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Abstract: The gradients of hydrological, hydrophysical, and hydrochemical conditions form the
transition zones in river mouth areas. These areas are considered ecotones in the presence of the
edge effect. Our research aimed to identify the main patterns in the structural organization of
zooplankton communities in different types of river mouth areas in lowland reservoir tributaries
within the Middle Volga basin. A cluster analysis was performed to structure and determine the
zooplankton communities. The identified zooplankton communities were characterized by the
noticeable heterogeneity in the species structure. We analyzed the spatial distribution of the structural
indicators of zooplankton communities and, on the basis of RDA, determined the factors that
significantly affect the organization of the ecotone community. An ecotone was found in all types of
river mouth areas where the highest density, biomass, diversity, species, and functional richness of
zooplankton were noted, as compared to bordering zooplankton communities. As the morphological
structure of the mouth areas became more complex, the values of the main structural parameters
of zooplankton communities increased. It was demonstrated that conditions in the ecotones are
favorable to the development of zooplankton alien species. The major factors determining the species
structure of the ecotone zooplankton community were water electrical conductivity (R2 = 21.07%,
p-value = 0.001), dissolved oxygen content (R2 = 10.33%, p-value = 0.003), and water transparency
(R2 = 9.77 %, p-value = 0.001).

Keywords: zooplankton; mouth areas; diversity; species structure; ecotone; Middle Volga

1. Introduction

River systems are complex natural systems in terms of the functioning and spatial
distribution of the aquatic organisms associated with them. The most notable river area is
the mouth. The mouth areas of both sea tributaries [1] and plain reservoirs are dynamic
systems; however, their transition zones are often considered a stable component of this
system [2]. Transition zones are often characterized by the edge effect. In such cases, they
correspond to ecotones. Ecotones are transitional zones between distinct boundary areas,
which, being homogeneous themselves, can be characterized by the high structural and
spatial diversity of different hydrobionts [3]. This concept was very popular at the end
of the 20th century [4–6]. At the beginning of the 21st century, interest in the ecotones of
freshwater ecosystems was reflected in a number of works by Russian researchers [7–10].
The river ecotones represent regions of significant plankton species diversity and numerical
variability [11–14] due to the variance in environmental gradients (mineralization, nutrient
content, temperature, etc.), which leads to a high level of ecological heterogeneity in the
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river landscape [15]. However, the question of the presence of an ecotone in various types
of aquatic ecosystems remains relevant.

In order to obtain adequate knowledge about the structural organization of the biotic
communities of mouth areas, detailed studies of the main connecting links in aquatic
ecosystems are needed. Zooplankton, as an integral part of the food web in water bodies,
plays an important role in the structure and functioning of aquatic ecosystems [16,17]. This
group of planktonic organisms is responsible for the self-purification of different water
ecosystems and serves as a nutrition base for many fish species [18–21]. At the same time,
zooplankton communities can undergo significant restructuring in river–reservoir systems
due to the rapid transformation from a lotic environment into a limnetic one [22]. Therefore,
the ecotone zone functions as a barrier system [23], as well as a source for the replenishment
of zooplankton fauna in lowland reservoirs [22,24].

In recent decades, alien species (introduced outside their natural past or present dis-
tribution) have become integral components of zooplankton communities in many water
bodies around the world, including water bodies of the Volga River basin. The dispersal
of species under changing climatic conditions and as a result of human activity, is an
increasingly visible phenomenon, reflected in a large number of scientific studies [25–33].
More frequent finds of alien species in rivers and mouth areas attract additional attention
to this problem. An analysis of alien species’ distribution may be part of the larger pat-
terns of structural organization of plankton communities in the mouth areas of lowland
reservoir tributaries.

Most studies are devoted to marine estuary ecosystems, while few studies are focused
on freshwater mouth areas. The aim of this research is to characterize the structural
organization of zooplankton communities in different types of tributary mouth areas in
the Gorky, Cheboksary, and Kuybyshev reservoirs (Volga River basin). We assume that:
(1) during a period of hydrological stability, in all types of tributary mouth areas in lowland
reservoirs, the presence of an ecotone will be noted, regardless of the river’s morphometric
parameters (length and basin area); (2) quantitative development, richness, and diversity
of zooplankton in ecotones increase in mouth areas with more complex morphology;
(3) ecotones can provide optimal conditions for alien zooplankton species.

