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Abstract: Mangroves and seagrasses present with high marine macroinvertebrate biodiversity that
contributes to their structure and functioning. Macroinvertebrates possess a broad range of functional
traits, making them excellent models for biodiversity and available-trait-based studies. This study
aimed to characterize the biodiversity of marine macroinvertebrates as two different ecosystems
situated along the coastline of Maputo Bay by compiling dispersed data from online databases.
Specifically, this study addressed species richness, taxonomic and functional diversity based on two
traits (habitat occupation and trophic guild), and the community structure of these traits. Mangroves
presented with a higher species richness and taxonomic diversity than seagrasses. The functional
diversity of mangroves was mostly explained by the trophic guild trait. In the case of seagrasses,
functional diversity was mostly due to differences in habitat occupation in the 20th century, but
the trophic guild accounted for this functional diversity from 2000 onwards. The comparison of
community compositions between the two ecosystems showed low or no similarity. The use of digital
databases revealed some limitations, mostly regarding the sampling methods and individual counts.
The trends and data gaps presented in this study can be further used to inform subsequent systematic
data acquisition and support the development of future research. A further step that may be taken to
improve the use of digital data in future biodiversity studies is to fully incorporate functional traits,
abundance and sampling methods into online databases.

Keywords: species richness; taxonomic diversity; functional diversity; community composition;
East Africa

1. Introduction

Mangrove forests and seagrass meadows play significant roles in marine and coastal
ecosystem integrity, providing a vast number of goods and services which are highly
valued by local populations [1–4]. Mangroves and seagrasses have different structural
characteristics [5,6], and they may be ecologically linked in some geographical areas, con-
tributing to the exchange of species and ecosystem processes [6,7]. Despite the importance
of mangroves and seagrasses, they are decreasing due to habitat occupation, degradation
and fragmentation. This may result in a significant decrease in their associated biodiversity
and ecosystem functioning [1,2,8]. The loss of mangroves and seagrasses changes coast-
lines in terms of the sediment characteristics and stability, as well as benthic communities,
threatening, for example, costal protection, nursery areas, fisheries, nutrient cycling, water
flow and carbon sequestration [8,9].

Marine macroinvertebrate biodiversity, e.g., crustaceans, echinoderms, molluscs, poly-
chaete worms, nematodes, coelenterates, tunicates and sponges [3,4], contributes to the
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structure and stability of ecosystem processes such as productivity, ecological networks,
nutrient and biogeochemical cycling and stability, as shown in [10,11]. Macroinvertebrates
possess a broad range of functional traits, making them excellent models for biodiversity
and functional-trait-based studies [12]. Nevertheless, there are few studies addressing the
macrobenthos functional diversity and community composition of seagrasses [13,14] and
faunal diversity of mangroves [15].

Taxonomic diversity studies examining the functional traits of species can shed light on
the consequences of habitat loss or changes regarding ecosystem functioning. An increasing
number of studies have applied a combination of taxonomic-diversity- and trait-based
measures to characterize marine communities [16]. The functional traits of species influence
ecosystem properties and, as such, provide an essential link between taxonomic diversity
and ecosystem functioning [17]. Functional diversity characterises the roles of species
within communities based on their morphological, behavioural and life history traits [17],
and these traits are representative of the functional structure of a community [18].

Maputo Bay is the largest coastal embayment in Mozambique [19], with an area of
1280 km2 [20]. The size of the Bay, the diversity of its ecosystems and the services they
provide are fundamental to supporting the subsistence of a large and growing human
population [19]. In Maputo Bay, mangrove environments occupy 14% of the bay [20,21].
They are used as nursery areas by numerous invertebrate species, with crabs accounting for
most of the macrobenthic faunal composition, followed by gastropod molluscs [4]. Seagrass
meadows occupy 3% of Maputo Bay [20,21], and their marine macroinvertebrate faunal
composition is dominated by echinoderms, molluscs and crustaceans [3]. Many species
also use this ecosystem as a nursery area.

Digital data available via online databases, such as the Global Biodiversity Information
Facility (GBIF, http://www.gbif.org (accessed on 27 October 2022)), mobilize biodiversity
data from natural history collections (NHC), surveys and other sources [22], gathering
relevant information on the world’s biodiversity, both historical and current [23]. Online
biodiversity databases cover extensive geographic and temporal data that can be readily
used as occurrence data. These data can be supplemented with other information, such
as habitat and species traits, obtained from georeferenced information and previously
described functional traits. Dependable datasets on global mangrove tree diversity are
available, but no such information exists for the associated fauna species composition,
functional diversity and functional redundancy [24]. Although many studies have analysed
biodiversity using digital data [25–29], as far as we know, there are no studies addressing
marine macroinvertebrate biodiversity and functional diversity using online digital data.

