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Abstract: Regular monitoring of breeding population abundance and environmental factors related
to the nesting habitat has proven fundamental for seabird conservation. Harmony Point (Nelson
Island) is an Antarctic Specially Protected Area (ASPA) designated to manage and protect the high
biological value of seabirds’ richness and abundance. However, due to the remote location of their
breeding sites, many species lack updated population counts. Skuas (Catharacta sp.) exhibited a
two-decade gap since the last census was conducted in Harmony Point. The abundance and spatial
distribution of the nests of skuas were studied during the austral summer of 2019/2020. Through an
exhaustive search, we counted and mapped active nests. Nesting habitat was assessed by the use
of an unmanned aerial vehicle to take aerial pictures and build an orthomosaic image to determine
vegetation in the area. Additionally, a digital elevation model was built to calculate a series of
geomorphological-related variables. Suitability models were used to estimate the importance of
variables to the nesting of skuas. A total of 71 brown skua (Catharacta antarctica) and 3 south polar
skua (C. maccormicki) nests were counted. Two of the seven variables (terrain slope and vegetation
cover) accounted for 57.5% ± 14.1% of the models’ variability; sun radiation incidence, and wind
shielding were of secondary importance. Water flow accumulation, distance from penguin colonies,
and terrain elevation were the least important variables. Skuas selected for nesting flat terrains
(slope < 10◦) with a vegetation cover of above 20%, slightly higher sun incidence (270 to 280 kW/h),
and intermediary windshielding (45% to 55% of exposition). Considering previous estimates, the
skua species at Harmony Point has kept an apparently stable population size over the last 25 years.
However, expected changes in nesting habitat availability, i.e., increased snow-free area, increased
wind intensity, changes in vegetation cover, and reduction of penguin populations, might change
population size in the mid to long term.

Keywords: Catharacta; brown skua; south polar skua; habitat suitability; South Shetland islands; topography

1. Introduction

There is wide recognition of the great importance of seabird conservation in the South-
ern Ocean. Great efforts have been conducted to establish and maintain protection in
zones [1,2], especially in important breeding areas [3] where human activities and envi-
ronmental changes related to climate change can have large negative impacts [4,5]. The
isolation and limitations of accessing Antarctica makes it difficult to maintain regular mon-
itoring to visualize population trends and detect the environmental factors involved [6].
Usually, the climatic conditions and logistic constraints make the effort to survey the species
limited and restricted to certain species of greater interest or charismatic ones (i.e., pen-
guins), leaving others without updates for decades [2]. This is particularly problematic for
those species considered to be top predators, whose population abundances are compar-
atively lower to medium and have low trophic levels, and population dynamics can be
particularly sensitive to rapid environmental change [7–9].

Diversity 2023, 15, 638. https://doi.org/10.3390/d15050638 https://www.mdpi.com/journal/diversity

https://doi.org/10.3390/d15050638
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diversity
https://www.mdpi.com
https://orcid.org/0000-0002-7894-0153
https://orcid.org/0000-0003-4637-5302
https://doi.org/10.3390/d15050638
https://www.mdpi.com/journal/diversity
https://www.mdpi.com/article/10.3390/d15050638?type=check_update&version=2


Diversity 2023, 15, 638 2 of 12

Skuas are long-lived top predators widely distributed in sub-Antarctic and Antarc-
tic environments [7,8], whose population dynamics can be representative of ecosystem
health [10]. The brown skua (Catharacta antarctica) and the south polar skua (Catharacta
maccormicki) are two species commonly found breeding sympatrically in the Antarctic
during summer [11]. During the spring, adults migrate from winter locations in temperate
areas to sub-Antarctic and Antarctic sites to breed. Adults prepare the nest, lay up to
two eggs and perform parental care during the chick-rearing period [12]. Skuas play a
key role as opportunistic predators with highly territorial behavior around their nesting
areas [13]. Skuas mostly feed their young with penguin eggs and chicks, and breeding
success depends on a sufficient amount of nearby food supply [14]. Nest site selection is
therefore commonly influenced by proximity with penguin colonies [14]. However, there
are also geomorphological features such as terrain elevation, composition or exposure to
sun, wind and rain, that set nest habitat in order to provide conditions for the development
of the chicks [11,15,16].

