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Abstract: The genus of Parasenecio (Senecioneae) comprises about 70 species of high medicinal
value. In this study, the plastomes of Parasenecio palmatisectus and P. latipes were newly sequenced
using high-throughput sequencing technology and compared with those of eight other species in
Senecioneae. The complete chloroplast (cp) genomes were 151,185 bp in P. latipes with 37.5% GC
and 151,263 bp in P. palmatisectus with 37.5% GC. We predicted 133 genes, including 37 tRNA genes,
86 protein-coding genes, 8 rRNA genes, and 2 pseudogenes (ycf1 and rps19). A comparative genomic
analysis showed that the complete cp genome sequences of Parasenecio species and their related
species were relatively conserved. A total of 49 to 61 simple sequence repeats (SSRs) and 34 to
46 interspersed repeat sequences were identified in the 10 Senecioneae species of plastomes. Within
the tribe Senecioneae, single-copy regions were more variable than inverted repeats regions, and the
intergenic regions were more variable than the coding regions. Two genic regions (ycf1 and ccsA)
and four intergenic regions (trnC-GCA-petN, ycf1-trnN-GUU, psaI-ycf4, and rpl32-trnL-UAG) were
identified as highly valuable plastid markers. A phylogenetic analysis under maximum likelihood
revealed that the two Parasenecio species are sister to the genera of Ligularia and Sinosenecio in the
tribe Senecioneae. This study also contributes to the super-barcode, phylogenetic, and evolutionary
studies of Parasenecio plants.

Keywords: Parasenecio; chloroplast genome; comparative genomics; plastome phylogeny

1. Introduction

The genus Parasenecio Smith & Small belongs to the tribe Senecioneae of the family
Asteraceae. There are about 70 species [1–6] that mainly occur in East Asia and the Sino-
Himalayan region [2], and about 60 species in China [2]. Parasenecio is divided into six
sections according to the leaf morphology and chromosome numbers [2]. Previous molec-
ular phylogenetic studies showed that it is polyphyletic and forms a complex with other
Eastern Asian genera of Tussilagininae, such as the Ligularia–Cremanthodium–Parasenecio
complex (LCP) [7–12].

Parasenecio species have long been used as traditional Chinese medicines due to their
significant bioactivities, such as their anti-inflammatory, antitussive, and antimicrobial
properties [13,14]. Former studies of Parasenecio species mainly comprised medicinal
and pharmacological studies [13,14]. However, few studies have reported the plastid
genomes and phylogenetic analysis of species of Parasenecio. Genomic resources need
to be developed to better utilize these medicinal plants [15–17]. Furthermore, a good
knowledge of the genomic information of these medicinal species could inform biodiversity
conservation efforts [18]. The species of P. palmatisectus is distributed in Sichuan, Xizang,
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and Yunnan provinces in China and in Bhutan. The species of P. latipes is endemic to
China and is only distributed in Yunnan and Sichuan provinces. These species are used for
the treatment of inflammation and infectious diseases in Chinese folk medicine [2]. The
medicinal importance of these two Parasenecio species makes their genetic and phylogenetic
characterization more important.

The cp genome is a photosynthetic organelle in plants [19] that has an independent
genome. The genome is typically 120 to 160 kb in size, containing 120 to 140 genes [20].
In general, the cp genome is a quadripartite DNA molecule. It includes a short single-
copy (SSC) region, a large single-copy (LSC) region, and two inverted repeats (IRa and
IRb) [21]. Compared with nuclear genomes, cp genomes are more conservative in gene
order, content, and structure [21–24]. Therefore, they can be used as an effective tool for
revealing phylogenetic relationships [22,25,26] and a super-barcode for identifying closely
related species [22,27,28]. With the rapid development of sequencing technologies, the
cp genome has been successfully used to infer phylogenetic relationships of Asteraceae,
and it also provided a good opportunity to study the structural features, variation, and
evolution of Asteraceae [20,22–27,29–35]. However, the complete cp genomes of Parasenecio
have not been sequenced, which hampers the study of the evolution and phylogenetics
of Parasenecio.