This study aimed to characterize the biodiversity of marine macroinvertebrates (An-
nelida, Arthropoda, Cnidaria, Echinodermata and Mollusca) in two different ecosystems
(mangroves and seagrass meadows) along the coastline of Maputo Bay in Mozambique by
compiling dispersed data from online databases. We hypothesized that digital databases
can be used as tools to provide primary data for biodiversity research. Specifically, this
study addressed (i) different diversity metrics, namely species richness and taxonomic and
functional diversity, based on two traits (habitat occupation and trophic guild) and the
community composition regarding the diversity of these traits, and (ii) data limitations
affecting the application of diversity indexes. This work provides integrated baseline
information on the general patterns of taxonomic and functional diversity and community
composition of marine macroinvertebrates in mangroves and seagrasses, which can be
used as a starting point for future studies.

2. Materials and Methods
2.1. Study Area

Maputo Bay is situated between the latitudes 25◦72′10′′–26◦28′30′′ S and longitudes
32◦49′10′′–32◦85′40′′ E (Figure 1), with an area of 1280 km2 (approximately 90 km in
coastal length by 32 km in width [20,30]). The ecosystems considered for this study were
mangroves (including the associated supratidal bare flats, the area between the landward
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margin of the mangrove forests and the beginning of the terrestrial vegetation) and seagrass
meadows [21].
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Figure 1. Location of mangrove forests and seagrass meadows in Maputo Bay, Mozambique (maps
created with ArcGis WebBuilder, https://ulisboa.maps.arcgis.com/, accessed on 19 October 2022).

The mangroves cover an area of about 176 km2 around Maputo Bay, and the seagrass
meadows cover about 38 km2 [21].

2.2. Data Collection

The data were obtained through the database previously compiled [31] within the
scope of the COBIONET project and included genus and species occurrence (defined here
as the register of a taxon in a particular place on a specific date) data, the ecosystem of
occurrence and species traits. The complete dataset can be assessed on the GBIF platform
(https://doi.org/10.15468/w4s7cc (accessed on 10 November 2022)). The occurrence data
were compiled from data downloaded from the GBIF and literature. The resulting data were
subsequently subjected to taxonomic review and validation and georeferenced using the World
Register of Marine Species (WoRMS, http://www.marinespecies.org, accessed on 18 March
2019), GEOLocate Collaborative Georeferencing tool (CoGe, https://coge.geo-locate.org,
accessed on 18 March 2019) and Google Maps (https://www.google.com/maps, accessed
on 18 March 2019), respectively. In this study, we only considered occurrence data within
the coordinate boundaries of Maputo Bay and from the mangrove and seagrass meadow
ecosystems, resulting in a derived dataset with 1095 occurrences, which is also accessible
through the GBIF platform (https://doi.org/10.15468/dd.2qg6gj (accessed on 21 January
2023)) [32]. The data cover the period from 1950 to 2018. In many occurrences, there was
no information regarding the sampling methods or individual count [33]. Therefore, in this
study, we used only the species presence/absence and/or number of occurrences over a
period of time and/or the ecosystem type, in accordance with [34–36]. Two functional traits
were considered, i.e., habitat occupation (attributes: benthos, nekton and zooplankton)
and trophic guild (attributes: deposit feeder, detritivore, filter feeder, generalist feeder,
grazer, parasite, planktivore, predator, scavenger, suspension feeder and symbiotic). For
each trait, most attributes were obtained from WoRMS, but some were also obtained from
the Biological Traits Information Catalogue (BIOTIC, http://www.marlin.ac.uk/biotic/,
accessed on 27 June 2021). Some species had no available information. In those instances,
attribute data of similar species within the same genus or family were used. All attributes
were categorical (i.e., qualitative, sensu [37]).

https://ulisboa.maps.arcgis.com/
https://doi.org/10.15468/w4s7cc
http://www.marinespecies.org
https://coge.geo-locate.org
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2.3. Biodiversity Estimates and Statistical Analyses

Species richness (S) [38], taxonomic diversity (Simpson’s diversity index—D [35,39])
and functional diversity (Rao index [35,40]), calculated per decade, were used as biodiver-
sity estimates. To calculate D, both S and the number of occurrences of each species in each
ecosystem were considered [35,41].

The community structure was assessed by estimating the diversity of each functional
trait using the Shannon–Wiener diversity index (H’) [42] and the average taxonomic dis-
tinctness index (∆+) [43], as described by Clarke and Warwick, as the path length between
two randomly chosen species [44]. The community composition, based on the diversity of
each functional trait, was analysed separately for each ecosystem to identify differences
between them using multidimensional scaling (MDS). As the data had many zero values, a
log(x+1) transformation was used [45], and resemblance matrices were created using the
Bray–Curtis similarity index. These matrices were used to produce MDS cluster graphs.

