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Abstract: A corallivorous nudibranch from the South China Sea reproduced explosively and caused
extensive damage to Porites in our aquarium. In this study, morphological and molecular analyses
of the nudibranch were conducted and described. Morphologically, this nudibranch was nearly
consistent with Pinufius rebus in its characteristics intermediate between arminids and aeolids. The
only detected difference was that the hook-like denticles on the masticatory border of P. rebus were
absent in this nudibranch. In a molecular analysis, phylogenetic results based on the cytochrome
oxidase subunit-I, 16S rRNA, and histone H3 gene sequences showed that this nudibranch and P. rebus
form a well-supported sister clade under the superfamily Fionoidea, with significant interspecific
divergence (0.18). Thus, we presumed that this nudibranch is a new species of Pinufius. Our results
extend the distribution of Pinufius to the South China Sea, support the current taxonomic status of
Pinufius under the superfamily Fionoidea, and imply that the species composition of Pinufius is more
complex than previous records. Moreover, as a corallivorous nudibranch, the potential threat of
Pinufius to coral health cannot be neglected.

Keywords: corallivory; sea slug; Pinufiidae; Porites; coral health

1. Introduction

Coral reefs are among the most biologically diverse, productive, and fragile marine
ecosystems on earth [1,2]. Coral reefs worldwide are suffering extensive deterioration due
to extreme climates, anthropogenic disturbances, and biological factors such as competition,
disease, and predation [3–5]. The crown-of-thorns starfish Acanthaster spp. and the muricid
gastropods Drupella spp. are coral predators notorious for their substantial damage to
corals [6,7]. Moreover, some flatworms and nudibranchs are also potential threats to coral
reefs [8–10].

Nudibranchia is a diverse (approximately 2540 species) but taxonomically complex
order of marine gastropod mollusks, among which there are many controversies on system-
atical relationships [11]. Initially, the order Nudibranchia was divided into the four subor-
ders: Doridina, Aeolidina, Dendronotina, and Arminina [12]. More recently, Wägele and
Willan [13] redistributed the order into two suborders: Anthobranchia and Cladobranchia.
Cladobranchia contains seven superfamilies (Aeolidioidea, Arminoidea, Dendronotoidea,
Doridoxoidea, Fionoidea, Proctonotoidea, and Tritonioidea) [14]. Among these, the super-
family Fionoidea has the richest variety of families [15]. Fionoidea, meanwhile, is the most
controversial taxon, especially regarding disagreements between traditional morphology
and emerging molecular identification [16,17].

As a morphologically special family in the superfamily Fionoidea, Pinufiidae, with
its monotypic genus Pinufius, has only one species Pinufius rebus, which is very different
from other members of Fionoidea [18]. The position of the anus is similar to that of some
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aeolids, but the external shape more resembles arminids; hence, Pinufius was initially
classified into Arminina [18]. Subsequently, Rudman [19] redescribed the morphological
and physiological features and feeding habits of Pinufius. According to distribution records
in the literature, Pinufius inhabits the coral reefs of the Maldives [18], Australia [19], In-
donesia [20], and the Philippines [21], and feeds exclusively on Porites spp. [22]. However,
Rudman [19] did not give an opinion about the taxonomic status of Pinufius because of
the similarity between P. rebus and some aeolids in radula and cerata. In the most recent
classification of Gastropoda, Pinufiidae was classified into the superfamily Fionoidea [15].

Similarly, there is no consensus on the phylogenetic position of Pinufius. Pinufi-
idae once clustered with other ceras-bearing arminids including the species of Janolidae,
Madrellidae, and Proctonotidae, under the superfamily Metarminoidea [23]. However,
Metarminoidea was not named on the basis of existing genus-level taxa and, hence, cannot
be valid [24]. In 2010, a phylogenetic analysis of multiple molecular datasets indicated that
Pinufius clustered closely with Doto species of Dotoidae [21]. However, a morphological
study showed that Pinufiidae was more closely related to Proctonotidae [11]. Mahguib and
Valdés [25] provided a phylogenetic tree in which P. rebus clustered closely with Lomanotus
spp. (Lonanotidae) and Eubranchus rustyus (Eubranchidae), and embedded into a large
clade with some families of Aeolidioidea. In a study about host shifting, Pinufius was
nested within a large clade with some Phestilla species of the family Trinchesiidae, which
also feed exclusively on Porites spp. [20].