At Harmony Point (Nelson Island, South Shetland Islands), significant work has been
done to maintain population estimates of seabird species, although with large temporal
gaps [17–19]. The last count of skua breeding pairs was conducted in 1995 [17]. There is also
scarce information about nest distribution, nest availability, and suitability associated with
environmental factors. The objective of this work was to update the number of breeding
pairs of skuas at HP, study the spatial nests distribution, and through an unmanned
aerial vehicle (UAV) survey and identify geomorphological characteristics where the nests
are located.

2. Materials and Methods
2.1. Nest Mapping

The skua nests’ distribution was surveyed between 26 November 2019 and 15 January
2020 in Harmony Point (Figure 1a,b). An exhaustive visual search by walking throughout
the ice-free area was conducted (an accumulated linear distance of 129.6 km was explored,
Supplementary Material Figure S1), and active nests (a nest with an adult in defensive
behavior), when detected, were marked with a handheld GPS receiver from a distance of
approximately 50 m from the nest (to reduce interference over the breeding bird). The identi-
fication of skua species was performed according to morphological descriptions of plumage
coloration and body appearance (the south polar skua is smaller with golden hackles, and
the brown skua is larger and heavy with white spotted hackles at the back) [20,21].

2.2. Nest Habitat

During January 2020 we performed a flight survey using the UAV DJI Mavic 2 Pro
(DJI, Shenzhen, China), equipped with a 20MP RGB Hasselblad L1D-20c camera. The
UAV was flown at a horizontal speed of 5 m/s following parallel transects at an altitude of
400 m in order to achieve consistent sets of imagery and proper overlap between images.
Single photographs were taken every 5 s, covering all of the ice-free area. Photographs
were processed in Agisoft PhotoScan Professional (version 1.2.6) in order to create a high-
resolution georeferenced orthomosaic image (pixel size ≈ 20 cm) and a digital elevation
model (1 m cell size). The orthomosaic is a highly detailed and undistorted map built with
the UAV imagery that enhances the visibility of surface details in the surveyed area, being
especially useful in hard-to-access study systems [22].

Vegetation cover was estimated by applying a maximum likelihood unsupervised
image classification of the orthomosaic on ArcMap 10.8.2. Unsupervised algorithms for
image classification find the underlying structure of the image automatically by clustering
data which is spectrally similar [23]. Such methods are useful for organizing large and
spatially complex sets of data efficiently and accurately [24]. Vegetation-covered cells
were set to value of 1 and other types of substrates were set as zero. The grid was then
resampled to 1 m × 1 m using a mean value, therefore, the final value was a proportion
of a 1 m2 cell that was covered by any type of vegetation (Figure 1c). At the elevation the
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drone was flown, mosses and algae were not separated, therefore they are being considered
together. By observation on the field, we can say that moss carpets are dominant as
large vegetation formations, and algae can be found mostly downstream of large penguin
colonies, representing a small proportion of “green cells” in the orthomosaic. Large lichen
fields at the southeast of the area were separated by the unsupervised algorithm (Figure 1c).
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Figure 1. Locations of Nelson Island (a) and Harmony Point (b); Harmony Point in detail show-
ing the orthomosaic built from aerial imagery taken on 400 m altitude, the classified vegetation
cover (bright green) the mapped skua (Catharacta sp.) nests (yellow stars), and the penguin colony
polygons (c). Map created using ArcMap 10.8.2 (https://www.esri.com/, accessed on 10 January
2023). Land contours from Esri Global Mapping International (https://www.arcgis.com/; item id
a3cb207855b348a297ab85261743351d, accessed on 10 January 2023) and the SCAR Antarctic Digital
Database 2022 (https://www.add.scar.org/, accessed on 10 January 2023).