In this study, we assembled the complete cp genomes of P. palmatisectus and P. latipes
and carried out a comparative plastome analysis with eight other published cp genomes of
closely related species to detect the differences in the cp genome. Our research purposes
were to (1) study the cp genomic features of Parasenecio species, (2) determine the structural
variation of Parasenecio species by comparing the cp genomes with eight other species
of the tribe Senecioneae, and (3) reconstruct the phylogenetic relationship of Parasenecio
species and its related genera. Our results provide valuable genomic information for further
studies on the phylogenetic relationships and sustainable utilization of Parasenecio species.

2. Materials and Methods
2.1. Plant Material, DNA Extraction, and Sequencing

Fresh leaves of P. latipes and P. palmatisectus were collected from Muli county and
Bazhong city in Sichuan province, China, respectively (Figure 1). The fresh leaves were
cleaned using 75% alcohol and ddH2O, rapidly placed in liquid nitrogen, and then trans-
ferred to −80 ◦C for storage after returning to the laboratory. The voucher specimen of
P. latipes (no. FZX5888) and the voucher specimen of P. palmatisectus (no. DY122) were de-
posited under the herbarium of Sichuan Normal University (SCNU), Chengdu city, Sichuan
Province, China (contact: Dr. Prof. Zhixi Fu, fuzx2017@sicnu.edu.cn). The total genomic
DNA was isolated from silica-dried leaves using a modified cetyltrimethylammonium
bromide (CTAB) method [36]. The library construction and whole-genome sequencing were
performed using high-throughput Illumina sequencing technology at Beijing Genomics
Institute (Shenzhen, Guangdong, China, BGI). The qualified library was sequenced with
the BGI NovaSeq 6000 platform, with a sequencing read length of 150 bp.

2.2. CP Genome Assembly and Annotation

The cp genomes were assembled using the SPAdes software (v3.10.1) with default
settings [37]. The circular maps were identified using Bandage so as to assess the quality
of the assembly [38]. The plastomes were annotated using Plastid Genome Annotator
(PGA) with the cp genome sequence of Senecio vulgaris L. (NC_046693) [39] as the reference.
The annotation results were inspected using Geneious R11 [40] and adjusted manually as
needed. Finally, Organellar Genome Draw (OGDraw) (https://chlorobox.mpimp-golm.
mpg.de/OGDraw.html (accessed on 6 June 2022)) was used to draw circular maps of the
plastome [41]. The assembled complete cp genome sequences were submitted to NCBI
GenBank (https://www.ncbi.nlm.nih.gov (accessed on 12 June 2022)) with the accession
numbers ON749759 (P. latipes) and ON749760 (P. palmatisectus).

https://chlorobox.mpimp-golm.mpg.de/OGDraw.html
https://chlorobox.mpimp-golm.mpg.de/OGDraw.html
https://www.ncbi.nlm.nih.gov
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Figure 1. Images of Parasenecio latipes and P. palmatisectus. (A,B) Inflorescence of plant growing in 
natural habitat; (C,D) morphology of leaf. ((A,C) P. latipes, voucher FZX5888, SCNU, Muli county, 
Sichuan province, China). ((B,D) P. palmatisectus, voucher DY122, SCNU, Guangwu mountain, Ba-
zhong city, Sichuan province, China). Photographs by Zhixi Fu. 
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peat size = 30 bp. The SSRs in the plastomes were detected by Perl script MISA [43]. The 

Figure 1. Images of Parasenecio latipes and P. palmatisectus. (A,B) Inflorescence of plant growing in
natural habitat; (C,D) morphology of leaf. ((A,C) P. latipes, voucher FZX5888, SCNU, Muli county,
Sichuan province, China). ((B,D) P. palmatisectus, voucher DY122, SCNU, Guangwu mountain,
Bazhong city, Sichuan province, China). Photographs by Zhixi Fu.