2. Materials and Methods
2.1. Study Area and Sample Collection

We investigated zooplankton communities in the mouth areas of eight tributaries of
lowland reservoirs within the Middle Volga basin. The studied mouth areas belong to
different morphometric types: simple, estuary, and estuary–deltaic (Table 1 and Figure 1).
The Mera (57◦29′44′′ N, 42◦16′52′′ E), Shirmaksha (56◦57′17′′ N, 43◦20′5′′ E), and Troca
(56◦42′29′′ N, 43◦10′45′′ E) are tributaries of the Gorky Reservoir; the Uzola (56◦31′22′′ N,
43◦36′52′′ E), Sura (56◦5′58′′ N, 46◦2′27′′ E), and Vetluga (56◦23′10′′ N, 46◦19′14′′ E) are
tributaries of the Cheboksary Reservoir; the Bol’shoj Civil’ (56◦6′23” N, 47◦34′48′′ E) and
Sviyaga (55◦43′52′′ N, 48◦38′2′′ E) are tributaries of the Kuybyshev Reservoir.

Zooplankton sampling was carried out during the summer low-water period of 2021.
We investigated the mouth areas of tributary rivers during a period of hydrological stability,
in the absence of released or increased water flow through the hydroelectric power station.
Twelve sampling sites were established in each mouth area (except the Bol’shoj Civil’ River
mouth area, with 9 sampling sites), located with the same distance between them. A total
of 93 zooplankton samples were collected. Depending on the scale of the mouth area, the
stations were located every 500 m (Uzola River, Bol’shoj Civil’ River, Shirmaksha River),
1000 m (Troca River, Mera River, Sviyaga River), or 2000 m (Sura River, Vetluga River). The
first station was always located at the front of the river mouth section (fMSR); the last two
stations were located in the mouth area of the reservoir (MAR) (Figure 1).
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Table 1. Some morphometric parameters of the studied water bodies.

Water Bodies Length, km Basin Area, km2 Mouth Area/Reservoir Type

Uzola River 147 1920 simple (Sm)
Sura River 841 67,500 simple (Sm)

Bol’shoj Civil’ River 172 4690 simple (Sm)
Mera River 152 2380 estuarine (Es)
Troca River 22 217 estuarine (Es)

Vetluga River 889 39,400 estuarine (Es)
Shirmaksha River 28 205 estuary–deltaic (ED)

Sviyaga River 375 16,700 estuary–deltaic (ED)
Gorky Reservoir 440 1590 lowland

Cheboksary Reservoir 341 2190 lowland
Kuybyshev Reservoir 500 6450 lowland
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Figure 1. Scheme of mouth area types and zones. (I)—simple mouth area; (II)—estuarine mouth
area; (III)—estuary–deltaic mouth areas. Mouth area zones: fMSR—front of mouth section river;
MSR—mouth section river; RD—river delta; Es—estuary; MAR—mouth area of the reservoir. The
mixing zone of river and reservoir water masses is highlighted with a shading line. The scheme is
based on that of V. Mikhailov et al. [34].

Zooplankton samples were collected by towing a plankton net (70 µm mesh) from the
bottom to the water surface. At each station, 150 L of water was filtered. The samples were
concentrated to 100 mL and were fixed to a final concentration of 4% formalin solution.
All collected samples were stored in the collection of the Laboratory of Water Ecosystems,
Department of Ecology, Institute of Biology and Biomedicine, Lobachevsky State University
(Nizhny Novgorod, Russia).

2.2. Species Identification

Samples were analyzed using light microscopy to identify, count, and measure or-
ganisms, determine zooplankton density, and calculate dry-weight biomass. Zooplankton
specimens were examined using a Zeiss Stemi 2000C stereomicroscope (Carl Zeiss Mi-
croscopy, Munich, Germany), and a detailed morphological analysis was performed using
an Olympus CX43 light microscope (Olympus Corporation, Tokyo, Japan). When specifying
the taxonomic affiliation of zooplankton, we used proper manuals and guides [35–38].
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2.3. Environmental Indicators

Environmental parameters were measured at all the zooplankton sampling sites. The
concentration of chlorophyll-a (Chl_a) was measured using a YSI ProDSS hydrochemical
probe (YSI Inc., Yellow Springs, OH, USA); the amount of dissolved oxygen (DO) was
measured by a YSI ProODO hydrochemical probe (YSI Inc., USA); the pH, temperature
(WT), and electrical conductivity (EC) of water were measured using a YSI Pro1030 hydro-
chemical probe (YSI Inc., USA). Water transparency (SD) was determined using a Secchi
disk. The total phosphorus (TP) content in water was determined by photometric methods.
The total phosphorus content in the samples was determined by the Morphy–Riley method,
while the mineralization of all forms of phosphorus to phosphates was carried out under
the influence of ammonium persulfate when the sample was heated [39].