S was calculated in an Excel spreadsheet (Microsoft Corporation, 2018, Microsoft Excel,
available at: https://office.microsoft.com/excel (accessed on 16 October 2022)). D and the
Rao index of functional diversity were calculated using the ‘FunctDiv.exl’ macro of Lepš
et al. [35]. H’, ∆+ and MDS statistical analyses were conducted using PRIMER 6 statistical
software [46]. Although the abovementioned diversity indexes preferably use abundance
data, they can also be applied to presence/absence and occurrence data [25–29,34–36].
Therefore, they were suitable for application in this study.

3. Results

Mangroves presented a higher marine macroinvertebrate species richness than sea-
grass meadows, except between 2000 and 2019 (Figure 2). From 1950 to 2019, 416 species
were identified, including 282 in mangroves and 167 in seagrass meadows (33 species over-
lapped both ecosystems). Overall, the highest species richness was registered in 2010–2019
(124 species).
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Mirroring the results of the marine invertebrate species richness, the taxonomic diver-
sity (D) of Maputo Bay’s mangroves was higher than that of the seagrass meadows, except
for the period between 2000 and 2019 (Figure 3).
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Figure 3. Marine invertebrate taxonomic diversity (Simpson’s Diversity Index—D) of mangroves
and seagrasses in Maputo Bay per decade.

The functional diversity (Rao Index) of mangroves was explained mainly by the trophic
guild trait (Figure 4a). In the case of seagrasses, between 1950 and 1970, the functional
diversity was mostly due to differences in habitat occupation. This trend has shifted in
more recent decades (the 1980s onward), with the functional diversity being explained
mainly by the trophic guild (Figure 4b).

The assessment of the community composition of the mangroves (Figure 5) in regard
to habitat occupation showed that the benthonic attribute had the highest Shannon–Wiener
diversity index (H’ = 5.23) and average taxonomic distinctness index (∆+ = 87.36), followed
by the zooplanktonic (H’ = 2.00; ∆+ = 65.56) and nektonic (H’ = 1.28; ∆+ = 47.22) attributes
(Figure 5a,c). As for the trophic guild, the “predator” attribute exhibited the highest
diversity index (H’ = 4.38), closely followed by the “planktivore” (H’ = 3.94) attribute.
The “parasite” and “detrivore” attributes presented with low diversity (H’ = 0.69 and
H’ = 0, respectively) (Figure 5b). In this instance, ∆+ did not follow the same trend as H’.
The “parasite” attribute had the lowest H’ value but the highest taxonomic distinctness
(∆+ = 83.33), being the same as the “symbiotic” attribute (Figure 5d).

Regarding the community composition of the seagrasses (Figure 6) in regard to habitat
occupation, the benthonic attribute presented the highest Shannon–Wiener diversity index
(H’ = 4.75), followed by the zooplanktonic (H’ = 2.13) and nektonic (H’ = 1.61) attributes
(Figure 6a). The benthonic attribute also presented the highest taxonomic distinctness
(∆+ = 80.33), followed by the nektonic (∆+ = 43.33) and zooplanktonic (∆+ = 36.97) at-
tributes (Figure 6c). Concerning the trophic guild (Figure 6), the “predator” attribute
exhibited the highest H’ (4.11), followed by the “suspension feeder” (H’ = 3.12) attribute.
The “parasite” (H’ = 0.69), “detrivore”, “generalist feeder” and “planktivore” attributes (all
with H’ = 0) presented the lowest diversity indices (Figure 6b). As in the case of mangroves,
the “parasite” attribute of seagrasses had one of the lowest H’ values but the highest
average taxonomic distinctness (∆+ = 100), followed by the “deposit feeder” (∆+ = 90.74)
attribute (Figure 6d).

Comparing the community compositions of the mangroves and seagrasses (Figure 7a)
in regard to habitat occupation, it can be noted that the benthic and zooplanktonic attributes
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had a level of similarity of 5%. However, the nektonic attribute was dissimilar between
the two ecosystems. Groupings of species belonging to certain trophic attributes (e.g.,
scavengers, deposit feeders, predators, grazers and suspension feeders) showed a similarity
of 5% between the two ecosystems (Figure 7b). The other trophic guild attributes presented
dissimilarities between the two ecosystems.
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trophic guild (TG) traits per decade in Maputo Bay. (a) Mangroves; (b) seagrasses.
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4. Discussion

Marine macroinvertebrates presented higher species richness and taxonomic diversity
in mangrove forests than in seagrass meadows until the end of the 20th century. From
the 2000s onwards, this trend was reversed. This can be explained by a greater collection
effort in the case of seagrass meadows in recent years [47–50]. Similar to our findings, the
authors of [5] discovered that seagrasses displayed greater species richness and taxonomic
diversity than mangroves in the Matapoury Estuary (New Zealand) in 2006. On the other
hand, mangroves cover a much larger area than seagrasses in Maputo Bay, mainly due to
the sediment input from five rivers: Incomati, Maputo, Tembe, Umbeluzi and Matola [20].
This probably led to sampling bias in studies focusing primarily on mangroves in the 20th
century [3,4].