A digital elevation model DEM (Figure 2a) was the basis to generate four other
topographical variables: terrain slope, incidence of sun radiation, windshielding, and
water flow accumulation that were processed through ArcMap 10.4 toolboxes (ESRI 2022).
Terrain slope (Figure 2b) was determined by applying the surface tool, and is a measure
of the inclination of a cell estimated through the elevation difference from neighbor cells
on a grid. The Area Solar Radiation tool was used to calculate the sun radiation incidence
SUN (Figure 2c), using multiple days from 1 December 2019 to 31 January 2020. SUN is
measured as kilowatts per hour (kW/h) reaching the surface in that period. Windshield
(Figure 2d) was estimated using the hillshade tool, creating a shaded relief from a surface
raster by considering the illumination source angle and shadows. Multiple outputs were
generated using predominant wind directions for the area as the source (azimuth) angles
(270◦, 300◦, 330◦, 0◦, 30◦, as west and north winds have been more frequent on the area
over the years, authors pers. inf.) and with multiple incident altitude angles (5◦, 10◦, 15◦

and 45◦). A mean value was calculated for all of those outputs. Hillshade indicates the
amount of shaded (0) and lightened (255) relief, therefore, mean hillshade values were
divided by 255, therefore indicating, in terms of proportion, the level of “protection” the

https://www.esri.com/
https://www.arcgis.com/
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relief provides from the “source”, in this case, the predominant wind direction. The flow
accumulation (Figure 2e) tool uses a measure of flow direction based on the terrain and
the elevation slope to accumulate the weight of all cells that flow into each downslope cell.
The final output was classified in 0 (low flow) and 1 (higher flow), and a mean filtering
(5 × 5 cells) was used to average the values, therefore, generating a measure of water
accumulation probability.
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Figure 2. Habitat variables used for applying nesting habitat suitability models using data of skuas
(Catharacta sp.) breeding in Harmony Point, Nelson Island: terrain elevation (a), terrain slope (b),
sun radiation incidence (c), windshield (d), water flow accumulation (e), and distance from penguin
colonies (f).

The orthomosaic image (Figure 1c) also allowed for the identification of penguin
colonies, which we used to construct polygons marking the edge of the colonies. The
Euclidean distance tool was used to calculate the horizontal distance between nest and
penguin colonies (Figure 2f).

In order to evaluate habitat preferences, 300 random points were generated throughout
Harmony Point to use as pseudo absences (see next section). To sample environmental
variables, a 100 m buffer was generated around each geographical position (nests and
random points). That procedure was used as: (i) the position of the skua nests were
marked from a nearby position, (ii) chicks are mobile soon after they hatch [25,26], and
(iii) breeding skuas defend territory around their nests [13,27]. Therefore, nesting habitat is
better described by the amount of variables around the nest, rather than considering values
on a single position. Habitat variables were averaged within each of those 100 m-buffers to
be used in subsequent analysis.
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2.3. Nesting Habitat Suitability

Nests’ positions and random points were used to run ecological niche models (ENM),
also called habitat suitability models (regarded here as nesting habitat models). Those
models use species’ presence to estimate habitat suitability based on a set of environmental
variables, calculating a probability (0 to 1) that the available habitat on the landscape is
similar to the observed occurrences [28]. While several ENM methods exist, some of the
more accurate and robust methods use machine-learning iterative approaches to train and
test models over a subset of the original data [29–31]. Those methods assume species
absences are unknown, but require the use of absences to estimate probabilities, therefore
the generations of pseudo-absences (points where the current dataset have no presences
but true absence is somewhat uncertain) are required [32,33]. Random points, described in
the previous section, were used as pseudo-absences.

Generalized boosted models (or Gradient Boosting Machines) GBM were used to
apply ENM and calculate nesting suitability based on the probability of nest occurrence in
relation to the environmental variables. GBM [34–36] is a machine-learning based technique
which, used in the context of ENM, fits occurrence of a species (binary data; Bernoulli
distribution) to continuous variables through applying iterative regression trees and using
a cross-validation selection procedure to keep the best models and optimize prediction [36].
GBM is regarded as one of the most robust predictive statistical techniques [31,37]. The
‘gbm’ R-package was used [35]. GBM was applied 30 times using the nests as presence
and a random subset of pseudo-absences matching the number of nests in order to have
a balanced estimation of probabilities that are also independent of the pseudo-absences’
generation process [33].