The trophic state index (TSI) was calculated based on chlorophyll (Chl_a) and total
phosphorus (TP), using the relationships described in [40]:

TSIChl_a = 9.81× ln(Chl_a) + 30.6 (1)

TSITP = 14.42× ln(TP) + 4.15 (2)

In accordance with Carlson, waters with TSI < 40 were considered oligotrophic, those
with 40–50 were considered mesotrophic, those with 50–70 were eutrophic, and those with
TSI > 70 were hypertrophic.

2.4. Data Analysis

We analyzed the structural indicators: zooplankton density (ind./m3) and biomass
(g/m3), which were calculated using plankton network parameters, individual weights,
and number of organisms detected in the sample. Species richness, represented as the
number of species, diversity, and evenness, was analyzed using the Shannon Diversity (H′)
and the Pielou Evenness indices (J′) [41]:

H′ = −
R

∑
i=1

pi × ln× pi (3)

J′ =
H′

ln(S)
(4)

where pi is the proportion of individuals of i-th species in a whole community; S is the total
number of species.

To calculate functional richness, a database of the functional traits of freshwater
zooplankton in the Middle Volga basin was used [42]. Functional richness quantifies
the size of the community functional niches and reflects the degree of spatial resource
utilization by communities, characterized by the Functional Richness Index (FRic):

FRic =
SFic
Rc

(5)

where SFic represents the ecological niche space occupied by the community, while Rc
represents the ecological niche space occupied by trait C in the community.

For cluster analysis, the matrix of distances between samples, formed on the basis of
the cosine of the angle between species vectors, served as the initial data. The averages
connection method was used to calculate the distances between groups of samples. The
silhouette width analysis and binary cluster membership matrices, based on the Mantel
correlation coefficients, were used to choose the optimal number of clusters [43–45]. Shapiro–
Wilk and Lilliefors goodness-of-fit tests were used to determine deviations from the normal
distribution. To determine significant differences in the structural indicators in different
zooplankton communities, as well as in different types of mouth areas, analysis of variance
(ANOVA) was applied [41]. Redundancy analysis (RDA) was used to test correlations
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between environmental indicators and species structure of zooplankton communities in
the different mouth-area types. The significance of the RDA models was verified using a
permutation test (1000 permutations). All analyses were performed using R open-source
software (packages “ggplot2”, “cluster”, “vegan”, “FD”) [44,46].

3. Results
3.1. Zooplankton Communities

In the lower course of the studied rivers, their mouth areas, and the near-confluence
areas of the Middle Volga reservoirs, 143 zooplankton taxa were identified and determined
to the species rank. Several hybrid forms were found: the cladoceran predator Bythotrephes
brevimanus Lilljeborg, 1901 and B. cederströmii Schödler, 1877, as well as the cladoceran filter
feeder Daphnia (D.) galeata Sars, 1863 and D. (D.) cucullata Sars, 1862. In addition, four
morphotypes of the cladoceran Bosmina (Eubosmina) coregoni Baird, 1857 were identified,
namely B. (E.) cf. crassicornis Lilljeborg, 1887; B. (E.) cf. berolinensis Imhof, 1888; B. (E.) cf.
cederströmi Schödler, 1866, and B. (E.) cf. gibbera Schoedler, 1863. Most of the found species
were cosmopolitan and widespread in the Middle Volga basin.

Most of the identified species belonged to rotifers. Their share of the total species
richness averaged 49%. The proportion of cladocerans was 35%, and the smallest group
was copepods, at 16%.