The trophic guild trait mostly explained the functional diversity of mangroves, whereas
habitat occupation mostly explained the functional diversity of seagrasses. This trend in
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seagrasses has shifted in recent years, with the functional diversity being explained mostly
by the trophic guild. As trophic guild diversity is related to resource availability and food
web interactions, it is often considered as a way of describing community functioning [18].
However, the data on a trait must be available for all species to be valid on the community
level [51], as was achieved in our study.

Regarding habitat occupation, the community composition, in relation to biodiver-
sity (H’) and taxonomic distinctiveness (∆+), was identical in mangroves and seagrasses.
Thus, benthos presented higher biodiversity and taxonomic distinctiveness in both ecosys-
tems than the other attributes, while in seagrasses, nekton had a lower biodiversity than
zooplankton but a higher taxonomic distinctiveness. This indicates that there are fewer
nektonic than zooplanktonic species, but the former are more distinct on the taxonomic
level. However, it must be noted that nektonic species presented a low n (seven occurrences
in mangroves and five in seagrass meadows). As for the trophic guild, the community
composition, in related to the highest biodiversity and taxonomic distinctiveness, i.e., the
predator and parasite attributes, respectively, was identical in mangroves and seagrasses.
Few trophic guild attributes did not display distinctiveness (probably due to a low n), and
some were underrepresented or absent in the database, e.g., the “detrivore” attribute in
seagrasses (n = 1) and mangroves (n = 0). This may be explained by data gaps in the original
digital databases, which can partially be attributed to the limited number of studies, e.g.,
those conducted [15] in Kenya and [13,14] in the Republic of South Africa, directed towards
functional diversity and community composition in Eastern Africa. The application of the
MDS to compare the community composition between mangroves and seagrasses revealed
a low degree of similarity (5%) or dissimilarity between the two ecosystems in terms of
habitat occupation and trophic guild traits. Our results are consistent with the MDS find-
ings from [5], which showed dissimilarity in the community structure and composition
between mangroves and seagrasses.

The use of digital databases to compile information regarding different facets of marine
macroinvertebrate diversity has some limitations. There was no or little information on the
sampling methods and individual count (the lack of this information can invalidate the
usefulness of these data for different quantitative studies), in addition to out-of-date taxa
IDs [22,52,53], which, nevertheless, can be updated using specialised taxonomic platforms
and literature. The decline in the number of occurrences from 1960 to 1999 can be explained
in part by the political instability between 1964 and 1992 [54] but also by sampling bias
(e.g., the available data being limited to studies of specific ecosystems or target species
used as food sources, as exemplified by the data compiled for this study, which show
that 66% of the species occurrences were from mangrove forests vs. 34% from seagrass
meadows) and data gaps in the original digital databases [22,33,52,53]. The lack of work
on mangroves and especially seagrasses can be attributed to the reduced number of marine
biology education/research institutions in Mozambique. Hence, the first study on marine
biology in Mozambique was carried out by South African researchers on Inhaca island.
Mozambique did not have an institutional setting to carry out marine biology research until
1985, when the first marine biology course was implemented. Additionally, the Fisheries
Research Institute was only established in 1980. Digital biodiversity repository managers
need to state the need to register data as the objective of the study, together with the
methods used and number of individuals, as accurately as possible. The increase in the
number of accessible digital databases and the associated metadata should also increase the
accuracy of functional diversity estimates. More accurate biodiversity data integrated into
global digital databases will allow us to gain a better understanding of marine invertebrate
communities worldwide. Standardized sampling protocols, such as those provided by the
Indo-Pacific Seagrass Network [55], can also help to improve the accuracy of databases.

This study demonstrates the utility of online databases as a proxy for in situ studies,
limiting the environmental pressures that fieldwork can sometimes create or problems
involving locations that are difficult to access (both logistically and political), as well as their
limitations, such as incomplete metadata entries and reliance on the high-quality digitisa-
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tion of NHC and fieldwork data. Specifically, this study contributes temporal baseline data
on species richness, taxonomic and functional diversity, and overall community composi-
tion of marine macroinvertebrates in mangroves and seagrasses in Maputo Bay. The trends
and data gaps shown in this study can be further used to inform subsequent systematic
data acquisition and support the development of future management and conservation
plans, especially for endangered, unique and endemic species. A further step for future
studies is to incorporate functional traits into online biodiversity and NHC databases.
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