In China, 203 species were recorded in the order Nudibranchia [26]. Therein, only
three coral-eating Phestilla (Phestilla melanobrachia, P. goniophaga, and P. fuscostriata) were
reported [27–29], and Pinufius was never mentioned. In this study, a species of nudibranch
was brought into our aquarium with Porites samples from Daya Bay in coastal waters of
the northern South China Sea. After 2 months, while the population of this nudibranch
broke out, they severely damaged these Porites samples and never left Porites to hurt other
corals. According to primary observations under stereomicroscopes, we deduced that this
species was P. rebus, according to the obligate association with Porites spp., as it had the
appearance of this species including intermediate morphological features between aeolids
and arminids [18]. However, there were significant differences in gene sequences between
the nudibranch in this study and P. rebus online. In order to accurately identify the species
and reveal the phylogenetic relationship with other relevant nudibranchs, we provide a
detailed morphological description and comprehensive molecular phylogenetic analysis
of this unknown nudibranch. This study is expected to provide a reference for Pinufius
research and coral reef conservation in China.

2. Materials and Methods
2.1. Sample Collection

The tested specimens were collected from the surface of Porites samples in our aquar-
ium using a pipette. Specimens for molecular analysis were preserved in 95% ethanol;
specimens for morphological analysis were preserved in seawater temporarily and 4%
formaldehyde. All specimens examined in this study were deposited in the Third Insti-
tute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China (HYSS01
to HYSS75).

2.2. Morphological Analysis
2.2.1. External Morphology

Thirty-five specimens (HYSS06 to HYSS40) were used for external morphological
analysis. They were placed in a petri dish with seawater, and magnesium sulfate solution
was slowly added dropwise until the animals were anesthetized. External morphological
characteristics were examined and photographed using a stereomicroscope (Leica M205FA;
Leica Microsystems, Wetzlar, Germany).

Eggs and egg masses were examined and photographed under a biological microscope
(Leica DM5000B; Leica Microsystems) and a stereomicroscope (Leica M205FA).
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2.2.2. Internal Morphology

Twenty-three specimens (HYSS41 to HYSS63) were used for dissection of the re-
productive system under a dissecting microscope (Leica S6D; Leica Microsystems) and
a stereomicroscope (Leica M205FA). Identification of organs was aided by the relevant
literature [18].

Buccal masses were extracted under a dissecting microscope (Leica S6D) and soaked
in 25% hypochlorous acid for 20 min at 24 ◦C; they were then rinsed in pure water. The
radula and jaw were removed and placed on filter paper (Φ = 5 µm) using forceps. The
filter paper was mounted on a stub with liquid nitrogen and examined under a scanning
electron microscope (Quanta 450; FEI, Portland, OR, USA).

For histological examination, specimens (HYSS75) were preserved in 4% paraformalde-
hyde for 24 h and dehydrated in ethanol. Dehydrated specimens were made transparent
in the mixed solution of ethanol and xylene (1:1). Transparent specimens were embedded
in melted wax and cooled to −20 ◦C. The wax-embedded specimens were cut into 4 µm
slices. These slices were floated on the surface of 40 ◦C water to remove any wrinkles and
dried on glass slides at 60 ◦C. The sections were cleared in xylene, a mixed solution of
ethanol and xylene (1:1), and ethanol successively to remove the wax. Finally, the sections
were stained with hematoxylin–eosin stain. Sections were examined under a biological
microscope (Leica DM5000B).