The distribution of zooplankton along the longitudinal profile of the tributaries’ mouth
areas was not uniform. Some areas had a similar species structure and strongly differed
from the adjacent zones. In general, the heterogeneity in the mouth areas was rather
high. According to the samples’ hierarchical clustering, based on the zooplankton species
abundance, we determined the optimal cluster numbers with different species structures.
In each of the three mouth area types, we identified four clusters, which were considered
to be the different zooplankton communities (Figure 2).
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Figure 2. Hierarchical clustering dendrograms of zooplankton samples for the studied water bodies,
built using the cosine of the angle between the species abundance vectors as a similarity metric. The
station numbers correspond to the numbering in Figure 1.

Despite the heterogeneity of the studied tributaries, the samples in each tributary could
be divided into four clusters, which were considered different zooplankton communities.
We combined the data on the discovered communities, and constructed diversity, evenness,
functional, and species richness boxplots for each community (C1, C2, C3, C4), as well as
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boxplots for the density and biomass of zooplankton (Figure 3). It was found that, except
for the Pielou Evenness Index, the structural indicators of all the identified zooplankton
clusters/communities were statistically significantly higher in community 2 (ANOVA,
p-value ≤ 0.05).
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Figure 3. Boxplots of the structural indicators of zooplankton communities in the studied mouth
areas. C1, C2, C3, and C4 represent communities 1, 2, 3, and 4. Compact letter displays were added
to indicate significant differences. A breakdown of the zooplankton communities and colour coding
is shown in Figure 2.

According to Figure 3, community 2 significantly stands out on a number of structural
indicators. The values of the structural parameters of zooplankton communities (diversity,
taxonomic and functional richness, density, and biomass) allowed us to characterize com-
munity 2 (C2) as an ecotone community. Its localization slightly differed in different types
of mouth areas (Figure 4).
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Figure 4. Location of the ecotone (community 2) in different types of mouth areas in the studied
tributaries. The mixing zone of water masses of the river and the reservoir is highlighted with a
shading line. The scheme is based on that of V.N. Mikhailov et al. [34]. Always—stations in which
all (not all) rivers were part of the ecotone (community 2); not always—stations in which not all
rivers were part of the ecotone (community 2). (I)—simple mouth area; (II)—estuarine mouth area;
(III)—estuary–deltaic mouth areas. The names of the zones are shown in Figure 1.

We categorized structural indicators of the ecotone community (C2) according to
mouth-area type (Figure 5). All the structural indicators (diversity, evenness, functional,
and species richness, as well as the density and biomass of zooplankton) statistically
significantly (ANOVA, p-value ≤ 0.05) decreased as the mouth area morphometry was
simplified. The minimum values of the structural indicators were observed in simple
mouth areas, and the maximum values were observed in the estuarine–deltaic mouth areas.

3.2. Alien Species and Its Share in Zooplankton Communities

Eight alien species were identified in the zooplankton fauna of the studied wa-
ter bodies. All alien species can be divided into three groups. First, transcontinen-
tal alien species included rotifer Kellicottia bostoniensis (Rousselet, 1908) and copepod
Acanthocyclops americanus (Marsh, 1893). The native habitat of these species is North Amer-
ica. Second, representatives of the Ponto–Caspian complex of alien species were found,
namely copepods Eurytemora caspica Sukhikh and Alekseev, 2013, E. velox (Lilljeborg, 1853)
and Heterocope caspia Sars G.O., 1897. Finally, Asian tropical species were found in the
plankton of the studied water bodies: copepods Thermocyclops taihokuensis Harada, 1931,
T. vermifer Lindberg, 1960, and the rotifer Keratella tropica (Apstein, 1907).
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mouth areas (ED), estuarine mouth areas (Es), and simple mouth areas (Sm). Compact letter displays
were added to indicate significant differences.

Of all the alien species that were found, only two were dominant species at some
sampling stations, namely the copepod A. americanus (Sura River) and T. taihokuensis
(Sviyaga River). The density of these species in the total zooplankton in some areas reached
15%. The highest density (community 2, 8560.0± 2230.0 ind./m3) was recorded for copepod
tropical crustacean T. taihokuensis, which mainly developed in the mouth area of the Sviyaga
River and its mouth area in the Kuybyshev Reservoir. The maximum densities of rotifer
K. bostoniensis and copepods A. americanus, T. taihokuensis, and T. vermifer were observed in
community 2 (Table 2). Ponto-Caspian copepods E. caspica, E. velox, and H. caspia were not
found in community 1 (Table 2), and their density was low in other communities.
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Table 2. Average (mean ± SD) density (ind./m3) of alien zooplankton species in the studied water
bodies, categorized according to the identified zooplankton communities.