2.3. Repeat Sequence Analysis

Interspersed repeat sequences analysis include forward, reverse, complement, and
palindrome repeats. The REPuter program (https://bibiserv.cebitec.unibielefeld.de/reputer/
(accessed on 15 June 2022)) was used to identify the interspersed repeat sequences in the
two cp genomes and the related eight species of the tribe Senecioneae [42]. The param-
eters used in the analysis were as follows: hamming distance = 3, maximum computed
repeats size = 50 bp, and minimal repeat size = 30 bp. The SSRs in the plastomes were
detected by Perl script MISA [43]. The repeat units were set to 10 for mononucleotides,
5 for dinucleotides, 4 for trinucleotides, and 3 for hexanucleotides.

2.4. Comparative Genome Analysis and Molecular Marker Identification

In order to observe the extent of the difference in the Parasenecio species and the
eight species of LSC/SSC/IR, we used published cp genome sequences of eight species of
Senecioneae. They were Ligularia fischeri Turcz. (GenBank accession number MG729822),
L. hodgsonii Hook.f. (no. MF539929), L. intermedia Nakai (no. MF539930), L. jaluensis Kom.
(no. MF539931), L. mongolica DC. (no. MF539932), L. veitchiana Greenm. (no. MF539933),
Sinosenecio baojingensis Ying Liu & Q.E.Yang (no. MZ325394), and S. jishouensis D.G. Zhang,
Ying Liu & Q. E. Yang (no. MT876597). Full alignment with annotation was visualized
using the online genome comparison tool mVISTA (http://genome.lbl.gov/vista/mvista/
submit.shtml (accessed on 15 June 2022)) [44]. The boundaries of four regions in the cp
genomes were compared using Irscope (https://irscope.shinyapps.io/irapp/ (accessed

https://bibiserv.cebitec.unibielefeld.de/reputer/
http://genome.lbl.gov/vista/mvista/submit.shtml
http://genome.lbl.gov/vista/mvista/submit.shtml
https://irscope.shinyapps.io/irapp/
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on 15 June 2022)) [45]. To identify nucleotide variability pi (π), the 10 sequences of the
cp genome were aligned using MAFFT v7.475 [46]. The nucleotide diversity of the cp
genomes was calculated based on sliding window analysis using the DnaSP v5.10 software
(http://www.ub.edu/dnasp/ (accessed on 6 January 2022)) [47]. The window size was set
to 800 bp with a step size of 200 bp.

2.5. Phylogenetic Analysis

To reconstruct the phylogenetic tree, 46 cp genome sequences were used for the phylo-
genetic analysis, including 2 newly sequenced Parasenecio species, 42 taxa of Asteraceae, and
2 outgroup taxa of Anthriscus cerefolium (Apiaceae) and Kalopanax septemlobus (Araliaceae).
Two data matrices (complete cp genome and intergenic spacer (IGS) sequence) were se-
lected for phylogenetic analysis. Sequence alignment was achieved using the MAFFT 7.475
with default parameters [46]. A maximum likelihood (ML) analysis was carried out with
RaxML v7.2.8 based on the GTRGAMMA model on the CIPRES (https://www.phylo.org/
(accessed on 20 June 2022)) using 1000 bootstrap replicates [48,49].

3. Results
3.1. Features of the CP Genomes

The cp genomes of the two Parasenecio species were very conserved. The complete
cp genomes of P. latipes and P. palmatisectus obtained in this study were 151,185 bp and
151,263 bp in length, respectively (Figure 2 and Table 1). The cp genomes of P. latipes and
P. palmatisectus contained an SSC region (18,221 bp and 18,251 bp), an LSC regions (83,308 bp
and 83,352 bp), and two inverted repeats (24,828 bp and 24,830 bp), respectively (Table 1).
The total GC content was 37.5% in the complete cp genome, 43.0% in IR, 35.6% in LSC, and
30.7–30.8% in SSC. All plastomes possessed 133 genes, including 86 protein-coding genes,
37 transfer RNA (tRNA) genes, 8 ribosomal RNA (rRNA) genes, and 2 pseudogenes (ycf1
and rps19) (Table 2). The gene composition of Parasenecio species could be divided into
four categories: photosynthesis-related, self-replication-related genes, protein-coding genes
with unknown functions, and other genes. Seven protein-coding genes (ndhB, rpl2, rpl23,
rps12, rps7, ycf15, and ycf2), seven tRNA genes (trnA-UGC, trnI-CAU, trnI-GAU, trnL-CAA,
trnN-GUU, trnR-ACG, and trnV-GAC), and all rRNA genes (4.5S, 5S, 16S, and 23S) were
located within the IR regions (Table 2). Ten of the protein-coding genes and six of the tRNA
genes contained introns, thirteen of which contained a single intron, and three genes (rps12,
ycf3, clpP) had two introns (Table 2). In particular, rps12 is a trans-spliced gene, with the
first exon residing in the LSC region, and the second and third exons residing in the IR
regions (Figure 2).

