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Abstract: The European ground squirrel is an endangered rodent whose populations are declining
throughout its range. Only in Bulgaria, the genetic hotspot of the species, are some abundant
populations still present. We employed 12 microsatellite loci in ten Bulgarian populations to look
at population structure, gene flow and recent bottlenecks. We found that the populations are in
good condition in terms of heterozygosity, where values ranged from 0.55 to 0.78. However, the
inbreeding index (FIS) was significant for most populations. A recent bottleneck was detected in only
one population. Based on Bayesian clustering methods, the populations in Bulgaria were attributed
to two groups, northern and southern, with admixture in the northern one. The AMOVA test between
these groups showed no differentiation in genetic diversity. The mean value of FST was 0.184, which
shows strong diversification among all populations. Hence, gene flow is probably limited. All these
results indicate that Bulgaria is the main area to focus the efforts for conservation of the species by
ensuring that the complex and rich genetic structure of Bulgarian populations is preserved.
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1. Introduction

Much of the landscape of our planet has been transformed into monoculture crop-
lands to support the 8 billion human beings alive today. The replacement of wilderness
by human exploited environments is causing a rapid loss of biodiversity at species and
ecosystem levels throughout the world [1–3]. In some regions, such as in Europe, many
species have to face a human-altered environment and even some rodent species, usu-
ally considered to be very flexible and opportunistic, have been affected by increasing
alteration of their natural environment [4–6]. Genetic diversity is commonly considered
as a fundamental key factor for the long-term viability of populations and is crucial for
conservation. The data on the genetic structure of populations help in identifying hotspots
of genetic diversity—geographic areas harbouring a major portion of a species’ genetic
diversity [7]. Further, landscape connectivity is also very important in the sense of the
viability and prosperity of species [8–11]. Landscape genetics is a multidisciplinary science,
combining population genetics, molecular ecology, biogeography, evolutionary biology
and systematics [12]. Nowadays, a well-defined approach for studying the interactions
between landscape features and evolutionary processes, mainly gene flow and selection
in nature and urban populations, has been established, and novel methods and technol-
ogy have been introduced (reviewed in [13]). To understand the landscape features that
limit gene flow, the spatial scales at which they act and the temporal dynamics of their
effects on population substructure, it is essential to effectively use genetic data as a tool
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for evaluating population status and fragmentation. Using the accumulated knowledge
to predict, localise and implement empirically based ecological corridors could greatly
improve the successfulness of efforts to promote landscape connectivity of species at risk
due to fragmentation [14]. In addition, the effect of a population bottleneck is directly
related to the increase in stochastic events associated with small population size, which in
most cases leads to further loss of genetic diversity [15]. Natural immigration and rescue
effects (human-mediated) for bottlenecked populations could increase genetic variability
and reduce inbreeding. On the other hand, negative genetic effects are not always present.
For example, in the golden-mantled ground squirrel no evidence of increased inbreeding
during or after the decline was recorded [16], and the major factors of local population
extinction risk in this species are more likely to be demographic (reproduction, immigration,
predation) than genetic in origin. Despite these exceptions, it is generally believed that
sufficient levels of immigration and gene flow within the regional meta-population are crit-
ical for the long-term survival of populations and highlight the importance of maintaining
connectivity in natural populations [17,18].

In this study, we focus on the European ground squirrel (EGS) (Spermophilus citellus
Linnaeus, 1766). It is an obligate hibernator and typically inhabits steppes, meadows
and pastures from sea level to 2500 m a.s.l. Distributed in central Europe and the eastern
Balkans, it is the westernmost member of the genus Spermophilus [19]. Bulgaria is situated
in the southern part of its range and has a diverse topography with many different habitats
(mosaic of forests, pastures, meadows and arable lands). In some mountains the species
is found in open habitats surrounded by vast forested areas [20,21]. Based on a previous
study [22], Bulgaria hosts the most viable populations and represents the ancestral area
of the species, since the main phylogenetic lineages occur there. Both the Northern and
Southern lineages also showed the highest genetic diversity in Bulgaria. In the past, the
species’ range was characterised by the glacial and interglacial dynamics of the steppe
habitat. Today, the range is progressively shrinking and the species is considered globally
endangered [23], with declining numbers especially at its western and southernmost
margin [24,25]. In Bulgaria during the last several decades, about 30% of investigated
colonies have disappeared, 28% are vulnerable and only 42% are stable [20]. Major threats
are pasture degradation, building, intensification of agriculture, interruption of biological
corridors and flooding. The ground squirrel population in Bulgaria probably continues to
decline and its current species status is unfavourable [20,21]. Additionally, the species is
still poorly protected by Bulgarian laws. Only its habitats have some low level of protection
under the Biodiversity Act and through the Natura 2000 network of protected sites [20,21].
The EGS is included in the Red Book of Animals in Bulgaria as “Vulnerable” [26].