The following parameters were used: 50 regression trees (number of iterations); a bag
fraction of 0.8 (proportion of the training set used to propose the next tree); a shrinkage of
0.1, as the learning rate or the contribution of each tree to the next one; the train fraction
was 0.8, that is, 80% of data were used to train the model, and the remaining 20% to test
accuracy; a tree depth (number of interactions) of 1 (no interaction); and the minimum
number of observations in terminal nodes = 10. Performance and accuracy were measured
through three methods: cross-validation error, that is, the average error of the testing
fraction (20% of original data set selected on a 10-fold cross-validation); the out-of-bag
error OOB (the reduction in prediction deviance comparing sequentially iterated trees); the
area under the receiver operating the characteristic ROC curve (AUC). AUC is calculated
from the sensitivity (true positive rate) and specificity (true negative rate), which measures
proportions of correct classifications through the model outputs. Values of AUC near 0.8
are considered satisfactory and above 0.9 are good (for further details on AUC see [38]).
Variable contributions to the nesting habitat were calculated by measuring the percentage
of change in model performance when the variables are taken off the model during the
10-fold cross-validation procedure.

The GBMs runs were used to predict suitability in the 377 geographical positions
(random points plus nests), and a mean value for each grid cell was calculated out of the
outputs of the 30 runs. The value was posteriorly interpolated to a regular grid using an
Inverse Distance Weighting approach. Suitability was grouped into five regular classes
since a threshold value of 0.50 (below this value most variables have no effect on habitat
selection): unsuitable (<0.50), low suitability (≥0.5, <0.60), intermediary suitability (≥0.60,
<0.65), high suitability (≥0.65, <0.70), and optimum stability (≥0.70).

For detailed methods and codes, please see File S1.

3. Results

By walking linearly for a total of 129.6 km we covered the entire 18.4 km2 of ice-free
area in Harmony Point. We found 74 active nests (Figure 1c). Of those, only three nests
were from south polar skuas. The nests presented a clustered distribution (z = −4.07,
NNR = 0.753, p < 0.001) with an observed mean distance of 182.45 m between nests.
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3.1. Nest Habitat Model Performance and Variable Contribution

The model’s accuracy was satisfactory (0.79 ± 0.01). The increasing iterations were
able to approximate deviance to 0 (Figure 3a) and reduce errors (Figure 3b,c) for all
30 models run. Geomorphological variables (Figure 3d) with a higher importance on
the models were terrain slope (31.92% ± 9.45%, 18.74% min, 55.81% max) and vegeta-
tion cover (25.55% ± 9.06%, 15.24% min, 56.26% max). Windshield (10.37% ± 7.95%), sun
radiation incidence (10.20% ± 7.86%), and flow accumulation (9.26% ± 8.67%) had a sec-
ondary importance. Distance from penguin colonies (8.03% ± 7.00%) and terrain elevation
(6.07% ± 6.00%) were the least important variables.
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Figure 3. Generalized boosted model’s performance statistics at each of the 50 iterations for the
30 model runs showing an approximation of prediction deviance to 0 (a) and reductions of cross-
validation (b) and training (c) errors at each new iteration. Frequency distribution of environmental
variables influence on models output measured as percentage of decrease in classification accuracy by
elimination of the variable from the model (d). Estimated values from the GBM runs and iterations
(blue dots) fitted automatically with a general additive model (GAM) trend (red line). Black dots are
boxplot outliers.

