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Abstract: Global climate change is causing unprecedented impacts on biodiversity. In India, there is
little information available regarding how climate change affects biodiversity at the taxon/group
level, and large-scale ecological analyses have been lacking. In this study, we demonstrated the
applicability of eBird and GBIF (Global Biodiversity Information Facility), and produced national-
scale forecasts to examine the possible impacts of climate change on terrestrial avifauna in India.
Using data collected by citizen scientists, we developed fine-tuned Species Distribution Models
(SDMs) and predicted 1091 terrestrial bird species that would be distributed in India by 2070 on two
climatic surfaces (RCP 4.5 and 8.5), using Maximum Entropy-based species distribution algorithms.
Of the 1091 species modelled, our findings indicate that 66–73% of bird species in India will shift
to higher elevations or shift northward, and 58–59% of bird species (RCP 4.5 and 8.5) would lose
a portion of their distribution ranges. Furthermore, distribution ranges of 41–40% of bird species
would increase. Under both RCP scenarios (RCP 4.5 and 8.5), bird species diversity will significantly
increase in regions above 2500 m in elevation. Both RCP scenarios predict extensive changes in the
species richness of the western Himalayas, Sikkim, northeast India, and the western Ghats regions by
2070. This study has resulted in novel, high-resolution maps of terrestrial bird species richness across
India, and we predict predominantly northward shifts in species ranges, similar to predictions made
for avifauna in other regions, such as Europe and the USA.

Keywords: climate change impacts; birds of India; distribution modelling; bird ranges; bird distributions;
range shift prediction

1. Introduction

The continuing anthropogenic effects of greenhouse gas emissions and conversion of
natural land areas have accelerated global climate change, posing an escalating threat to
natural systems. This has resulted in interconnected, more severe, and often permanent
effects on ecosystems and biodiversity [1,2]. According to the IPCC’s forecast, global mean
temperatures are expected to rise by 0.3–4.8 ◦C by the end of the twenty-first century [3],
and as per the recent forecast, they have increased by 0.8 ◦C during the last 150 years [2].
This rate of climate warming has the potential to significantly impact species distribution
and community assemblages [4], with some studies predicting that the phenotype or range
of as many as 80% of species may change as a result [5,6]. Furthermore, with 1.5 ◦C to 2 ◦C
global warming, endemic species in biodiversity hotspots are expected to face double the
risk of extinction, and more than tenfold if global warming rises to 3 ◦C [2].

The effects of climate warming on many organisms have been reported in several
studies, with the most notable effects being species distribution [7,8], reproduction [9,10],
and changes in demography [11–13]. Some species have been reported to adapt, to counter-
act the detrimental effects of climate change by extending or delaying their reproductive
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timing [14], or by leaving their existing breeding region and moving to more climatically
suited breeding sites [15]. The distributions of avian species have shifted towards the poles
and mountain tops in Eurasia and North America in recent decades, as temperatures have
risen [16]. As a result, range shifts have become widely accepted as an indicator or proof
of measurable climate change impact on avian species and communities [17–19]. Birds
are fundamental to the majority of ecosystems; consequently, they are extremely sensitive
to changes in ecosystems. Avian species are particularly more sensitive to the effects of
anthropogenic and climate change, including range shifts, phenology, genetics, population
level, and biogeographic alterations [8,20].

Predicting species distribution patterns under future climate change will greatly
contribute to the academic fields of microevolution, ecology, biogeography, and global
change biology [4], in addition to informing the planning of conservation measures for avian
and other species [1,21–23]. In the context of conservation management, the expansion
or contraction of each species’ range may influence prioritization for landscape-level or
regional conservation. Predictions are critical to conservation management, and can help
inform proactive initiatives to prevent climate change impacts on biodiversity [24–26].
Globally, several countries have published national-level assessments of how species are
adapting to climate change [27–34]. For example, India, one of the world’s megadiverse
countries, released its National Action Plan on Climate Change (NAPCC) in 2008. NAPCC
had eight different national missions aimed at promoting the understanding of issues
related to climate change, natural resource conservation, and energy efficiency. Experts
have shared their views on limitations of the NAPCC, although back then it was still in its
infancy [35]. However, more than ten years since the NACCP was launched, tracking the
success and progress of its missions has proven to be a daunting task. So far, studies on
the impacts of climate change in India have been largely conducted at the ecosystem-level,
mostly focused on the Himalayas [36–40], as compared to taxa- or species-level assessments.