Table 1. Comparative analyses of cp genomes among 10 species of Senecioneae.

Species GenBank
No.

Genome
Size (bp)

LSC
(bp) IR (bp) SSC

(bp)

GC Content (%) Number of Functional Genes

All LSC IR SSC Total CDS rRNAs tRNAs

L. fischeri MG729822 151,193 83,301 24,830 18,232 37.5 35.6 43.0 30.7 132 87 8 37
L. hodgsonii MF539929 151,136 83,253 24,833 18,217 37.5 35.6 43.0 30.7 132 87 8 37
L. intermedia MF539930 151,152 83,258 24,831 18,232 37.5 35.6 43.0 30.7 132 87 8 37
L. jaluensis MF539931 151,148 83,263 24,830 18,225 37.5 35.6 43.0 30.7 132 87 8 37

L. mongolica MF539932 151,118 83,244 24,830 18,214 37.5 35.6 43.0 30.7 132 87 8 37
L. veitchiana MF539933 151,253 83,330 24,838 18,247 37.5 35.6 43.0 30.7 132 87 8 37

P. latipes ON749759 151,185 83,308 24,828 18,221 37.5 35.6 43.0 30.8 131 86 8 37
P. palmatisectus ON749760 151,263 83,352 24,830 18,251 37.5 35.6 43.0 30.7 131 86 8 37
S. baojingensis MZ325394 151,315 83,445 24,849 18,172 37.4 35.5 43.0 30.6 132 87 8 37
S. jishouensis MT876597 151,257 83,373 24,853 18,178 37.4 35.5 43.0 30.6 134 89 8 37

http://www.ub.edu/dnasp/
https://www.phylo.org/
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The cp genomes of eight Senecioneae species were selected for comparison with the
two Parasenecio species (Table 1). As expected, all the plastomes of the 10 species showed a
typical quadripartite structure. The plastomes of the 10 Senecioneae species were 151,118
to 151,315 bp, with little variation in length between the newly generated and published
genomes. The total GC contents of the plastomes were highly similar (37.4 to 37.5%), while
the different regions (LSC, SSC, and IR) had slightly variable GC contents. There was
little difference in total genes (131–134) and CDS (86–89) between Parasenecio and the other
genera of Senecioneae. The S. jishouensis species has the most genes and two Parasenecio
species have the least genes.
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Table 2. List of genes found in the two cp genomes of Parasenecio species.

Category of Genes Group of Genes Name of Genes Number of
Genes

Photosynthesis

Subunits of photosystem I psaA, psaB, psaC, psaI, psaJ 5

Subunits of photosystem II psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ,
psbK, psbL, psbM, psbN, psbT, psbZ 15

Subunits of NADH dehydrogenase ndhA *, ndhB * (×2), ndhC, ndhD, ndhE, ndhF, ndhG,
ndhH, ndhI, ndhJ, ndhK 12

Subunits of cytochrome b/f complex petA, petB *, petD *, petG, petL, petN 6

Subunits of ATP synthase atpA, atpB, atpE, atpF *, atpH, atpI 6

Large subunit of rubisco rbcL 1

Self-replication

Proteins of large ribosomal subunit rpl14, rpl16, rpl2 * (×2), rpl20, rpl22, rpl23(×2), rpl32,
rpl33, rpl36 11

Proteins of small ribosomal subunit # rps19, rps11, rps12 ** (×2), rps14, rps15, rps16 *,
rps18, rps19, rps2, rps3, rps4, rps7(×2), rps8 15