2.3. Molecular Analysis
2.3.1. DNA Extraction and Sequencing

Four specimens (HYSS02–HYSS05) were used for molecular analyses. The genomic
DNA of specimens was extracted using the Ezup Column Animal Genomic DNA Purifica-
tion Kit (Sangon Biotech, Shanghai, China). DNA integrity was checked using electrophore-
sis on 1% agarose gel. Polymerase chain reactions (PCRs) were conducted to amplify the
cytochrome oxidase I (COI), 16S ribosomal RNA (16S), and histone H3 gene sequences
using a Veriti 96-Well Thermal Cycler (Thermo Fisher Scientific, St. Louis, MO, USA).
The primers were HCO2198/LCO1498 for COI [30], 16SsarL/16SR for 16S [31,32], and
H3AF/H3AR for histone H3 gene [33]. PCR products were purified with SanPrep Column
DNA Gel Extraction Kit (Sangon Biotech) and sequenced using an ABI 3730XL Genetic
Analyzer (Sangon Biotech).

2.3.2. Phylogenetic Analysis

Phylogenetic topology was constructed on the basis of concatenated COI–16S–histone
H3 sequences of our specimens and 49 other nudibranch species (Supplementary Table S1).
Among these species, 38 species belonged to the superfamily Fionoidea, including the
genus Phestilla whose feeding habits and behaviors were similar to Pinufius; 10 species
in the superfamily Poctonotoidea were morphologically similar to Pinufius. The best
partition schemes and substitution models were estimated using a comparison of Akaike
information criterion (AIC) scores with jModelTest v2.1.7 [34]. A Bayesian inference (BI)
phylogenetic tree was constructed using Mrbayes v3.12 [35]; a set optimal model strategy
was selected for different positions (GTR + I + G for COI and 16S and GTR + G for histone
H3). Analyses were run for 10,000,000 generations with the Markov chains being sampled
every 1000 generations. We determined the burn-in value of the first 2500 trees (25%), and
the 50% majority-rule consensus tree was estimated. Pairwise genetic distances based on
the COI gene were generated using MEGA X [36].

3. Results
3.1. External Morphology

Mature specimens were 3–6 mm in length (Figure 1). Body color was usually light
brown and changed with the color of hosts. The oral veil was round, about one-fourth the
length of the body, slightly exceeded the anterior edge of dorsum, and contained brown
speckling, without oral tentacles. The rhinophores were smooth and nonretractile, without
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a rhinophoral sheath. There was a white patch between the bases of rhinophores. The
dorsum was flat and broad, with many small brown tubercles. When resting, the body was
oval, and the foot and partial oral veil were shielded by the dorsum; when crawling, the
body was elongated, and the foot usually extended behind the dorsum.
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(Figure 2B). 

Figure 1. The external morphology: (A) dorsal view; (B) ventral view. Scales: 1 mm.

The cerata were variable in shape (Figure 2A). On the top of dorsum, they were rod-
like and partly swollen, arranged symmetrically in five rows. Each row consisted of two
pairs of cerata; the pair on the outside (Figure 2A: ot) was smaller than the pair on the
inside (Figure 2A: it). Differing from the cerata on the top, the cerata around the edge of
dorsum were irregular and dense in a double-row arrangement. The longest inner cerata
around the edge of dorsum were on the anterior and usually misidentified as oral tentacles
(Figure 2A: ie). The outside cerata around the edge of the dorsum were digitiform, as
well as shorter and denser than the inner cerata (Figure 2A: oe). There were 1–2 ceras-like
processes between the outside cerata around the edge of dorsum (Figure 2A: cp). The type
and arrangement of the cerata in larvae were significantly different from those of adults
(Figure 2B).
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Figure 2. The arrangement of cerata. (A) The cross-sectional sketch of cerata: it, the inner ceras on
the top; ot, the outer ceras on the top; ie, the inner ceras on the edge; oe, the outer ceras on the edge;
cp, ceras-like process. (B) The larva with limited cerata (white arrow) under the microscope, scale:
500 µm.
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The anus was located on the right side of the midline between the third and fourth
rows of cerata. The reproductive opening was located on the right side of the foot.

The egg masses were transparent belts (Figure 3A), with hundreds of eggs (Figure 3B).
The eggs were 0.2–0.3 mm with transparent membranes (Figure 3B).
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Figure 3. Egg masses under microscope: (A) Egg masses on the Porites sp.; (B) hundreds of eggs in
transparent belts. Scales: (A,B) 1 mm.