Alien Species Community 1 Community 2 Community 3 Community 4

Kellicottia bostoniensis (Rousselet, 1908) 10.0 ± 7.0 10.0 ± 1.0 – –
Keratella tropica (Apstein, 1907) 50.0 10.0 ± 2.0 – –

Acanthocyclops americanus (Marsh, 1893) 1040.0 ± 1000.0 2230 ± 460.0 1380.0 ± 70.0 230.0 ± 90.0
Thermocyclops taihokuensis (Harada, 1931) 2910.0 ± 820.0 8560.0 ± 2230.0 4780.0 ± 390.0 20.0 ± 4.0
Thermocyclops vermifer (Lindberg, 1960) 10.0 ± 2.0 1130.0 ± 300.0 10.0 20.0

Eurytemora caspica (Sukhikh & Alekseev, 2013) – – – 30.0 ± 20.0
Eurytemora velox (Lilljeborg, 1853) – 40.0 ± 10.0 0.05 –
Heterocope caspia (Sars G.O., 1897) – 10.0 – 70.0 ± 30.0

Analysis of the boxplots for the shares of alien species (Figure 6) of zooplankton
showed a statistically significant increase (ANOVA, p-value ≤ 0.05) in community 2. The
maximum share of alien zooplankton species was recorded in the most morphologically
complex estuary–delta mouth areas (ANOVA, p-value ≤ 0.05) (Figure 6).

Diversity 2023, 15, x FOR PEER REVIEW 9 of 16 
 

 

Of all the alien species that were found, only two were dominant species at some 

sampling stations, namely the copepod A. americanus (Sura River) and T. taihokuensis (Svi-

yaga River). The density of these species in the total zooplankton in some areas reached 

15%. The highest density (community 2, 8560.0 ± 2230.0 ind./m3) was recorded for cope-

pod tropical crustacean T. taihokuensis, which mainly developed in the mouth area of the 

Sviyaga River and its mouth area in the Kuybyshev Reservoir. The maximum densities of 

rotifer K. bostoniensis and copepods A. americanus, T. taihokuensis, and T. vermifer were ob-

served in community 2 (Table 2). Ponto-Caspian copepods E. caspica, E. velox, and H. caspia 

were not found in community 1 (Table 2), and their density was low in other communities. 

Table 2. Average (mean ± SD) density (ind./m3) of alien zooplankton species in the studied water 

bodies, categorized according to the identified zooplankton communities. 

Alien Species Community 1 Community 2 Community 3 Community 4 

Kellicottia bostoniensis (Rousselet, 1908) 10.0 ± 7.0 10.0 ± 1.0 – – 

Keratella tropica (Apstein, 1907) 50.0 10.0 ± 2.0 – – 

Acanthocyclops americanus (Marsh, 1893) 1040.0 ± 1000.0 2230 ± 460.0 1380.0 ± 70.0 230.0 ± 90.0 

Thermocyclops taihokuensis (Harada, 1931) 2910.0 ± 820.0 8560.0 ± 2230.0 4780.0 ± 390.0 20.0 ± 4.0 

Thermocyclops vermifer (Lindberg, 1960) 10.0 ± 2.0 1130.0 ± 300.0 10.0 20.0 

Eurytemora caspica (Sukhikh & Alekseev, 2013) – – – 30.0 ± 20.0 

Eurytemora velox (Lilljeborg, 1853) – 40.0 ± 10.0 0.05 – 

Heterocope caspia (Sars G.O., 1897) – 10.0 – 70.0 ± 30.0 

Analysis of the boxplots for the shares of alien species (Figure 6) of zooplankton 

showed a statistically significant increase (ANOVA, p-value ≤ 0.05) in community 2. The 

maximum share of alien zooplankton species was recorded in the most morphologically 

complex estuary–delta mouth areas (ANOVA, p-value ≤ 0.05) (Figure 6). 

 

Figure 6. Boxplots of the alien species’ shares in different zooplankton communities and different 

mouth-area types (for zooplankton community 2): estuary–deltaic mouth areas (ED), estuarine 

mouth areas (Es), and simple mouth areas (Sm). Compact letter displays were added to indicate 

significant differences. Сolour coding is shown in Figure 2. 