In general, studies on the effects of climate change on biodiversity in India are sparse.
Only a few studies have evaluated the impacts of future climate change on the distribution
of species or species-groups, including, for example, birds [41–51], plants [37,52–57], and
mammals [58,59]. Although birds are considered essential indicators of climate change [60],
the effects of climate change on the avifauna of India have not been adequately evaluated,
and our understanding in this regard remains limited. This is partially because ground
surveys are expensive and time-consuming [61,62], and in cases where population num-
bers are low, the rates of discovery success are low. In such situations, citizen science
data, when properly validated and applied, may serve as a large and relatively accurate
source of information on the ground, making it an essential and highly valuable tool
for conservation planning [63–70]. In national-scale assessments, several studies have
independently utilized citizen science datasets to examine climate change effects on the
biogeography of individual species, as well as multiple groups on a regular basis, and to
inform conservation strategies [71–75].

We conducted this study to answer the following questions: (i) how will climate
change affect the range and distribution of Indian birds, and (ii) how will the bird species
richness change from the present to the future (year 2070), under different climate change
scenarios. We employed a Maximum Entropy (MaxEnt) modelling approach to predict
the spatial distribution of 1091 terrestrial birds of India, and understand the direction
and pattern of species range shifts, as well as the comparative change in species richness
from the present to the future (year 2070) under different climatic projections (RCP 4.5
and RCP 8.5). The findings of the study will inform national-scale conservation planning
and management of birds in response to climate change, and will determine the future
conservation priorities for birds in India.
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2. Materials and Methods
2.1. Species Occurrence Data

A database of presence records of bird species occurring in India was compiled
through online, open-access citizen science databases (Global Biodiversity Information
Facility [GBIF; https://www.gbif.org/] [76] accessed on 25 December 2021 and eBird
[https://ebird.org/] [77], accessed on 25 December 2021), covering the Indian subcontinent.
We compiled 28,437,430 (~28.4 million) occurrence locations of 1344 bird species in India
from these databases. To match the temporal extent of climatic data and species recorded
in India, species-wise occurrence records were reduced using data from years 1950 to 2021
only [78,79]. Following that, digitized maps of species distribution data, that are standard
references compiled by Birdlife International and Handbook of the Birds of the World [80],
were manually compared to identify vagrant or imprecise species occurrences, and all
mismatched records were removed. As citizen science initiatives sometimes fall short of
systematic sampling requirements [81,82], the following four criteria were used to reduce
biases, and to avoid overfitting and high-variability predictions [83]:

i. All duplicates were discarded, that is, records occurring within a 1 × 1 km2 cell
already having a given species’ record to match the spatial resolution of climatic data
for all the species.

ii. All the occurrence records were further rarefied using the SpThin [83,84] package in R
(R Core Team 2022).

iii. All bird species with fewer than thirty independent localities were excluded [85,86].
iv. All bird species with a limited sampling area (n < 10,000, Sq KM) were excluded. This

includes species with small range areas, and endemic species occurring in pelagic,
coastal, or island ecosystems.

As the choice of climate baseline and reduction of sampling bias affects model perfor-
mance for each species, these steps were crucial to identifying problematic or inaccurate
species occurrence data with incorrect climate values [87]. Species occurrences collected
from the citizen science datasets are often subject to multiple sampling biases [88]. Geo-
graphic sampling biases in biodiversity research may have serious ramifications that must
be taken into consideration [88–91]. Therefore, we used the sampbias package [92] in R
(R Core Team 2022) to quantify the effects of geographic sampling biases and reduction
through implemented data cleaning and thinning strategies. The results indicated that
our final analysis-ready data had a lower level of sampling bias compared to the original
data. Additional information on bias correction is provided in Supplementary S2 Figure S1.
We were left with 1,912,725 (~1.9 million) independent occurrences of 1091 terrestrial bird
species (out of 1344 species), and these were used to create species distribution models
(SDMs) [78,79]. These 1091 bird species occur in India across 430 genera, 101 families, and
25 orders, and they include resident, as well as migratory, terrestrial birds. A complete list
of the species included or excluded in our analyses is available in Supplementary S1.