Subunits of RNA polymerase rpoA, rpoB, rpoC2 3

Ribosomal RNAs rrn16(×2), rrn23(×2), rrn4.5(×2), rrn5(×2) 8

Transfer RNAs

trnA-UGC * (×2), trnC-GCA, trnD-GUC, trnE-UUC,
trnF-GAA, trnG-UCC, trnG-UCC *, trnH-GUG,
trnI-CAU(×2), trnI-GAU * (×2), trnK-UUU *,

trnL-CAA(×2), trnL-UAA *, trnL-UAG, trnM-CAU,
trnN-GUU(×2), trnP-UGG, trnQ-UUG,

trnR-ACG(×2), trnR-UCU, trnS-GCU, trnS-GGA,
trnS-UGA, trnT-GGU, trnT-UGU, trnV-GAC(×2),
trnV-UAC *, trnW-CCA, trnY-GUA, trnfM-CAU

37

Other genes

Maturase matK 1

Protease clpP ** 1

Envelope membrane protein cemA 1

Acetyl-CoA carboxylase accD 1

c-type cytochrome synthesis gene ccsA 1

Translation initiation factor infA 1

Genes of unknown
function

Conserved hypothetical
chloroplast ORF # ycf1, ycf1, ycf15(×2), ycf2(×2), ycf3 **, ycf4 8

Notes: * Gene contains one intron. ** Gene contains two introns. #: Pseudogene. (×2) indicates that the number of
the repeat unit is 2.

3.2. Repeat Sequences Analysis

Repeat sequences included SSRs and interspersed repeat sequences. In total, 51 SSRs
were identified in P. latipes and 49 in P. palmatisectus, which is similar to other closely related
taxa. Furthermore, the number of SSRs varied in the 10 species and ranged from 49 (P. pal-
matisectus and S. baojingensis) to 61 (L. veitchiana). Among the mono-, di-, tri-, tetra-, penta-,
and hexanucleotide categories of SSRs in the cp genomes of the Senecioneae, mononu-
cleotide repeats were the most abundant, pentanucleotide repeats were only present in S.
jishouensis, but no hexanucleotide was found in the 10 Senecioneae species (Figure 3). There
were five types of dominant motifs in SSRs: A/T, AT/TA, AAT/ATT, AAAT/ATTT, and
AATAT/ATATT (Figure 3).
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Overall, 34 interspersed repeats were identified in P. latipes and 35 in P. palmatisectus. A
total of 389 (34 to 46 in each species) interspersed repeat sequences, including 185 forward
repeats, 200 palindromic repeats, 2 reverse repeats, and 2 complement repeats, were
identified in the plasetomes of 10 Senecioneae species. Forward repeats (16 to 21 in
each species) and palindrome repeats (18 to 23 in each species) were found in all species
(Figure 4A). Among these repeats, most of the repeat units were composed of 30 to 34 bp,
followed by repeats of 35 to 39 bp, 40 to 44 bp, and 45 to 49 bp, while repeat units > 55 bp
were comparatively rare (Figure 4B).

3.3. IR Contraction and Expansion

The comparison of LSC/IRb/SSC/IRa boundary regions in the plastomes from
10 Senecioneae species (L. Fischeri, L. hodgsonii, L.intermedia, L. jaluensis, L. mongolica, L.
veitchiana, S. baojingensis, and S. jishouensis) is presented in Figure 5. There was little differ-
ence among the Senecioneae plastomes. The genes rps19, rpl2, ndhF, ycf1, trnN, and trnH
were located at the boundary regions. The rps19 gene crossed over the LSC/IRb boundary
and extended into the IRb region, which ranged from 60 bp to 62 bp. The rps19 pseudogene
existed in all cp genomes at the IRa/LSC boundary except for S. baojingensis. In all species,
the rpl2 gene was included within the IRb region in all species, 113 to 116 bp away from
the LSC/IRb boundary. The ndhF gene was entirely present within the SSC region in the
Senecioneae species except S. baojingensis and S. jishouensis, where the ndhF gene extended
into the IRb region with 1 bp. All 10 Senecioneae species contained a functional copy of the
ycf1 gene at the SSC/IRa boundary and its pseudocopy (ycf1Ψ) at the IRb/SSC boundary.
In addition, ycf1Ψ ranged in size from 578 bp to 597 bp. The trnN gene was solely located in
the IRa region, 905 to 921 bp away from the SSC/IRa boundary. The trnH gene was located
at the IRa/LSC boundary, and it was totally contained in the LSC region.
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3.4. Sequence Divergence Analysis