3.2. Internal Morphology
3.2.1. Radula and Jaw

In the buccal mass, a radula was enfolded in a pair of jaws. The radula formula was
17 × 0.1.0 (Figure 4A). The central cusp was strong (Figure 4A: cc), with 6–8 slenderer
and shorter primary denticles on each side (Figure 4A: pd). Compared with the other
primary denticles, the two pairs closet to central denticle looked runtish. Between the
primary denticles, 1–2 secondary denticles were present (Figure 4A: sd). The jaw plates
were transparent and triangular (Figure 4B,C). The masticatory border was rough and
thick (Figure 4C), without the hook-like denticle of P. rebus as Marcus et al. [18] and
Rudman [19] described.
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Figure 4. Radula and jaw under SEM. (A) Radula: cc, central cusp; pd, primary denticle; sd, secondary
denticle. (B) The outside of jaw plate. (C) The inner side of jaw plate with a section of the masticatory
border enlarged in the inset. Scales: (A,C) 100 µm; (B) 300 µm.

3.2.2. Reproductive System

The reproductive system (Figure 5) was diaulic, mainly consisting of a penis, a female
gland mass, an ampulla, and a bursa copulatrix, as Marcus et al. [18] described (Figure 5B).
The penis was slender and connected to an irregular, massive prostate (Figure 5A: p, pr).
The bursa copulatrix with a transparent membrane was spherical and connected to an
elongated vagina (Figure 5C: bc, v). The ampulla was slightly swollen (Figure 5C: am). The
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female gland mass was irregularly cylindrical (Figure 5D: fgm). Many follicles were visible
in the posterior of the body through the ventral epidermis (Figure 5E: fo).
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Figure 5. Reproductive system. Comparison of digital photos (A,C–E) and drawings by Mar-
cus et al. [18] (B) and Rudman [19] (F): p, penis; pr, prostate; v, vagina; bc, bursa copulatrix; hd,
hermaphroditic duct; am, ampulla; fo, follicle; fgm, female gland mass. Scales: (A,C,D) 500 µm;
(E) 100 µm.

3.2.3. Histological Characteristics

The dorsal epidermis was thin and semitransparent (Figure 6A: de). Under the epi-
dermis, zooxanthellae (Figure 6A: z) were mainly concentrated in the tubercles (Figure 6A:
t) and digestive glands (Figure 6A: dg). The digestive gland extended to the cerata, with
zooxanthellae (Figure 6B: z). There was no nematocyst in the apex of the cerata (Figure 6B).
The epidermic cells of the foot (Figure 6C: ef) were ciliated and columnar (Figure 6C: c). The
inner tissue (Figure 6C: it) was large and loose, and a narrow duct (Figure 6C: d) extended
out to the epidermis. We believe this to be the foot gland described by Marcus et al. [18].
The connective tissue between the foot and cavity was filled with fibers (Figure 6C: f). The
inner structure of the follicles (Figure 6D: fo) was multivesicular.
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3.3. Phylogenetic Relationships

After alignment, we obtained three gene matrices including a 658 bp COI fragment,
a 452 bp 16S rRNA fragment, and a 328 bp histone H3 fragment. The BI tree based on
concatenated gene sequences indicated that all of the interspecific nodes were robust,
with strong posterior probabilities (Figure 7). The resultant topology supported that
the superfamilies Fionoidea and Proctonotidea formed monophyletic groups. With the
exception of Phestilla sibogae, all other species of Phestilla clustered into a robust branch.
The sequences of P. sibogae in this study were from Cella et al. [16], and its separation from
other Phestilla spp. also happened in the studies of Hu et al. [27,28] and Ekimova et al. [37].
Our four nudibranch specimens (HYSS02-05) formed a well-supported monophyletic clade
which was the sister species of Pinufius rebus. They were nested within the Phestilla clade
of the superfamily Fionoidea, which had a significant phylogenetic distance from the
superfamily Proctontidea.