2.2. Climate Data and Climate Scenarios

Generating SDMs depends upon various environmental factors related to the locations
where specific bird species occur. Therefore, 29 environmental variables were compiled,
including 19 bioclimatic variables summarizing aspects of precipitation and temperature
for the Earth’s surface from WorldClim 1.4 layers [93], 5 topographic variables, and 5 vari-
ables from ENVIREM [http://envirem.github.io/] [94], accessed on 3 November 2020.
Supplementary S2 Table S1 contains a list of the 29 environmental variables. Although
topographic and ENVIREM variables are not commonly used in SDM, we included them
here because numerous examples show that these variables can be used as proxies for other
types of variables that are correlated with species’ physiological requirements (e.g., mi-
croclimate, edaphic conditions) [59,95–99]. Accordingly, all 29 variables were retained for
SDM through MaxEnt built-in variable selection (via L1-regularization), because MaxEnt is
reliable, relatively insensitive to correlation among variables, and model performance may

https://www.gbif.org/
https://ebird.org/
http://envirem.github.io/


Diversity 2023, 15, 404 4 of 19

be degraded by imposing additional variable selection procedures before running MaxEnt
for all the bird species in consideration [100,101].

To predict the ranges of Indian birds in the future, we used five different General
Circulation Models (GCMs) for 2050 and 2070, based on Coupled Model Intercomparison
Project (CMIP5) data, in both RCP 4.5 and RCP 8.5 scenarios: CCCma-CanESM2, CESM1-
CAM5, CSIRO ACCESS13, IPSL-CM5AMR, and MIROC-MIROC5 [102,103]. In 2022, we are
trending towards the high emissions RCP 8.5 scenario. RCP 2.6 represents an increasingly
unlikely aggressive mitigation approach; thus, RCP 4.5 was selected as a minimal-impact
scenario. The data has been analysed against two RCPs, and targets two time periods:
year 2050 (average for years 2041–2060) and year 2070 (average for years 2061–2080),
at approximately 1 × 1 km2 resolution. Each RCP (4.5 and 8.5) takes a different set of
socioeconomic, technological, and political scenarios into account, representing optimistic
to pessimistic greenhouse gas concentration trajectories. Here, we discuss the present
climate versus the year 2070 climate scenarios with RCP 4.5 and RCP 8.5.

2.3. Distribution Range Modelling

MaxEnt 3.4.4 was used in this study for the distribution modelling exercise [104].
MaxEnt uses a machine learning approach for presence-only data, such as information
from citizen science datasets, to produce reliable results [105]. The minimum convex
polygon (MCP) was used at 100% of species occurrences, with a 2 degree buffer to derive
the model calibration area [106,107]. This method generates models that represent suitable
habitats within a known occurrence area (based on a buffered MCP), while excluding
suitable habitats well outside of the observed range, and unsuitable habitats throughout
the landscape [108].

A target-group background approach [109–111] was applied to reduce the influence of
spatial sampling bias by using all bird species occurrence localities throughout the Indian
sub-continent, for selecting background localities [112–114]. The objective of background
data is not to speculate on absence locations, but rather to characterise the environment of
the study region. In this sense, the background is identical regardless of where the species
was discovered. Background data establish the environmental domain of the study, while
presence data should establish the conditions under which a species is more likely than
average to be present.

We generated species-specific fine-tuned MaxEnt models using ENMeval [115,116]. To
choose the parameters that exhibit the greatest performance in MaxEnt based on relevance,
predictive power, and complexity level, ENMeval assists in sorting through complex and
numerous sets of parameters. The occurrence data was partitioned using the checkerboard2
method, resulting in 4-fold cross-validations. Models with Regularization Multiplier (RM)
values ranging from 0.5 to 4.0 (increments of 0.5), and with six different Feature Classes
(FC) combinations (L, LQ, H, LQH, LQHP, LQHPT; where L = linear, Q = quadratic,
H = hinge, P = product and T = threshold), were built, resulting in 48 individual species
model runs. To select the optimal model from all the models that were run, a sequential
method was executed that relied on cross-validation results, selecting models with the
lowest average test omission rate, and breaking ties with the highest average validation
area under the receiver operating characteristic curve (AUC) [83,117]. To ascertain whether
the environment associated with each partition is different from that of all the others, the
Multivariate Environmental Similarity Surfaces (MESS) predictions were derived for each
partition as the reference [101,107]. Details of optimal model tuning parameters are given in
Supplementary S1. The Cloglog output was preferred from MaxEnt 3.4.4, which generates
a Bernoulli Generalised Linear model based on the Poisson Distribution to estimate the
probability of presence [118]. Cloglog transformation can improve model performance by
reducing the effects of sample selection bias, while maintaining the same AUC [104].

