 (Ψ) −0.06 −0.18–0.06

Elevation (Ψ) 1.03 −0.85–2.91

Julian (p) −0.23 * −0.35–−0.11

Ruby-crowned
Kinglet

PC1inverts (Ψ) −0.25 −0.81–0.32

Julian (p) 0.1 −0.01–0.21

Noise1 (p) −2.21 * −3.85–−0.58

White-crowned
Sparrow

InvertPb (Ψ) 3.72 −7.38–14.82

Shrub100 (Ψ) 3.4 −6.25–13.01

Forest100 (Ψ) −1.52 −6.42–3.38

Julian (p) 0.2 * 0.06–0.34

Wilson’s Warbler
Shrub300 (Ψ) 2.38 −50.72–55.48

Forest100 (Ψ) −0.8 −17.84–16.24

Yellow-rumped
Warbler

Forest300 (Ψ) −0.08 −0.22–0.06

CCU (Ψ) 0.05 −0.06–0.15

PC1water (Ψ) 0.33 −0.68–1.34

PC1inverts (Ψ) 0.50 −0.97–1.97

Elevation (Ψ) 0.60 −0.82–2.03

Shrub300 (Ψ) 0.05 −0.12–0.22

Noise1 (p) −1.35 −2.96–0.25

Table 5. Leave-one-out cross-validation model skill. Lower root-mean-square error (RMSE) indicates
that the model did a better job of predicting the occupancy of sites not included in the model’s
training data. An asterisk (*) indicates that the best model was better than the null model, which has
no survey- or site-specific covariates.

Species RMSE of Null
Model Best Model RMSE of Best Model

American Robin 0.443 Ψ(Elevation),
p(Stemp) 0.229 *

Dark-eyed Junco 0.436 Ψ(.), p(Stemp) 0.442

Lincoln’s Sparrow 0.524 Ψ(Shrub300),
p(Julian) 0.447 *

Mountain Chickadee 0.423 Ψ(.), p(Julian) 0.424
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Table 5. Cont.

Species RMSE of Null
Model Best Model RMSE of Best Model

Ruby-crowned
Kinglet 0.465 Ψ(.), p(Julian + Noise) 0.469

White-crowned
Sparrow 0.510 Ψ(Forest100 +

InvertPb), p(Julian) 0.358 *

Wilson’s Warbler 0.505 Ψ(Shrub300), p(.) 0.004 *

Yellow-rumped
Warbler 0.507 Ψ(.), p(Noise) 0.533

4. Discussion

Overall, the water quality in the study area was similar to many prior studies of this
watershed [4,12,28,31,36,37]: acidic sub-watersheds (the Upper Snake and Peru Creek)
contained high levels of dissolved trace metals and REEs, while Deer Creek contained low
levels of dissolved metals and REEs. As in previous studies, the dominant benthic macroin-
vertebrate species varied by basin [12,36], which may influence the differences across the
sub-watersheds because trace-metal concentrations in freshwater benthic invertebrates
have been found to vary with functional feeding guilds [50]. Stoneflies, which dominate
the Upper Snake and Peru Creek basins, are shredder–detritivores that consume leaves that
have fallen into the stream and have been colonized by bacteria and fungi [51]. As such,
the stoneflies may avoid consuming elevated metal concentrations, as demonstrated by the
finding that trace-metal and REE concentrations in invertebrates were not well correlated
with concentrations in the water. Mayflies, which dominate the relatively pristine Deer
Creek basin, are collector–gatherer/scrapers that consume periphyton biomass that may be
enriched in trace metals. These mayflies are rarely found in streams with elevated metals,
so this taxon is usually considered to be sensitive to poor water quality. However, there
were no significant relationships between metal and REE concentrations in the water and
invertebrates at Deer Creek sites.

The comparison of invertebrate trace-metal concentrations in this study conducted
in 2017 with data for five of the sites studied in 2004 by Yang [36] does show that the
concentrations of Al, Cu, Fe, and Ni increased at all five sites. Al concentrations were over
an order of magnitude higher in both Deer Creek and the Upper Snake in 2017. Increases
in Deer Creek over the thirteen years were smaller, and Cd, Mn, Pb, and Zn concentrations
increased at some sites but not others. One of the main patterns that Yang [36] found was a
large increase in invertebrate trace-metal concentrations at the Middle Deer site compared
to the surrounding sites in Deer Creek. In 2017, Al, Fe, and Mn also peaked at this site (D3)
compared to D1 and D4, but other trace metals had decreased. Despite these increases,
which may be associated with the increasing concentrations of trace metals over time in
the watershed [3,4], it is important to consider that the benthic invertebrate taxa currently
present in the watershed may be adapted to these high concentrations of trace metals and
REEs that may have occurred during warm periods in the past.