Furthermore, a strong genetic divergence existed between the nudibranch speci-
mens and P. rebus; the P-distance based on COI gene sequences between them was 0.18
(Supplementary Table S2).
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4. Discussion

In this study, on the basis of morphological comparisons and molecular phylogenetic
analyses, we reported a new distribution record for Pinufius in the South China Sea and
confirmed the taxonomic status of Pinufius in the superfamily Fionoidea. Moreover, we
put forward some new ideas about species composition and the ecological role of the
genus Pinufius.

4.1. A New Distribution Record for Pinufius in the South China Sea

The genus Pinufius has been reported in coral reefs of the Maldives [18], Australia [19],
Indonesia [20], and the Philippines [21]. This is the first record of Pinufius in the South
China Sea.

As Marcus et al. [18] discussed, Pinufius is an interesting genus; “it is very aeolid-
like in some ways, such as scleractinian parasitism, digestive gland in cerata, and single
rachidian tooth in radula; however, in some ways, it is also arminid-like, such as general
body shape and arrangement of gut”. Our results showed that the external morphological
characteristics and feeding habits of the nudibranch specimens in this study were certainly
consistent with the original description of Pinufius [18,19]. Morphologically, the dorsum of
the Pinufius sp. in this study was well developed, bearing numerous cerata (Figure 1); these
cerata contained digestive glands in which zooxanthellae were present but a nematocyst
was absent (Figure 6B). In the anterior, there was a clear oral veil but no oral tentacle
(Figure 1), and the radula was uniseriate (Figure 4A). Similarly, the Pinufius sp. in this
study was remarkably consistent in feeding habits with P. rebus, the sole published Pinufius
species, which also feeds exclusively on Porites spp. [19]. Genetic evidence suggested that
the clade formed by our four specimens (HYSS02-05) was sister to P. rebus with a strong
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support (Figure 7). The above results are sufficient to support the conclusion that our
specimens belonged to the genus Pinufius.

Considering the high dependence of Pinufius on Porites, as well as the wide distribution
of Porites in the world [38], we speculated that Pinufius could inhabit a range as wide
as Porites.

4.2. The Phylogeny of the Genus Pinufius

Under the superfamily Proctonotoidae, species of the families Janolidae, Madrellidae,
and Proctonotidae are typical ceras-bearing arminids [23,24]. Their radulae are multiseriate,
and their dorsal cerata contain digestive glands without zooxanthellae [39–42]. Pinufius
was once classified into the same superfamily with the families Janolidae, Madrellidae,
and Proctonotidae because of the similarities among them in shape [24]. However, the
cerata and radula of Pinufius are very different from those of Proctonotoidea species
(Supplementary Table S3). Furthermore, as an important and taxonomically available
trait of some nudibranchs [43], their feeding preferences are fundamentally different;
the members of Proctonotoidae prey on bryozoans, while Pinufius preys exclusively on
Porites spp. [18,39]. Moreover, the phylogenetic analysis showed that the family Pinufiidae
is a distant relative of the families under the superfamily Proctonotidea (Figure 7). In
conclusion, our results did not support the previous status of the family Pinufiidae under
the traditional ceras-bearing arminid superfamily.

The results sustain the phylogenetic relationship that the family Pinufiidae belongs to
the superfamily Fionoidea. Within the superfamily Fionoidea, all Phestilla species, with the
exception of Phestilla chaetopterus, feed on scleractinian corals [27,44,45]. Morphologically,
the body of Phestilla species is elongated without notum edge, and the cerata contain
digestive glands in which zooxanthella are present without nematocysts; the oral tentacles
are obvious, and the radula is uniseriate with a formula of 0.1.0 [17,46]. Adult Phestilla
with limited mobility stay on a coral colony for their entire adult stage [47]. On the basis of
the above, it seems that there are many similarities between Phestilla and Pinufius in their
radula, cerata, and the obligate association with scleractinian coral. The close relationship
between Pinufius and Phestilla was also reflected in the present phylogenetic analysis
where they formed a well-supported clade together (Figure 7). Fritts-Penniman et al. [20]
previously considered that coral-eating nudibranchs had a common evolutionary history,
and that Pinufius and Phestilla should be synonymous. However, the present results are not
sufficient to revise the classification of Pinufiidae, because we cannot reasonably explain
the significant differences in external morphology between Pinufius and Phestilla. Some
experts considered that morphological synapomorphies possibly occur at earlier larval
stages and disappear in the adult stages [17]. This viewpoint has inspired us to check more
detailed morphological characteristics of early life history in future studies.