3.2. Nesting Habitat

Skuas preferred to nest on flat terrains (when slopes were above 10◦ of inclination
suitability moved below 0.5; Figure 4a) with intermediary to high vegetation cover (there
was a lot of variability on suitability when vegetation cover was below 20%, but above 20%
suitability tended to be always higher than 0.5, Figure 4b). Intermediate values of wind-
shield were preferred for nesting (Figure 4c) and higher values of sun radiation incidence
predominated with suitability >0.5 (Figure 4d). There was a tendency for nests to be placed
on slightly higher flow accumulation areas, but also with a large variability (Figure 4e).
While skuas nested in areas far from penguin colonies, there was a recorded concentration
of higher suitability values on distances below 500 m from penguins (Figure 4f). Elevation
did not have any important contribution nor do response curves have any detectable
trend. The majority of nests were placed in areas of optimum suitability (56.6%), especially
concentrated at the southerly sector of Harmony Point (Figure 5), in opposition with zones
of high suitability (12.2%) and intermediary or low suitability (29.7%). Only one nest was
positioned in an area classified by the model as unsuitable (Figure 5).
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Figure 5. Estimated nesting habitat suitability for skuas (Catharacta sp.) in Harmony Point, Nel-
son Island. Suitability classes were assigned as Unsuitable (<0.50), Low Suitability (≥0.5, <0.60),
Intermediary Suitability (≥0.60, <0.65), High Suitability (≥0.65, <0.70) and Optimum Suitability
(≥0.70). Mapped nest skuas (green stars) are plotted with the distribution of penguin colonies
(black polygons).
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4. Discussion

Skuas’ nest distribution across the ice-free areas of Harmony Point was successfully
modeled using geomorphology features and penguin–colony distance. As skuas are
a species that defend a territory both for breeding and feeding [39], these factors may
be important factors in nest-site selection. The generalized boosted model exhibited a
satisfactory performance with low deviance and error, with terrain slope and vegetation
cover being the most important variables. These findings are consistent with the breeding
description that skuas commonly nest in highlands of low slope with a large presence of
vegetation carpets [40].

We observed that nesting suitability increased with the increase of vegetation cover,
especially at snow-free sites covered with moss-turf carpets [21]. Carpets provide a safe
space where eggs and chicks are perfectly camouflaged (Figure 6). This could also be
supported by the relation with accumulation flow, as mosses require a minimal level of
water availability to subsist [41]. One study on another skua species has shown that adults
make frequent use of ponds, water streams, and shallow lakes to clean feathers after
feeding events [42], which, by field observation, seems to be the case for brown and south
polar skuas.
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Figure 6. Skua nest on moss-turf carpet at Harmony Point. The color pattern of the egg and chick
allows a perfect camouflage. Photograph taken by Francisco Santa Cruz.

Nesting suitability was higher in sites with slopes <10◦, which is similar to information
observed for skuas breeding at Cierva Cove [40]. Slope is a factor closely related to
windshield, sun radiation incidence, and flow accumulation being associated with local
fine-scale variation in thermal and wind stress, relevant for nests’ protection [19]. Skuas’
nesting occurred at intermediate values for those geomorphology features, suggesting
that skuas avoid extreme conditions. Intermediate values could be representatives of a
high-quality nesting habitat, providing optimum conditions of temperature, humidity, and
shelter for eggs and chicks. This is particularly important in the Antarctic environment,
where nest characteristics are key to face the frequent strong winds and snow during the
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breeding season which can affect breeding success [43], particularly for skuas whose chicks
are nidifugous within a few days after hatching [25,26].

We updated the breeding population of two skua species at Harmony Point, where
according to the previous counts [17], we observed a difference of active nests from 61 to
71 for the brown skua, and from 10 to 3 nests for the south polar skua. Considering the
two species together, the values of the 71 nests registered in 1995/1996, and 74 in 2019/2-20
suggest stability. However, more nest counts are necessary in order to support that claim
and rule out the effects of high inter-annual variability on breeding numbers. Other colonies
in the sector, such as Potter Peninsula, have shown stability [44], however, decrease has
also been seen in areas where the number of potential prey have decreased [45,46].

There are contrasting hypotheses in previous studies on the interaction, competitive-
ness, and displacement between the two species of skua. Some suggest that the increase
in population of the south polar skuas may displace the brown skuas [13], while others
indicate that due to their greater predatory ability, the brown skuas are able to displace the
south polar skuas [47]. At Harmony Point, the decline in population of the south polar
species could lead us to believe that the latter is the case. However, again, we do not
have enough data to conclude that this is only the result of inter-annual variability on
breeding numbers.