In the context of potential adaptation, it is important to note that the concentrations of
REEs in benthic invertebrates found in this ARD-impacted watershed are much higher than
other reported values. In comparison to the REE concentrations found by Amyot et al. [18]
for invertebrates in pristine temperate lakes in Canada, the REE concentrations for all
the stream reaches in the Snake River watershed are 3–4 orders of magnitude higher.
Furthermore, the REE concentrations found in this study are 1–2 orders of magnitude
higher than the concentrations reported by Pastorino et al. [17] for invertebrates in six
stream sites in Italy receiving inputs from nearby agricultural and industrial activities.
However, similar to the findings of Pastorino et al. [17], the light REEs generally exhibited
higher concentrations than the heavy REEs.
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There may be a potential for the bioconcentration of REEs in the aquatic ecosystems
of the Snake River watershed. Although there are no native fish populations present in
the Snake River, Deer Creek does support native fish and the Lower Snake is occasionally
stocked with rainbow trout as a recreational fishery [10]. The concentrations of some REEs
in invertebrates were as high or higher than those for Cd or Pb, which are known toxicants;
thus, REEs are an emerging concern beyond the widely recognized impacts of ARD.

Of the eight avian species detected at more than 20% of the study sites, the mountain
chickadee is the only resident species, although it may move to lower elevations during
the winter. The other seven species all migrate south in the fall and arrive back in the
Rocky Mountains between mid-March and late-May [52]. All species are reported to eat at
least some arthropods, including insects, during the breeding season. The home ranges
for these eight species are generally much smaller than the 600-m buffer between the sites.
For example, mountain chickadees and white-crowned sparrows have territories of 6–7 ha,
which is equivalent to a circle with radius ~150 m [53,54]. Sabo [55] found that territories
for the ruby-crowned kinglet, yellow-rumped warbler, and dark-eyed junco ranged from
0.6 to 1.1 ha.

Occupancy models for eight insectivorous avian species provided little evidence that
bird presence in the Snake River watershed was influenced by water quality or metal and
REE concentrations in invertebrates, which represent potential prey during the breeding
season. This is despite large variation in habitat and water-quality parameters across the
study area. For three species (Lincoln’s sparrow, Wilson’s warbler, and the white-crowned
sparrow), the best models did predict occupancy better than the null model. All three of
these species are habitat specialists—they only breed in willow (Salix spp.) wetlands such
as those found in parts of the Snake River watershed [56–58]. Therefore, it makes sense
that the best models included percent shrub or percent forest landcover. For four species
(dark-eyed junco, mountain chickadee, ruby-crowned kinglet, yellow-rumped warbler),
the best models did not predict occupancy any better than the null models. This suggests
that the factors that are influencing the occupancy of these species were not included in
the candidate models, potentially due to the widespread distribution of these species in
the study area. The best model for the American robin also predicted occupancy better
than the null model, but this may have been an artefact of a small sample size; the model
suggested that robin occupancy increases with increasing elevation, but robins are known
to thrive at all elevations up to those found in the study area [42].

The only potential indicator of a relationship between avian occupancy and metal
concentrations was the best model for the white-crowned sparrow. In addition to percent
forest cover within 100 m, the best model for this species included lead concentrations
in invertebrates. Given that Custer et al. [28] found that Pb concentrations in the livers
of tree swallows had been high enough to inhibit some enzyme activity, the presence
of invertebrate Pb concentrations in the best model supports the further study of Pb
bioavailability and bioaccumulation.

Besides the white-crowned sparrow, other species did not show any relationship
between occupancy and metal and REE concentrations in aquatic invertebrates. This
finding, suggesting a limited impact on riparian birds, is consistent with the results of the
study by Kraus et al. [29] which included 35 streams and showed that concentrations of Cd
and Pb were generally lower in adult aquatic insects compared to the aquatic insect larvae—
thereby limiting the trophic transfer to predatory riparian spiders. Furthermore, the results
of this study provide a broader context for interpreting the results of a previous study in the
Snake River watershed, which examined birds that used nest boxes set up for the study [28].
Ninety percent of the birds using the nest boxes were tree swallows (Tachycineta bicolor)
or violet–green swallows (T. thalassina) [28]. The authors of the previous study found
that benthic macroinvertebrates contained elevated concentrations of metals at one site on
Deer Creek and that tree swallows did not use nest boxes at that site, indicating a possible
link between water quality and avian habitat selection [28]. However, no swallows were
observed anywhere in the study area in 2017. Tree swallows are rarely found above 9000
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feet in Colorado [42], but they have been known to breed in nest boxes outside their typical
range [59]. Thus, the study area may be at too high an elevation for swallows to breed
without the incentive of a nest box. This is relevant because swallows primarily obtain
food by capturing insects while flying. All of the songbirds considered in the occupancy
models of the current study primarily obtain food by gleaning insects from vegetation or
the ground [52]. Due to these behavioral differences, it is likely that most of the biomass
consumed by swallows is of aquatic origin, i.e., insects that have emerged directly from the
stream [60]. The songbirds detected in 2017 have a more diverse diet that includes spiders,
caterpillars (Lepidopetra larvae), aphids, and some vegetable matter (e.g., [55,61]).