Figure 6. Boxplots of the alien species’ shares in different zooplankton communities and different
mouth-area types (for zooplankton community 2): estuary–deltaic mouth areas (ED), estuarine mouth
areas (Es), and simple mouth areas (Sm). Compact letter displays were added to indicate significant
differences. Colour coding is shown in Figure 2.

3.3. RDA of the Species Structure of Community 2

A strong variability in environmental factors was found in the water area of zoo-
plankton community 2 (Table 3). Maximum chlorophyll-a, dissolved oxygen, and water
temperature values were recorded in estuarine mouth areas. The maximum pH and water
transparency values were recorded in simple mouth areas. In estuarine–deltaic mouth
areas, the highest water conductivity, total phosphorus content, and trophic state index
values were observed (Table 3).



Diversity 2023, 15, 199 10 of 16

Table 3. Factors (mean ± SD) measured for zooplankton community 2.

Factor Sm Es ED

Chlorophyll-a, mg/L (Chl_a) 11.48 ± 3.00 12.73 ± 0.71 10.37 ± 1.97
Dissolved oxygen, mg/L (DO) 7.30 ± 0.63 11.12 ± 1.00 9.25 ± 1.18

pH 8.80 ± 0.12 8.22 ± 0.17 8.56 ± 0.02
Water temperature, ◦C (WT) 24.75 ± 0.29 25.72 ± 0.35 24.65 ± 0.37

Electrical conductivity, µS/cm (EC) 480.40 ± 90.01 245.50 ± 16.32 508.00 ± 181.85
Water transparency, m (SD) 1.14 ± 0.13 1.08 ± 0.10 0.78 ± 0.09

Total phosphorus, µg/L (TP) 0.23 ± 0.05 0.08 ± 0.003 0.24 ± 0.05
Trophic state index (TSI) 55.58 ± 4.65 52.65 ± 0.53 59.40 ± 2.79

Sm—simple mouth areas; Es—estuarine mouth areas; ED—estuary–deltaic mouth areas.

In estuarine mouth areas, the pH, water conductivity, total phosphorus concentra-
tion, and trophic state index values were minimal. Chlorophyll-a concentration, water
temperature, and transparency were the lowest in estuarine–deltaic mouth areas. Only the
concentration of dissolved oxygen was minimal in simple mouth areas (Table 3).

We used redundancy analysis (RDA) to test each factor independently, to observe
its connection with the species structure of zooplankton community 2 in the researched
mouth areas (Table 4). All tested factors significantly explained the changes in the structure
of plankton communities (p-value < 0.05). Electrical conductivity was the main factor,
explaining 21.07% of the total variance in the species structure of zooplankton community 2.
The other most significant factors were dissolved oxygen (10.33%) and water transparency
(9.77%). Other factors influenced the structure of plankton communities much less.

Table 4. Permutation test results for RDA models, constructed for each variable.

Factor R2 Pseudo-F P

Water transparency (SD) 9.77% 7.80 0.001 *
Dissolved oxygen (DO) 10.33% 7.99 0.003 *
Trophic state index (TSI) 5.08% 1.36 0.024 *

Electrical conductivity (EC) 21.07% 8.91 0.001 *
Water temperature (WT) 4.10% 5.24 0.048 *

pH 6.93% 7.60 0.008 *

R2—the adjusted proportion of variability explaining each factor; pseudo-F—the test statistic of permutation test;
P—probability of random influence of a factor; *—significant factors, p-value < 0.05. The table only lists factors
that have a statistically significant effect.

The full model, including all factors, significantly explained 55.09% of the total variance
(Figure 7). Samples of each mouth-area type were located along the horizontal axis of
the RDA plot (showing 21.4% of the variance, p-value < 0.05), which correlated with
the water transparency and electrical conductivity factors. The simple mouth areas had
higher transparency values, and estuarine mouth areas and estuary–deltaic mouth areas
were characterized by higher electrical conductivity values. The vertical axis (15.3%,
p-value < 0.05) correlated with the pH, dissolved oxygen, trophic state index, and water
temperature, and the location of the samples along the axis was associated with differences
in the structure of communities in different mouth areas.