The species distribution map was created using the average Cloglog output for each
species and scenario with a mean ensemble of GCMs. The 10th percentile training pres-
ence values for each species were used as thresholds to convert Cloglog raster outputs
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to ‘presence/absence’ binary maps [83,86,119,120]. This threshold criterion was used
to reduce over-predictions in final binary maps, and improve the recovery of species
distributions [120]. Supplementary S1 contains all the required information for species
distribution models.

Models were evaluated using multiple threshold-dependent and threshold-independent
model evaluation criteria, as the best way to measure or evaluate the efficacy of ecological
niche models (ENMs) is still being debated [121–124]. We derived the AUC plot based
on the training and validation data (AUCTRAIN, AUCVAL). We also calculated the dif-
ference between training and validation AUC (AUCDIFF), which is expected to be high
with overfitting models [124]. We came up with two omission rates (ORs) that, when
compared to the corresponding theoretically anticipated omission rates, quantify model
overfitting [83,121,122,125]: ORMTP (‘Minimum Training Presence’ omission rate) and OR10
(10% training omission rate). We also calculated the AUC ratio (pAUC Ratio) and associated
p-value for the partial ROC performance metric, defined in [126] and implemented by the
R package kuenm [127]. We estimated the continuous Boyce Index (CBIVAL, CBITRAIN)
for training and validation data, as it only requires presences, and measures how much
model predictions differ from the random distribution of the observed presences across the
prediction gradients [128]. As a result, it is a suitable statistic for presence-only models. It
fluctuates continuously between −1 and +1. Values close to zero indicate that the model is
identical to a random model, while negative values indicate counter predictions, i.e., pre-
dicting poor quality areas where presences are more frequent. Positive values indicate a
model whose present predictions are consistent with the distribution of presences in the
evaluation dataset [129].

MaxEnt provides two metrics to determine the importance of input variables in the fi-
nal model: percentage contribution, and permutation importance. While the MaxEnt model
is being trained, it keeps track of which environmental variables are contributing to fitting
the model [100]. The contribution for each variable is determined by randomly permuting
the values of that variable among the training points (both presence and background),
and measuring the resulting decrease in training AUC. A substantial decrease indicates
that the model depends heavily on that variable [100]. We further analyse the resulting
species distribution models through habitat preferences [130,131], ecoregions [132], and
elevation gradients.

3. Results
3.1. Model Evaluation

After evaluating model performance, we retained 1091 species data occurring in India
out of 1149 species, modelled for further analysis. For the 1091 species modelled, we
obtained an AUCTRAIN value of 0.840 ± 0.096 (mean ± standard deviation) and AUCVAL
equal to 0.828 ± 0.095, indicating better model abilities to discriminate between conditions
of occurrence localities and those of background localities [121,133]. We found the mean
AUCDIFF to be 0.012 ± 0.015, indicating a much better degree of model fitting. We also
obtained omission rates of ORMTP = 0.108 ± 0.016 and ORMTP = 0.010 ± 0.018, quantifying
a much lesser degree of overfitting in the models.

We estimated the pAUC Ratio = 1.958 ± 0.159, indicating that models performed
better than random models. A pAUC ratio > 1 indicates that the model has performed
better than random chance.

We obtained CBIVAL = 0.900 ± 0.097 and CBITRAIN = 0.968 ± 0.049, indicating excellent
model performance. Details of species distribution model validation and evaluation metrics
are given in Supplementary S1.

3.2. Variables Contribution and Importance

We found that environmental variables, such as Terrain Wetness Index, Elevation
and Terrain Ruggedness Index, and Temperature and Precipitation Seasonality, provided



Diversity 2023, 15, 404 6 of 19

maximum contributions and importance to the derived MaxEnt models (Table 1). Mean
variable contribution and importance for all variables are in Table S2 of Supplementary S2.

Table 1. Top five Mean Environmental Variables contribution and importance of derived Max-
Ent models.