The structural differences among Senecioneae plastomes were compared by mVISTA
(Figure 6). Overall, the LSC and SSC regions in these cp genomes were more divergent
than the IR regions. Noncoding regions exhibited a higher divergence than coding regions.
A sliding window analysis revealed highly variable regions in the Senecioneae plastomes
(Figure 7). The nucleotide diversity (PI) value ranged from 0 to 0.01189. The variability in
the IR regions was lower than in the LSC and SSC regions, which was consistent with the
mVISTA results. There were six highly variable hotspots that showed significantly higher
PI values (>0.009), including two gene regions (ycf1 and ccsA) and four intergenic regions
(trnC-GCA-petN, ycf1-trnN-GUU, psaI-ycf4, and rpl32-trnL-UAG). These hot regions could
be used as potential molecular markers for phylogenetic studies of Parasenecio species.
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the Y-scale represents a percent identity between 50% and 100%.
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3.5. Phylogenomic Analysis

Two cp genomes were sequenced in this study, forty-two representative Asteraceae
species were chosen to construct the phylogenetic tree, and A. cerefolium (Family Apiaceae)
and K. septemlobus (Family Araliaceae) were included as outgroups (Figure 8). The phyloge-
netic relationships based on complete cp genomes and IGS sequence were consistent. The
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phylogenetic analysis showed that the genus Parasenecio is sister to the genera of Ligularia
and Sinosenecio. Parasenecio latipes and P. palmatisectus are located in the Senecioneae tribe of
Asteroideae. The evolutionary tree revealed clear phylogenetic relationships for 42 species
in 10 tribes of Asteraceae, which were clustered into 5 clades. The first clade consists of
37 species in 6 tribes: Senecioneae, Anthemideae, Gnaphalieae, Astereae, Heliantheae, and
Inuleae, all belonging to Asteroideae. The second clade consists of three species from tribe
Cichorieae, belonging to Cichorioideae. The third clade consists of one species, belonging
to Gymnarrheneae. The fourth clade consists of two species, belonging to Carduoideae.
The fifth clade consists of one species, belonging to Pertyoideae.
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4. Discussion

In this study, the complete cp genomes of two Parasenecio species were sequenced, and
comparative analyses were carried out with the other eight Senecioneae species to detect
the differences in the cp genome. The results showed that both Parasenecio species had
typical quadripartite structures (Figure 2). Our findings are consistent with the cp genome
reports of other studies of Senecioneae [22,27]. The two Parasenecio species exhibited
similar numbers of protein-coding genes, tRNAs, and rRNAs. The average GC content
of the complete cp genomes in the two species was 37.5% (Table 1), which was similar to
the findings of previous studies [22,25,27,28]. Moreover, the GC contents among the cp
genomes of the 10 Senecioneae species were similar, and the IR regions (43.0%) had higher
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GC contents than the single-copy regions (LSC: 35.6% and SSC: 30.6% to 30.8%) (Table 1).
This result is consistent with previous reports [25–28]. The high GC contents in the IR
regions could be due to the presence of four rRNA genes (rrn16, rrn23, rrn4.5, and rrn5).

The structure and genes of the cp genome of Parasenecio species were highly conserved.
Nevertheless, there was a difference in the sizes of cp genomes. This phenomenon may
be caused by contractions and expansions in the boundary regions [20]. The ψycf1 and
ψrps19 pseudogenes were present in Parasenecio species. A previous study also reported
pseudogenes in the cp genome of Asteraceae species [17,22].