The aims of this study were to investigate the genetic diversity and population struc-
ture of S. citellus in Bulgaria using microsatellite markers, as well as to suggest management
recommendations for conservation of the species based on the results. Taking into account
the results of other phylogenetic studies on EGS [27–29] and other related species, we
hypothesised that mountain chains and big rivers would play barrier role for the genetic
flow together with the recent socioeconomic processes, thus shaping the patterns of genetic
diversity and relatedness among the Bulgarian populations.

2. Material and Methods
2.1. Study Area, Sampling and Dataset

This study is based on 173 tissue samples of the EGS from 10 populations in Bulgaria:
NP (Nikopol, Pleven district); TS (Tsenovo, Ruse district); BN (Belmeken, Rila Mountains,
Pazardzhik district); KZ (Knezha, Pleven district); KAP (Kap. Petko Voivoda, Haskovo
district); TOP (Topolchane, Sliven district); RZ (Rozino, Plovdiv district); KRE (Kremikovtsi,
Sofia district); CG (Chernogorovo, Pazardzhik district); and ISH (Professor Ishirkovo,
Silistra district) (see Figure 1). The individuals were trapped during their active season
using live traps. Sampled individuals were caught evenly across each locality (colony) to
minimise the sampling of close relatives. From each individual a small piece of ear was cut
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off and stored in pure 96% ethanol until DNA extraction. The size of population samples
varies from 6 to 25 individuals per population (mean ± SD: 17.4 ± 5.96); more details are
found in Table S1, see Supplementary Materials.
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Figure 1. Bayesian clustering from Structure. (A) The best probabilities for K according to Evanno
et al. (2005) using ∆K. (B) Population assignment to the two clusters, i.e., green—northern Bulgarian,
red—southern Bulgarian populations. Each individual is represented by a horizontal bar and
the whole sample is divided into K colour-coded segments. Bold black lines separate predefined
input populations.

The microsatellite dataset was obtained in the study of Říčanová et al. [22]. See there
for methodology. Here, we analysed the dataset in a different context, with a focus on
Bulgaria rather than on a whole species context and with new insights on the time scale
and a finer scale interpretation of the landscape features.

2.2. Intra-Population Analysis, Spatial Genetic Structure and Gene Flow

Allelic richness, observed (Ho) and expected (He) heterozygosity, inbreeding coefficient
(FIS) values and linkage equilibrium for each pair of loci were calculated using FSTAT v.
2.9.3 [30]. Test of significance in FIS was tested in Genetix v.4.05 [31]. Global Hardy–
Weinberg tests were run in FSTAT to assess deviations from Hardy–Weinberg equilibrium
and a significance level of linkage disequilibrium for each pair of loci. We employed
FreeNA software [32] to estimate null allele frequencies for each locus and population
following the expectation maximization algorithm of Dempster et al. [33]

BOTTLENECK v. 1.2.02 [34] was used to investigate a possible recent reduction in
effective population size. Genetic data were analysed under the two-phase mutation model,
with 90% of the mutations following a stepwise mutation model and variance of 30%.
Wilcoxon sign-rank test was used for the test of significance [35]. Population structure was
estimated as pairwise and overall values of FST (fixation index). FreeNA software [32] was
used to estimate unbiased FST [36] following the ENA (excluding null alleles) correction
method described in Chapuis and Estoup [32]. Isolation by distance (IBD) was tested by
performing Mantel tests [37], i.e., correlation between FST/(1 − FST) and the logarithm
of geographic distances using Arlequin 3.1 with 100,000 permutations between pairs of
populations [38]. We used Slatkin’s linearized FST’s.