Variable % Importance % Contribution

Terrain Wetness Index 11.43 17.913

Elevation 7.0613 7.913

Terrain Ruggedness Index 4.553 5.463

Precipitation Seasonality 4.753 4.793

Temperature Seasonality 6.343 4.713

3.3. Species Range Change

By 2070, from the 1091 studied bird species, around 59.37% of species may lose some
of their range, and around 40.62% may see an increase in their distribution range, as a
result of climate change under RCP 4.5 or RCP 8.5 scenarios (Table 2).

Table 2. Species range changes by the year 2070 for Indian terrestrial birds, along with threatened
species under RCP 4.5 or RCP 8.5 scenarios. (n = no. of species, r = % range change, p = % species).

Climate Change
Scenarios

All (n = 1091) Threatened (n = 64)

Range Reduce Range Expand No Change Range Reduce Range Expand No Change

RCP 4.5
2070

n 643 448 - 38 26 -

r −30.7 22.68 - −46.78 61.89 -

p 58.93 41.06 59.37 40.62

RCP 8.5
2070

n 645 445 1 40 24 -

r −40.64 27.89 0 −59.21 68.41 -

p 59.12 40.78 62.5 37.5 -

For the RCP 4.5 scenario, we found that 38 species with reduced ranges are threatened
birds (critically endangered (n = 7), endangered (n = 11), vulnerable (n = 20)), with an
average of 46.78% range loss. In the meantime, 26 threatened species (critically endangered
(n = 3), endangered (n = 4), vulnerable (n = 19)) may experience an average range expansion
of 61.89%. For the RCP 8.5 scenario, we found that 40 threatened species (critically endan-
gered (n = 6), endangered (n = 11), vulnerable (n = 23)) with reduced ranges are threatened
birds, with an average of 59.21% range loss, while 24 threatened species (critically endan-
gered (n = 4), endangered (n = 4), vulnerable (n = 16)) may experience an average range
expansion of about 68.41%. The statistics showed that the impact of climate change on the
range reduction of partially migratory and migratory species is higher, respectively, 62.88%
and 68.01% versus 54.08% for sedentary species for the RCP 8.5 2070 scenario; 63.40% and
68.01% versus 53.6% for the RCP 4.5 2070 scenario (Table 3).

We were able to model 42 species from a total of 78 endemic species in India. By
2070, almost 75% of endemic bird species will a have reduced climatically suitable area,
with −53.02% in the RCP 8.5 scenario and −37.87% in the RCP 4.5 scenario. By 2070,
we may lose 100% of the climatically suitable environment for the following three bird
species: the Trumpeter Finch (Bucanetes githagineus (Lichtenstein, 1823)), the Chinese
Francolin (Francolinus pintadeanus (Scopoli, 1786)), and the Hypocolius (Hypocolius ampelinus
Bonaparte, 1850), under both the RCP 4.5 and RCP 8.5 scenarios. Whereas, in the RCP
8.5 scenario, we may lose 100% of the climatically suitable habitat for the following five
bird species: Collared Myna (Acridotheres albocinctus Godwin-Austen and Walden, 1875),
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Black-crowned Sparrow-lark (Eremopterix nigriceps (Gould, 1839)), Eurasian Oystercatcher
(Haematopus ostralegus Linnaeus, 1758), Greater Adjutant (Leptoptilos dubius (Gmelin, 1789)),
and Nilgiri Chilappan (Montecincla cachinnans (Jerdon, 1839)).

Table 3. Species range changes by the year 2070—comparison for resident and migratory birds in
India under the RCP 4.5 or RCP 8.5 scenarios (n = no. of species, r = % range change, p = % species).

Sedentary (n = 625) Partially Migratory (n = 194) Migratory (n = 272)

Range
Reduce

Range
Expand

No
Change

Range
Reduce

Range
Expand

No
Change

Range
Reduce

Range
Expand

No
Change

RCP 4.5

n 335 290 - 123 71 - 185 87 -

r −29.2 22.36 - −33.76 28.33 - −31.23 18.87 -

p 53.6 46.4 - 63.40 36.59 - 68.01 31.98 -

RCP 8.5

n 338 287 - 122 71 - 185 87 1

r −40.29 27.84 - −42.78 30.84 - −39.88 25.66 0

p 54.08 45.92 - 62.88 36.59 - 68.01 31.98 -

3.4. Species Range Centroid Shift

According to statistics on the distribution range centroid shifts of various species
groups in 2070, more species would migrate northward, with longer average shift distances
among various species groups in the RCP 8.5 scenario compared to RCP 4.5 (Table 4). This
finding suggests that the northward shift of the range distributions may be a general trend.
The fundamental range shift pattern is the same for the RCP 8.5 scenario, but migration
distances are longer and more variable than they were in the RCP 4.5 scenario.