The metal concentrations of non-aquatic avian prey items in the study area are not
known but it is certainly possible that they contain lower metal concentrations than aquatic
invertebrates. Therefore, by eating a variety of invertebrate prey, as well as seeds and
berries, songbirds may be exposed to lower metal concentrations than aerial insectivores
such as swallows. On the other hand, studies have shown that predatory invertebrates
such as spiders are important vectors for the trophic transfer of metal contaminants. For
example, Kraus et al. [62] showed that spiders had higher concentrations of zinc, cop-
per, and cadmium than their aquatic prey. However, because insect emergence decreases
as metal contamination in streams increases, especially for mayflies, the total metal ex-
ported by insects is the lowest at the most contaminated sites [62]. These studies suggest
that understanding avian exposure to contaminants requires a complete picture of the
food chain.

There are many other possible reasons beyond a broad diet that water quality, specifi-
cally elevated metal and REE concentrations in streams and benthic macroinvertebrates,
would have no effect on bird occupancy. First, not all metals are harmful. Of the elements
reported in this study, only Pb and Cd are known to be harmful to birds [28], although data
on the toxicity of rare earth elements are scarce. Metals such as Cu, Fe, Mn, and Zn are
essential or beneficial for birds and are easily metabolized. Additionally, birds may not be
exposed to elevated metals for enough time to feel the effects. Except for the mountain
chickadee, all of the modeled species are migrants that spend at most half a year in the
study area. The winter season could be enough time for birds to metabolize the metals
and remove them from their systems. However, philopatry is common in birds [63], so
it is probable that most individuals return to the same breeding grounds year after year
and are potentially repeatedly exposed to contaminants. Certain species are also arriving
to breeding grounds earlier each year due to changing climate cues at low elevations [64],
meaning that birds could be exposed to contaminants for a longer time, increasing the
chances of a chronic toxicity.

There are also many reasons that birds breeding adjacent to ARD streams could, in fact,
be experiencing negative effects that would not be detectable from occupancy modeling.
For example, Mulvihill et al. [27] found that Louisiana waterthrushes were still present
and breeding along ARD streams, but that their territories had to be larger to account for
the unfavorable habitat quality. In addition, while fecundity was the same at ARD sites
and control sites, birds at ARD sites produced smaller clutches and nestlings grew more
slowly [27]. The point count data obtained in the current study would not have captured
all these effects.

5. Conclusions

In the Colorado Mineral Belt and other mountainous regions worldwide, acid rock
drainage (ARD) has a pervasive and deleterious influence on water quality. In this study,
the uptake of both trace metals and REEs by benthic invertebrates in ARD-impacted streams
was considered as a potential factor influencing the presence of breeding birds in the Snake
River watershed. One important and novel finding is that the concentrations of some REEs
in invertebrates were as high or higher than those for Cd or Pb, which are known toxicants.
Furthermore, the PCA indicated that REE concentrations in invertebrates were aligned
with Pb concentrations in invertebrates. Overall, given the dearth of information about



Diversity 2023, 15, 712 22 of 25

REEs in aquatic organisms, further study of the availability and transfer of REEs through
ARD-impacted aquatic ecosystems is warranted.

Another important finding was that dissolved metal and REE concentrations were
not good predictors of concentrations in benthic macroinvertebrates, even when acidic
and pristine sites were considered separately. This lack of a relationship is likely due
to differing exposure and uptake by the resident species of benthic macroinvertebrates.
Furthermore, while the benthic invertebrates present in the ARD-impacted streams did have
high concentrations of metals and REEs in their tissues, this study did not find evidence of
an impact on the presence of riparian songbirds in the watershed, although samples sizes
were small. The broad diet of the songbirds and potentially lower metal concentrations in
the adult invertebrates compared to the aquatic juvenile insects may account for this result.
The monitoring of ARD sites during and after remediation often focuses on the stream
environment [65]. The finding of a limited impact of ARD on riparian birds may be useful
in assessing whether or not monitoring of these sites during remediation of mining impacts
may need to expand to include an evaluation of the metal and REE contents of riparian
birds and other terrestrial wildlife.
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