Further, two Bayesian methods implemented in the programs Structure v. 2. [39,40]
and BAPS 5.1. [41] were used to investigate the geographical distribution of genetic variabil-
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ity. Markov chain Monte Carlo (MCMC) algorithms were employed to group individuals
(for Structure) or populations (for BAPS) in clusters (the number of clusters is a priori
unknown) to achieve Hardy–Weinberg equilibrium and linkage equilibrium within each
cluster. The program BAPS was run 15 times with a burn-in period of 10,000 iterations
followed by 50,000 iterations. Neighbour-joining (NJ) tree was drawn based on Nei ge-
netic distances to see the clusters and try to find a geographical pattern. Further, another
15 runs were run with fixed K in BAPS. The program Structure was run 10 times for each K
value from 1 to 10, each run comprising a burn-in period of 1,000,000 iterations followed by
100,000 iterations. In Structure, the admixture model and the independent allele frequencies
model were used [39,42]. ∆ K, an ad hoc statistic based on the second order rate of change
of the likelihood function with respect to K, was used and evaluated as the most likely
number of populations [43]. We used a Structure Harvester program [44] to determine the
number of genetic clusters from Structure analyses in order to compare the mean likelihood
and variance per K values based on the 10 independent runs. The Greedy algorithm of
Clumpp 1.1.1 [45] was used to combine the results from 10 runs for each K and the summary
results were graphically visualized by Distruct v.1.1 [46]. Additionally, an AMOVA test [47]
implemented in Arlequin 3.1. [38] was used to estimate the proportion of genetic variation
explained by the estimated K clusters.

3. Results
3.1. Genetic Diversity

The allelic richness per population ranged from 3.34 (BN) to 5.30 (TOP). The overall
genetic diversity He ranged from 0.555 (TS) to 0.784 (TOP). The test for HWE showed strong
deviation from HWE only for the population of KRE. The results suggest the presence
of null alleles in microsatellites loci, the frequency of which was estimated with FreeNA,
to vary from 0.024 to 0.142. All genetic indices are summarised in Table 1. No linkage
disequilibrium was recorded in the studied loci.

Table 1. Comparison of genetic diversity in N (northern Bulgarian) and S (southern Bulgarian)
populations in allelic richness (AR), observed (Ho) and expected (He) heterozygosity, coefficient of
inbreeding (FIS), genetic differentiation (FST) and corrected relatedness coefficient (Rel). Level of
significance is considered p < 0.05.

N S p

AR 3.927 4.597 0.12880
Ho 0.541 0.587 0.32040
He 0.646 0.722 0.21167
FIS 0.162 0.187 0.83180
FST 0.179 0.174 0.89720
Rel 0.273 0.262 0.87313

Wilcoxon tests of recent bottlenecks revealed that only one of the populations showed
significant departures from mutation-drift equilibrium, i.e., the population of NP (p = 0.007)
(Table 1).

3.2. Spatial Clustering

Two Bayesian clustering softwares were used to assess population structure and to
assign individuals to populations according to their genotypes, i.e., Structure v. 2 and
BAPS v. 5.1. Both approaches brought almost the same results. In Structure, when we
performed a method for the estimation of K according to Evanno et al. [43], using ∆ K as the
best estimation for the most likely number of populations, the populations were divided
into two groups (Figure 2): southern Bulgarian group (KAP, TOP and RZ) and northern
Bulgarian group (NP, BN, KZ and TS) (Figures 1 and 2). Populations KRE, CG and ISH
were assigned as mixtures of these groups.
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In BAPS, it was found out that each population represents an individual unit; hence,
the populations were divided into 10 groups (Figure 3A). When a NJ tree was performed
based on Nei distances, these 10 groups were clustered into two groups as well (Figure S1,
Supplementary Materials). The first group of populations consisted of ISH, TS, NP, KZ,
KRE and BN, i.e., the northern Bulgarian group of populations. The second group included
RZ, CG, TOP and KAP, i.e., the southern Bulgarian group (Figure 3B). The two clusters
were thus identical to those identified in Structure.
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The AMOVA test performed for K = 2, i.e., two groups of populations (northern and
southern Bulgarian) explained only 5.05% of the genetic variability as from among the
groups, while within the groups it was 17%, and the remaining 77.95% were explained by
variability within populations (p < 0.00).

We found significant genetic differentiation between all populations using pairwise FST
in ENA as a measure of genetic divergence (Table S2, Supplementary Materials). The mean
value of FST = 0.184 at the level of significance p < 0.001 represents a strong diversification.

We found no significant differentiation between the two groups of population clus-
ters in FST, allelic richness, observed and expected heterozygosities, FIS and corrected
relatedness coefficient (Table 1).

No significant IBD was observed for the whole data set (r = 0.051, p < 0.379). When we
tested partial IBD within the groups, we found significant IBD in the northern Bulgarian
group (r = 0.541, p < 0.038) and no significant IBD in the southern Bulgarian group (r = 0.162,
p = 0.372).