Table 4. Species range centroid shift (n = no. of species, d = distance shift in Km, p = % species).

Climate Change Scenario
All (n = 1091) Threatened (n = 64)

Northward Southward Northward Southward

RCP 4.5

n 802 285 38 26

d 90.64 81.41 182.88 68.5

p 73.51% 26.12% 59.37% 40.62%

RCP 8.5

n 727 355 36 26

d 135.18 106.29 193.53 93.37

p 66.63% 32.53% 56.25% 40.62%

For the purpose of understanding the precise spatial patterns of range shifts under both
the RCP 4.5 and RCP 8.5 scenarios in 2070, the displacement vectors of each bird species’
range are mapped over the geographical scope of India, and represented in polar form.

By 2070, most bird species would relocate to higher elevations in both scenarios
(Figure 1). As a result, species diversity is expected to rise in plateaus and mountains, and
fall in lower elevations.

We further analyse the results via the habitats of bird species (Figure 2). We found
five bird species (Alaemon alaudipes, Ammomanes deserti, Chlamydotis macqueenii, Columba
eversmanni, Montifringilla adamsi) that are accustomed to desert habitats, showing an al-
most 212% range expansion as compared to their current distribution ranges in both RCP
scenarios, likely because the Indian deserts are becoming wetter. According to the In-
dian Meteorological Department, over the past three decades, the rainfall pattern in the
desert region of India has changed, and the number of rainy days per year has been on
the rise [134].
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3.5. Changes in Species Richness Pattern

To our knowledge, we have generated the first high-resolution full-taxon species
richness map (Figure 3) of terrestrial bird species occurring in India, by superimposing the
species distribution models. We also calculated changes in species richness for the RCP 4.5
and RCP 8.5 scenarios in 2070.

By 2070, areas showing drastic shifts in species richness for both RCP 4.5 and 8.5 sce-
narios include the western Himalayas, the state of Sikkim, northeast India, and the western
Ghats, see Figure 4. Many lower elevation species are moving towards higher elevations
due to the lack of suitable climates at existing lower elevational ranges. We also examined
how species richness has changed across different ecoregions. The top five ecoregions



Diversity 2023, 15, 404 9 of 19

with the greatest mean reductions in species richness by 2070, in both RCP 4.5 and 8.5 sce-
narios, are northeast India-Myanmar pine forests, Brahmaputra Valley semi-evergreen
forests, Chin Hills-Arakan Yoma montane forests, Mizoram-Manipur-Kachin rainforests,
and Meghalaya subtropical forests, while eastern Himalayan subalpine conifer forests,
north-western Himalayan alpine shrub and meadows, northeast Himalayan subalpine
conifer forests, eastern Himalayan alpine shrub and meadows, and western Himalayan
alpine shrub and meadows will exhibit an increase in species richness (detailed ecoregion-
wise comparison in Supplementary S2, Table S3). Additionally, states in northeast India
exhibiting extensive reductions in bird species richness include Nagaland, Manipur, As-
sam, Meghalaya, and Mizoram (detailed ecoregion-wise comparison in Supplementary S2,
Table S4). In contrast, Ladakh, Himachal Pradesh, parts of Uttarakhand, and Arunachal
Pradesh exhibit an increase in species richness, in both RCP 4.5 and 8.5 scenarios by the
year 2070.
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Both RCP 4.5 and 8.5 scenarios result in the majority of bird species moving to higher
altitudes by 2070. We tracked how species diversity varied with elevation, and discov-
ered that for all the species we had investigated together, the turning point occurred
at 2000–2500 m, with diversity rising above it and falling below it. Detailed elevation
gradient-wise comparison is provided in Supplementary S2, Table S5.
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4. Discussion