4.3. A Suspected New Species of the Genus Pinufius

The present molecular data regarding the COI gene showed that the Pinufius sp. in
this study formed a sister clade to P. rebus, and the P-distance between them (0.18) was
much higher than the intraspecific divergence typical of nudibranchs (0.02–0.06) according
to prior studies [20]. Morphologically, compared to the descriptions of P. rebus by Marcus
et al. [18] and Rudman [19], we found some differences on the masticatory border of the
jaws. The denticles on the masticatory border of P. rebus are bifid with a pair of recurved
hooks [18,19], and there was no any denticle on the masticatory border of the Pinufius
sp. in this study (Figure 4C). Since its first discovery in 1960, P. rebus has been the only
species in the genus Pinufius. In the present study, our specimens were presumed to be a
new species in Pinufius on the basis of the above morphological differences and molecular
evidence. However, further confirmation of the suspected new Pinufius species still faces
the following impediments:
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(1) The reference materials regarding the morphological features of Pinufius are limited.
The existing textual descriptions and simple sketches cannot provide enough morphological
details of the masticatory borders.

(2) The available sequences of P. rebus in the NCBI database were collected from the
Philippines by Pola et al. [21]. They simply provided the sequences but no morphological
depiction of their samples, which restricts us from explaining differences in our molecular
results. Moreover, given the inconsistent sampling sites of morphological and molecular
data, as well as the hardly perceptible interspecific difference in external morphology, the
specimens of Pola et al. [21] may also be from a new species of Pinufius differing from
P. rebus and our specimens. Future studies should focus on the above aspects to confirm
the species composition of Pinufius.

4.4. Potential Threats to Local Coral Communities

In our aquarium, the outbreak of the Pinufius sp. caused serious injury to Porites.
However, there are few reports of massive damage to natural corals by Pinufius and
other nudibranchs [29]. This may be because there are many natural predators such as
carnivorous fish and crustaceans in open water, but less in aquaria. In recent years, with the
serious decline in coral reefs around the world, corallivorous predators have also largely
been in decline. For example, many studies have indicated that outbreaks of Acanthaster
planci were due to the overfishing of Cheilinus undulatus, Charonia tritonis, etc. [48–50]. In
Daya Bay, affected by overfishing and habitat destruction, the numbers of coral reef fish
and crustaceans have also been in decline [51,52]. Gochfeld et al. [47] highlighted that the
outbreak of Phestilla might result in changes in coral compositions. Similarly, it is very
possible that Pinufius sp. would threaten the stability of coral communities.

5. Conclusions

In this paper, we described a novel distribution of Pinufius in the South China Sea,
supporting the systematic status of Pinufius under the superfamily Fionoidea, and deduced
that the nudibranch in the present study might be a new species of the genus Pinufius. The
morphological characteristics of this nudibranch are nearly identical with Pinufius rebus,
including the arminid-like dorsum and oral veil, as well as aeolid-like cerata. However,
the masticatory border without denticle is inconsistent with the descriptions of P. rebus.
Molecular analysis showed that this nudibranch and P. rebus were clustered together, and
their interspecific genetic divergence was significant. The present study demonstrates that
the composition of Pinufius is more complex than previously recorded. Morphological
and molecular data are needed to verify this new species. Enriching the information of
Pinufius not only improves the knowledge about this animal but also provides references for
relevant research on other corallivorous nudibranchs. Additionally, Pinufius and other small
corallivorous invertebrates should be taken seriously as potential threats to coral reefs.
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molecular analysis; Table S3. Summary of the diagnostic characters of related genera [53–59].
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