4. Discussion

The genetic variability of Bulgarian populations is high (the average of He = 0.64)
with a low level of inbreeding coefficients (the average of FIS = 0.147) in comparison with
populations on the margin of the species distribution (e.g., in the Czech Republic), where
habitat fragmentation is very strong, and where depleted genetic variability (mean value
of He = 0.332) and high levels of inbreeding (values ranged from 0.553 to 0.907) are also
found [48]. This is in accordance with the connectivity models, which reveal that the
suitable habitats for the species are still considerably more interconnected in the south [49]
and that most of the populations were interconnected until before the recent agricultural
intensification and pasture abandonment [21]. Depleted genetic variation in EGS was found
on neutral markers as well as on markers of adaptive variation (MHC gene) [22,50]. In
Serbia or Hungary the situation is better than in the Czech Republic, and results showed
higher genetic diversity [27,51]. For comparison, similar trends were found in S. suslicus,
where genetic variability was found to range for He from 0.37 to 0.69 with mean = 0.54 [6],
and all of the genetic diversity indices were significantly more variable in the populations
east of Odessa, which are more abundant in comparison with populations from Poland
and the western part of Ukraine.

Within Bulgaria, the spatial distribution of EGS populations revealed division into two
genetic lineages, i.e., northern and southern Bulgarian (Figure 2). The southern populations,
with a centre located in the Trace lowland, along the Maritza and Tundzha rivers, are
genetically close to those in the European part of Turkey [22]. This is not surprising given
the lack of any physical barriers in that part of the range. However, several clades occur in
close proximity here, which is probably related to the fact that this is the area considered
the cradle of the species’ formation [22], with the oldest fossil records being found nearby
in the Yarimburgaz Cave [52].

The northern Bulgarian group is predominantly found in the Danubian plain and
north of it in the east of the EGS distribution area. It is located in the extensive lowlands of
the east of the country, where the huge pastures are located. It mostly belongs to clade I,
which is spread in the whole northern range of the species’ distribution [22]. Opposite to
what we expected, the Danube river did not show any considerable barrier effect, probably
because of changes in the river bed during the Quaternary [53,54]. Further north outside
Bulgaria, the big rivers had noticeable barrier effects [27].

The Stara Planina Mountain range almost completely divides the two groups in Bul-
garia latitudinally (Figure 4), playing the decisive role of a phytoclimatic barrier [55]. Such a
role of mountains with unfavourable habitats in regard to the steppe species has been found
across Europe [56]. The northern slopes of Stara Planina and the Pre-Balkan Mountains
are characterised by higher precipitation, more days with snow cover and later onset of
spring [55]. Southern slopes and adjacent Podbalkan valleys provide warmer and drier
conditions, resulting in some differences in the vegetation. For example, Quercus cerris and
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Q. franetto are common in northern Bulgaria, while Quercus pubescens and Carpinus orientalis
dominate in the southern part of the country [57]. The mountain chain is a known distribu-
tion barrier for numerous steppe species such as the steppe polecat (Mustela eversmanni),
common hamster (Cricetus cricetus) or Romanian hamster (Mesocricetus newtoni) [58]. It
also separates the two subspecies of house mouse, Mus musculus—M. musculus musculus
and M. musculus domesticus [59]. Thus, it is not surprising that it also separates the two
genetic lineages of S. citellus in Bulgaria. In this case, the barrier effect is not physical or
climatic though, as the species occurs up to the highest parts of the mountain range [21],
but is probably due to the dense and vast forests that cover the Pre-Balkan and the northern
slopes of Stara Planina [21]. It is also known that the Carpathian Mountains have acted as a
barrier for the species’ distribution in the northern part of the range [22,53], and it spread
to the west of them only in the late Pleistocene. Based on Popova et al. (2019), this dispersal
event is the most recent for S. citellus, as the species appears in the paleontological record
of the Pannonian Basin only in the past 8 Kya [54].
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(according to [60]). The different genetic groups based on Structure results (Figure 1) are shown with
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Several populations in Bulgaria were also assigned to the northern Bulgarian group
although they are found south of the Stara Planina Mountains, and two of these are located
in higher elevations: BN in the Rila Mountains and KRE on the border of Sofia Valley, one
of the Podbalkan Valleys. The situation concerning the Belmeken population in the Rila
Mountains is particular. This population inhabits the east Rila Mountains from 1700 to
2500 m a.s.l. and is completely isolated from the lowland populations. The shortest straight-
line distance between it and the lowland colonies is more than 19 km, with differences in
altitudes of 1.7 km and a forest barrier [61]. The history of its occurrence is unclear. It is
possible that the species managed to move through the western part of the Stara Planina
where the mountains are cut through by the Iskar River Gorge, because all populations
from the northern Bulgarian group that are found south of the Stara Planina Mountains are
located in the western area. River valleys are considered as providing suitable corridors for
the dispersal of the Spermophilus species [27,53].