The apparent breeding population stability of skuas at Harmony Point suggests that
the colony is in a steady state where the carrying capacity or saturation level has been
reached, as has been pointed out for other skua colonies in Antarctica [44]. For seabirds, the
carrying capacity of a species is related to resource limitation including food availability
and habitat availability [48]. For instance, in HP we assume food is not a limitation, as
the chinstrap penguin (Pygoscelis antarcticus) colony can surely provide enough food for
skuas, especially considering that its diet is centered on penguins. Unlike in other areas,
there is a greater contribution of other seabird species, fish, and other marine resources [49].
Consequently, we argued that skuas in Harmony Point have optimized the use of available
nesting habitats, particularly in terms of space and maximum nest density. According to
our results, the areas of optimum habitat suitability are densely occupied (Figure 5). We
calculated a nest density of 5.8 nest per km2 (74 nests on the 12.8 km2 of estimated suitable
area) which is comparatively low compared to other areas with up to 132 pairs per km2 [50],
however, we also estimate a mean of 182.45 m between nests, similar to that reported in
Admiralty Bay, where skuas that breed close to penguin colonies have a strategy of keeping
distance to avoid cannibalism [11]. It is important to note that skuas defend their eggs
and chicks from predators, including cannibalism from neighbor breeding conspecific [39],
therefore, the maximum nest density might be influenced by a minimum distance to avoid
overlapped territories.

The interaction of geomorphological features combined with the density of con-
specifics and food resource availability may modulate skuas’ nest-site selection, therefore,
breeding success and population stability. Harmony Point is a sensitive area representative
of the invaluable richness of Antarctic seabirds, protected since 1985 as an Antarctic Spe-
cially Protected Area, thus suffering little disturbance. Here, any type of driver controlling
the nest and breeding ecology has responded to natural processes with minimum direct
human-related pressures. Although the chinstrap colony is still numerous and capable of
providing food, its abundance is likely shrinking (see [51]) and the carrying capacity in
coming years may not be influenced only by space availability, but also by food availability
and its combination. Thus far, ASPAs have proven to be an effective regulatory mechanism
but it also may depend on the spatial scale considered. At a local scale, it avoids direct hu-
man intervention on seabird populations and surely has allowed the population stability of
skuas in Harmony Point. However, the increased pressure from human-stressors related to
the presence of scientific activities [52], debris pollution [53,54], diseases dissemination [55],
alien species arriving [56], and climate change [57], are now challenging its effectiveness.
ASPAs might not be effective when large-scale processes occur. For example, the decline
of chinstrap penguin abundance in the South Shetland islands has been associated with
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climate-change induced regional reductions in winter sea–ice cover that impact primary
production and consequently reduce the productivity and availability of Antarctic krill [57].
In that context, only 17% of ASPA’s management plans have been updated to include
issues related to climate change [58]. It is a priority to expand these updates but also
relevant to rethink how ASPAs can still be effective protection tools, when climate-related
changes impact on scales beyond the scale of the ASPA itself. Large-scale tools focused to
protect ecosystem processes, such as Marine Protected Areas [59], arise as comprehensive
initiatives aimed at providing spaces without extra pressures to increase the resilience of
natural populations.

5. Conclusions

Our results show that, according to previous estimates, the two skua species at Har-
mony Point have kept an apparently stable population size over the last 25 years. Skuas
show that the optimal suitability for nesting habitat has been used almost entirely, com-
posed mainly of sites with high vegetation cover, low slope, and intermediate values of
exposure to wind and solar radiation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/d15050638/s1, Figure S1: Sampling effort for searching for
skuas nests in Harmony Point between 26 November 2019 and 15 January 2020. A hand-held
GPS receiver was set to conduct an automatic background tracking while researchers searched
for nests, recording in its internal memory one geographical fix each 5 seconds. File S1: San-
taCruz_and_Kruger_DataAndScript.
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