Due to their high mutation rate, the SSR markers are frequently used for genetic
evolutionary and species identification analyses [50–53]. In this study, appropriately, 49 to
61 SSRs were identified in the cp genome of Senecioneae species. The A/T mononucleotides
were the most abundant SSRs (Figure 3), implying that there were more replications in
Senecioneae species. Similar patterns of SSRs distribution were also reported in the cp
genomes of other Asteraceae genera or tribes [27,33]. The newly detected SSRs identified
in this study will be useful for the development of effective molecular markers for the
Parasenecio species in future studies.

In previous molecular studies, a large number of highly variable regions were used as
DNA barcodes for species identification [20,23,35]. In this study, six highly variable regions
(trnC-GCA-petN, ycf1-trnN-GUU, psaI-ycf4, rpl32-trnL-UAG, ycf1, and ccsA) were identified
in the tribe Senecioneae based on a comparative analysis of the cp genome (Figure 7). These
highly variable regions could be useful for further studies concerning species identification
and the phylogenetic relationships of Parasenecio species. Among these regions, ycf1 and
psaI-ycf4 were demonstrated to be conducive markers for phylogenetic studies [54–57].

These similar cp genomes provide an ideal resource for phylogenetic studies [58,59].
To date, several studies have been conducted to establish and analyze phylogenetic re-
lationships in the Asteraceae family. The cp gene has been used successfully to infer
phylogenetic relationships within Anthemideae [20], Senecioneae [22,27], and Gymnarrhe-
neae [35]. However, the phylogenetic position of the Parasenecio species is still lacking. In
this study, the complete cp genome sequence data from 13 genera of Senecioneae were used
to construct the phylogenetic relationship of Parasenecio and its related genera. The phylo-
genetic analysis showed that the genus Parasenecio is sister to the genera of Ligularia and
Sinosenecio (Figure 8). The phylogenetic relationships identified among Parasenecio species
were consistent with those from previous studies [7–11]. For example, Liu et al. named
the clade the Ligularia–Cremanthodium–Parasenecio (LCP) complex [7]. The relationships
within this clade have been studied using the nuclear internal transcribed spacer (ITS) [8].
This result was congruent with previous research [9–11]. Our results may be more reliable,
since we used the complete cp genome and the IGS sequence in phylogeny reconstruction.
In Parasenecio, previous studies only used a few cp genomes [12] and nrDNA ITSs [7].
However, the cp genomes of Parasenecio were not sequenced. In this study, the comparative
cp genome data provide efficient molecular markers. Our results revealed that the diver-
gence hotspot regions were trnC-GCA-petN, ycf1-trnN-GUU, psaI-ycf4, rpl32-trnL-UAG, ycf1,
and ccsA in Parasenecio species. These highly variable regions could be used as molecular
markers for future phylogenetic studies of Parasenecio species. Our results provide valuable
genomic information for further studies on the phylogenetic relationships and sustainable
utilization of Parasenecio species.

5. Conclusions

In this study, we assembled, annotated, and analyzed the cp genomes of P. palmati-
sectus and P. latipes. The complete cp genome sizes of P. latipes and P. palmatisectus were
151,185, and 151,263 bp, respectively. Both cp genomes contained 133 genes, including
86 protein-coding genes, 37 tRNA genes, 8 rRNA genes, and 2 pseudogenes (ycf1 and
rps19). A comparative genomic analysis showed that the complete cp genome sequences
of Parasenecio species and their related species were relatively conserved. A total of six
highly variable regions were identified, including two gene regions (ycf1 and ccsA) and
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four intergenic regions (trnC-GCA-petN, ycf1-trnN-GUU, psaI-ycf4, and rpl32-trnL-UAG).
These could be used as potential markers for further phylogenetic and population genetic
studies of the tribe Senecioneae. A phylogenetic analysis based on the complete cp genome
and IGS sequence showed that the genus Parasenecio is a sister genus to Ligularia and
Sinosenecio. Parasenecio latipes and P. palmatisectus are located in the Senecioneae tribe of
Asteroideae. The cp genomic resources presented in this study provide information for
studies on genetic diversity, species identification, and phylogenetics in Parasenecio species
and other closely related species.
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