We also added the vectors for the dominant species to the RDA plot (Figure 7). This
shows that plankton communities of both estuarine and estuary–deltaic mouth areas had
approximately the same species structure, with crustaceans predominating: Daphnia cu-
cullata, Diaphanosoma orghidani, nauplius Copepoda, and copepodite stages. The main
dominant species in the simple mouth areas in community 2 were much more diverse, so
its species structure was very dissimilar in different mouth areas (Figure 7), and included
different crustacean species (Moina micrura, Chydorus sphaericus, Diaphanosoma brachyu-
rum, and Bosmina longirostris), as well as rotifers (Conochilus unicornis, Euchlanis dilatata,
Asplanchna sieboldi, and Filinia longiseta).
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Figure 7. Redundancy analysis (RDA) plot for zooplankton community 2. ED—estuary–deltaic
mouth areas; Es—estuarine mouth areas; Sm—simple mouth areas. Dominant species:
Bos. long.—Bosmina longirostris; Dia. bra.—Diaphanosoma brachyurum; Nauplii Cop.—Nauplii Cope-
poda; Daph. cuc.—Daphnia cucullata; Dia. orgh.—Diaphanosoma orghidani; Cop. Juv.—Copepodit Juv.;
Asp. sieb.—Asplanchna sieboldi; Con. unic.—Conochilus unicornis; Euch. dil.—Euchlanis dilatata; Chyd.
sph.—Chydorus sphaericus; Mo. micr.—Moina micrura; Fil. long.—Filinia longiseta.

4. Discussion
4.1. Structural Organization of Zooplankton Communities in Mouth Areas

Plankton communities in the tributary mouth areas of the lowland reservoirs are
characterized by a rather high variability in their structural indicators. During the hy-
droecological zoning of small river mouth areas (estuarine type), A.V. Krylov and col-
leagues [7–9] identified specific zones within these river sections based on the electrical
conductivity of water, namely, the free-flow zone of the river, the transition zone of the
tributary, the frontal zone, the transition zone of the receiver, and the direct receiver zone.
Upon further investigation, the authors found the highest structural indicators for aquatic
communities in the frontal zone. Based on the hydroecological zoning of A.V. Krylov and
S.E. Bolotov [10], the frontal zone of the estuary mouth area of the lowland reservoir’s
small tributary can be defined as an ecotone—transition area between two communities,
with increasing quantitative development and richness of fauna.

In our study, based on the species structure of zooplankton in all the studied mouth
areas, despite the size of the tributaries (small, medium, and large) and the morphometry
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of the mouth areas (simple, estuarine, and estuary–deltaic), we were able to identify four
clusters, corresponding to zooplankton communities with different species structures.
Community 2 (C2), which is considered an ecotone community, corresponds with the
frontal zone in the studies of A.V. Krylov and colleagues [10]. In our study, an ecotone was
first found in simple and estuarine–deltaic mouth areas. The ecotone, as a transition zone
with increased richness and the quantitative development of zooplankton, forms in small,
medium, and large rivers.

An increase in the diversity, taxonomic richness, and quantitative development of
zooplankton in the ecotone zone has been noted by various authors [47–50]. This was
then used as a criterion for its determination. In our study, it was first revealed that, in
the ecotone zone, the indicators of zooplankton functional richness (FRic) also increased,
similar to the parameters mentioned above. Functional richness measures the volume of a
functional space that is occupied by a particular species group [51,52]. In the ecotone, the
number of species with different functional traits becomes more significant. This pattern
indicates that individual species in an ecotone play unique ecological roles; therefore, they
have low ecological redundancy. Several species perform different functions, supporting
the structure and functioning of ecotones.

The research of V.N. Mikhailov [53] suggested that the simple mouth area is the
most primitive in terms of both its morphological structure and biotope variation, while
the estuary–deltaic mouth area is the most complex. The estuarine mouth area can be
considered an intermediate example in terms of complexity. The typification of mouth
areas is well-developed and covered in the works of Russian scientists [10,54], while
information on this issue in international publications is extremely scarce [55–57].

Our results show that, as the morphological structure of the estuarine zone simplified,
the zooplankton species structure indicators, including functional richness, decreased,
which may indicate that some of the potential community resources (alpha niches) are not
used. Similar patterns were noted by O.L. Petchey [58]. In this case, the lower functional
richness found in the ecotones of simple mouth areas implies that, under favorable com-
binations of environmental factors, species that could take advantage of these conditions
may not be present, leading to a simplification of the zooplankton communities in these
types of mouth area [59].