Our study highlights the impacts of climate change on the distribution of bird species
in India. Our findings indicate that with changing climatic conditions, more birds in
India would face risks related to habitat loss in the next 50 years. Climate change has the
potential to alter the distribution ranges of many birds in India, with ranges contracting or
expanding, alongside shifts in elevation and latitude. Our study shows that long distance
migratory birds’ habitat area (68%) is more vulnerable to climate change, because these
birds’ migration processes are strongly tied to climate [31,135,136]. Future climate change
is very likely to pose a greater threat to migratory birds than those of resident bird species,
because range areas of migratory birds are more likely to shift northward and diminish
in size. Past studies have predicted similar trends with migratory species under climate
change projections [15,63,73,74,137–140]. The 30–42% of resident and 46–59% of threatened
bird species that are vulnerable to reductions in their existing range sizes warrant special
attention. The effects of range reduction may exhibit a higher rate of regional or local
extinction of species in future climate scenarios, as found in other global and national level
studies [8,73,141–147]. Around 22–27% of bird species that may see an increase in their
range sizes might still be vulnerable in the future, if their extended/new suitable habitats
lie outside of protected areas, or in an increasingly developed territory. Poaching and
illegal trade, urbanization, and industrialization are major threats to bird populations as
their distribution ranges move and expand into more climatically favourable, but densely
populated environments [148,149].

Our study also found the majority of species shifting their ranges northward. Sev-
eral studies in different parts of the world, including, for example, in China [73], Great
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Britain [150], Europe [151], and North America [152,153], as well as global meta-analy-
ses [154,155], also predicted poleward shifts of bird ranges with increases in global temper-
ature and climate change. We also found increasing species richness in higher elevations,
especially in the Himalayas and Western Ghats. The Himalayan region is among the most
vulnerable to climate change on a global scale. The rate of temperature increase across
the Himalaya is three times the global average, and as a result, the Himalayan snowline
has shifted upwards over time [156]. This shift has created new niches for birds in alpine
regions, causing their altitude ranges to expand upward. Low- to mid-elevation species
have also adapted to climate change by extending their altitudinal limits to higher ele-
vations. In the Himalayan region, the effects of climate change manifest as glacial melt,
changes in sowing and harvesting seasons, decreased crop productivity with the introduc-
tion of new invasive species and weeds, drying up of springs, shifts in the geographical
range of species, alterations in the species composition of communities, and extinction of
species [39,40,42,56,72,156–167]. The tropical mountain birds, including of the Himalayas
and Western Ghats regions, are among the most susceptible to climate change [140]. More
vulnerable to extinction risks are endemics and restricted range species, with little to no
space for upward movement, or their inability to shift upwards due to intolerance to phys-
iological limits imposed by geographical gradients. Similarly, species inhabiting higher
elevations are at higher risk of extinction than the species inhabiting lower elevations,
particularly in cases when there is no land or habitat available at higher elevations [168].

The availability of citizen science datasets, in which citizens document species obser-
vations in a non-standardized manner, is growing [169–172]. This information could fill in
the gaps where scientific observations are lacking, for a variety of studies. Over the past
two decades, an increasing percentage of the Indian population has taken up birding as
an educational or recreational activity, and has shared their observations in open-source
databases. This study, aided by such citizen science data, could potentially be used as a
starting point for further investigations regarding site-based conservation planning, com-
munity ecology, ecosystem service accounting, and ecological processes studies. To reduce
the possibility of mistakes in species identification and locale, eBird is one of the sources
where each record is checked by an expert reviewer.

Despite their limitations, citizen science datasets have the advantage of providing
extensive occurrence data in a short period of time and, with proper bias removal methods,
may allow for fast and reliable assessments. Recently, conservation and management deci-
sions based on species distribution models informed by citizen science data have gained
increasing acceptance as reliable methods for protecting biodiversity [73,173,174]. In this
study, we used the presence thinning and background selection methods for sampling
bias correction [84,90,110,175]. Nonetheless, we discovered that some island species (An-
daman and Nicobar and Lakshadweep Islands), pelagic, data-deficient, or small range
restricted species did not lend themselves to modelling, due to their limited sampling
background area.

These changes have significant ecological ramifications that go far beyond just the
numerical loss or addition of species in India. A change in climate will not result in an
overall, unidirectional change in the relative habitat suitability of protected areas. However,
along with species range shifts, the conservation priority areas will also change because
of future climatic influences. Therefore, setting biodiversity conservation goals, as well as
formulating effective policies and implementing actions, must consider the ever-changing
climate and its multi sectoral impacts.