Based on Popova et al. [53], who proposed a new timescale for the phylogenetic
tree of the European ground squirrel compared with Říčanová et al. [22], the separation
between the KRE and BN population is about 10,000 years old. Pollen analysis and
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radiocarbon chronology testify that the vegetation in the central part of the Rila Mountains
14,000–11,700 years ago was dominated by Artemisia, Chenopodiaceae and Poaceae forming
open habitats [62]. Therefore, at that time there was no forest barrier for the spread of the
species towards the higher parts of the mountain and it is possible that the split of the
genetic lineages occurred afterwards. The same change in vegetation cover, however, also
occurred in all the previous glacial–interglacial cycles and is thus compatible with many
different datings during the Quaternary.

When we compared the genetic indices between these two groups in Bulgaria, we did
not find any differences. The populations in both groups exhibit almost the same variables
with high values of allelic richness and expected heterozygosity. Additionally, a recent
significant bottleneck was found in only one population (NP), but the concrete reason is
unclear, because the species is widespread in the Danube Plain. One possibility could
be the high level of coccidian infection in these regions [63], which is suspected to lead
to severe population declines [64]. Additionally, when we tested IBD, we did not find
a significant correlation, which means that the gene flow is not restricted among all the
studied populations cross-country. When we tested partial IBD, there was a significant
correlation only for the northern Bulgarian populations, indicating limited migration and
gene flow among northern, but not among southern populations.

5. Conservation Implication and Role of the EGS in the Ecosystem

The European ground squirrel plays a key role in the ecosystem. Its burrows are
inhabited by specific coprophagous beetles or vertebrates such as toads, lizards and snakes,
which can also find shelter in the tunnels [65]. EGS represents an important food source
for rare and endangered predators such as the steppe polecat (M. eversmanii), marbled
polecat (Vormela peregusna), eastern imperial eagle (Aquila heliaca) and the saker falcon
(Falco cherrug) [66–68]. Thus, the protection of the species is important for the functioning
of the whole grassland ecosystem. Unfortunately, it has been severely affected by the
historical socio-economic development [28], especially in the northern part of its range [69].
In Bulgaria, being the cradle of the species formation and because of that initially harbour-
ing more genetically diverse populations, it has not been gravely affected until recently.
However, the progressive urbanisation, infrastructure construction, intensification and
modernisation of the animal husbandry seem to already have serious effects [21]. It is
striking to see that the most genetically diverse colony in terms of both allelic richness and
overall genetic diversity—TOP—when analysed [22] is now on the brink of extinction after
a significant portion of its area has been converted to arable land (30% in 2020, Koshev,
Kachamakova—pers. obs.), despite the low farming value of the soil. The colony was once
one of the biggest and the most famous in the country for its spectacular concentration of
rare raptors. It has also been intensively used as a donor colony for reintroductions and
reinforcements (in western Strandzha, Sinite kamani and Kotlenska planina—in Koshev
et al. [70]). Almost entirely deprived of legal protection, the colony has collapsed, and it
looks like these translocations turn out to be rescue actions. The same pattern of habitat
destruction is observed in the whole of south-eastern Bulgaria [71].

This is just a recent example from the field showing how important and urgent it
is to acquire and effectively apply the knowledge on population genetics to advocate
for appropriate conservation actions. Therefore, the here-presented results should be
used to inform the management of the species, including the proper implementation of
the National Action Plan that was recently adopted [21]. The proof that the majority of
species’ genetic diversity is concentrated in the southern part of the range emphasises the
responsibility of the national decision-makers. Conservation translocations of individuals
should only be carried out after considering the genetic data. The current study shows a
high genetic diversity of EGS in Bulgaria and the presence of two phylogenetic lines [22].
Based on these results, it is not recommended to carry out translocations of individuals
from different genetic lines, as well as between northern and southern Bulgarian lines.
Prompt and substantial measures should be taken to ensure the long-term survival of



Diversity 2023, 15, 365 9 of 11

the species through maintaining suitable habitats, connectivity, genetic variation and
evolutionary potential.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/d15030365/s1, Table S1. Genetic diversity in ten populations
of the European ground squirrel based on 12 microsatellite loci.; Table S2. FST values using ENA
(from FreeNA. Chapuis & Estoup 2007) between EGS populations based on msats data.; Figure S1
Neighbour-joining tree from BAPS based on Nei genetic distances divides studied populations into
two clusters., i.e., northern and southern groups of populations.
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