Due to the high dynamism of mouth-area ecosystems, an intensive drift in fauna
occurs in both the longitudinal riverbed profile and the horizontal profile extending from
the ripal to the medial and back [60–62]. In this regard, the ecotone in the estuarine–deltaic
estuarine areas is a highly productive system, with the highest richness, diversity, and
quantitative development of zooplankton, as confirmed by the studies of A.V. Krylov and
colleagues [7–10].

4.2. Alien Species of Zooplankton in Mouth Areas

The species’ expansion processes that occur under changing climate conditions and as
a result of human activities are an increasingly noticeable phenomenon, as reflected in a
high number of scientific studies [25–33]. Findings of alien species are a consequence not
only of global climate change but also of active human activity in inland waterways [30].

The quantitative development of zooplankton alien species in the investigated mouth
areas was relatively low, with the exception of the copepod T. taihokuensis, which had
high density values. This species has been actively spreading in the Middle Volga basin
since 2019. It was first found in the mouth area of the Sura River [27]. In the present
study, high density values of this species were also noted in the mouth area of the Sviyaga
River (downstream of the Volga River, Kuybyshev Reservoir). As mentioned above, the
ecotone is a highly productive zone, where the quantitative and qualitative development
of zooplankton increases. This was confirmed by S. Kark [50] and J. Ejsmont-Karabin [23].

In addition, a comparative analysis of zooplankton alien species’ contribution to
the total density indicators showed that they were more prominent in the mouth areas
with the most complex morphological structure. In general, the patterns obtained during
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the analysis of the species structure of zooplankton communities can also be seen at
lower levels, including the group of alien species. The mouth areas of lowland reservoir
tributaries, as a system of conjugation between a river and a reservoir, are unique in their
heterogeneity and mixture of habitats and can be sources of the distribution of alien species
of zooplankton [25,27–29,33], acting as acclimatization biotopes and natural refugia.

4.3. Environmental Factors Regulating the Ecotone Community

The electrical conductivity of water showed a significant degree of correlation with
the species structure of the ecotone community of estuarine and estuary–deltaic mouth
areas. A similar pattern is often observed in habitats with strong gradients regarding this
environmental parameter [63–65].

For one ecotone community (Figure 7), the degree of eutrophication was an important
factor. Many studies note the important role that eutrophication plays in the formation of
plankton communities’ species structure [66–69]. It is clear that ecotone communities are
no exception, and their species structure, especially in highly eutrophic waters, is closely
related to the degree of eutrophication.

Our studies showed that water transparency and dissolved oxygen content correlated
well with the species structure of ecotone communities in simple mouth areas. This is
primarily due to the hydrological regime. A high flow velocity and high transparency
can be seen in simple mouth areas. A. Rajwa and colleagues [70] pointed out that good
enrichment of water with oxygen is often observed as a result of strong turbulence.

An analysis of the dominant species in the ecotone communities of the studied mouth
areas showed that in the estuary–deltaic and estuarine mouth areas, crustaceans formed the
only dominant complex. The ecotone in mouth areas of this type is most often located closer
to the water area of the reservoir, which means it undergoes a more intensive exchange
with the reservoir fauna, where limnetic crustaceans traditionally dominate [71–73]. In
our studies on the ecotone community of simple estuarine areas, the dominant complex
contained both rotifers and crustaceans. The dominant complex of ecotone communities
in simple mouth areas was largely formed of fauna from the free flow of the river. N.
Phan et al. [74] and E. Ko et al. [75] showed an area in which rheophilic plankton and
rotifers are most dominant.

5. Conclusions

The tributary mouth areas of lowland reservoirs, due to their morphological and
hydrophysical features, are characterized by the noticeable heterogeneity in the species
structure of the zooplankton communities associated with these zones. In our work, we
were able to confirm some assumptions. During periods of hydrological stability in all
morphological mouth-area types of the studied lowland reservoir tributaries, which differed
in length and basin, an ecotone was distinguished. In these ecotones, a noticeable increase
in the density, biomass, diversity, species, and functional richness of zooplankton was noted.
As the morphological structure of the mouth areas became more complex, all the structural
indicators of zooplankton increased. The emerging conditions in ecotones are favorable to
the development of alien zooplankton species. The main factors determining the species
structure of zooplankton communities in ecotones were the electrical conductivity, the
dissolved oxygen content, and the transparency of the water.
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