5. Potential Limitations and Future Directions

Our methodology is based on common presumptions found in all multi-species studies
that use species distribution models. In order to determine climatic tolerance from the
observed distribution of the species, these models first make the assumption that species
are in equilibrium with the environment, and that all pertinent climatic factors that may
have an impact on species presence are taken into account. The main drawbacks of this
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strategy include the potential omission of important climatic variables from models, and the
possibility that a variety of variables, other than climatic tolerance, may affect the current
and future distribution of bird species, such as habitat loss, hunting, and exploitation. As a
result, the assumptions of species distribution models are frequently broken [176].

Another caution is that species distribution models, which ignore interspecies interac-
tions, are predicated on the idea that species react to climate change independently. Species
interactions within and between trophic levels may have a significant impact on whether a
specific taxon can persist in its current range or colonise new areas [177,178].

6. Conclusions

Species Distribution Models are effective at predicting the occurrence of numerous
species. However, we emphasise that models must be validated properly prior to use
in decision-making and other applications. MaxEnt is a useful tool for assessing the
potential impacts of climate change on species distributions, in order to gain insight into
how species may respond in the event of future climate change. By simulating the future
distribution ranges of 1091 extant terrestrial Indian birds, we demonstrate how their
climatically appropriate distribution ranges are predicted to experience significant shifts
under climate change. These shifts are projected to be consistent across a wide range of
climate scenarios, and vary geographically. This study can be considered one of the first
attempts from India at conducting a thorough analysis of bird distributions based on point
data. The growth of bird watching through citizen science initiatives, and the expansion of
data size and quality, offer researchers and government agencies unprecedented access to
distribution data. We anticipate that periodic assessments, such as the analysis in this study,
will be continuously updated to address various issues faced in biodiversity conservation.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/d15030404/s1, Supplementary S1: All species details with records
and model evaluations and validation parameters. Supplementary S2 Table S1: List of environmental
variables. Supplementary S2 Table S2: MaxEnt mean variable contribution and importance.
Supplementary S2 Table S3: Changes in species richness across different ecoregions. Supplementary S2
Table S4: Changes in species richness across the different states. Supplementary S2 Table S5: Changes
in species richness across the different elevation gradients. Supplementary S2 Figure S1: Bias correction
results for presence data using sampbias packages.
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176. Santini, L.; Benítez-López, A.; Maiorano, L.; Čengić, M.; Huijbregts, M.A.J. Assessing the Reliability of Species Distribution
Projections in Climate Change Research. Divers. Distrib. 2021, 27, 1035–1050. [CrossRef]

177. Early, R.; Keith, S.A. Geographically Variable Biotic Interactions and Implications for Species Ranges. Glob. Ecol. Biogeogr. 2019,
28, 42–53. [CrossRef]

178. Pigot, A.L.; Tobias, J.A. Species Interactions Constrain Geographic Range Expansion over Evolutionary Time. Ecol. Lett. 2013, 16,
330–338. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3389/fevo.2020.603422
http://doi.org/10.1659/mrd.mp009
http://doi.org/10.3189/172756410791386508
http://doi.org/10.1111/ddi.12963
http://doi.org/10.1038/s41598-020-58111-6
http://doi.org/10.1371/journal.pone.0057103
http://doi.org/10.1016/j.accre.2017.04.001
http://doi.org/10.1890/08-0823.1
http://doi.org/10.1038/nature11631
http://doi.org/10.1371/journal.pone.0112251
http://doi.org/10.21425/F5FBG54662
http://doi.org/10.1093/biosci/biz045
http://doi.org/10.1111/ddi.12249
http://doi.org/10.1111/ddi.13252
http://doi.org/10.1111/geb.12861
http://doi.org/10.1111/ele.12043
http://www.ncbi.nlm.nih.gov/pubmed/23231353

	Introduction 
	Materials and Methods 
	Species Occurrence Data 
	Climate Data and Climate Scenarios 
	Distribution Range Modelling 

	Results 
	Model Evaluation 
	Variables Contribution and Importance 
	Species Range Change 
	Species Range Centroid Shift 
	Changes in Species Richness Pattern 

	Discussion 
	Potential Limitations and Future Directions 
	Conclusions 
	References

