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Abstract: Honey bees play an important role in agricultural landscapes by providing pollination
services. Throughout the season, colonies increase their population and collect resources from
the available flowering plants. Besides internal mechanisms, such as the amount of brood or the
availability of bees to perform foraging flights, colonies are also influenced by the climate and the
surrounding landscape. Therefore, exposure to different environmental contexts leads to distinct
development rates. In this study, we show how colonies develop under three different landscape
contexts and explore which external variables (mostly climate and resources availability) influence
the colonies’ development. We installed three apiaries in three different landscapes in the Iberian
Peninsula, with temporal and spatial variation in climatic conditions and resource availability.
The availability of resources and their use, as well as the development of colonies throughout the
season, were thoroughly investigated. These data were used to take the first step into creating an
ecologically relevant landscape by calculating the number of available resources in the landscape
at different points in time, based on plants’ beekeeping interest as well as nectar and production.
Furthermore, climatic variables were transformed into the amount of available foraging minutes
that bees had to collect resources, and a theoretical threshold of optimal vs. sub-optimal conditions
was also explored. Interestingly, the main drivers of colony development (measured by daily weight
increase) were not the same in the tested apiaries, evidencing how colonies are indeed intrinsically
connected with the surrounding environmental scenario. Therefore, results from field testing are
extremely context-dependent and should be interpreted with caution when being extrapolated to
other environmental scenarios.

Keywords: honey bee; landscape context; foraging; climate; flower resources

1. Introduction

Honey bees provide a variety of products for humans [1]. They are mostly known
for honey production but are also essential to provide pollination services both in natural
ecosystems [2] and in agricultural areas, contributing to the pollination of approximately
35% of all crops [3,4]. Although human dependency on these services is increasing glob-
ally [5,6], the number of honey bee colonies is not increasing proportionally to match these
needs [7,8].

The increased exposure to chemicals, diseases, and pests changes in beekeeping prac-
tices, and historical modifications to landscape composition, structure, and land use have
created a cocktail of stressors that hinder the healthy development of colonies [9,10]. In-
tensive agriculture, in particular, has resulted in a high use of fertilizers and/or pesticides
and landscape homogenization, resulting in there being fewer pollinator-friendly agricul-
tural landscapes [11–13]. Furthermore, flower-rich semi-natural areas, including green
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infrastructures such as field margins, hedgerows, and grasslands have been reduced or
eliminated [14], leading to habitat fragmentation and loss [4]. As a result, honey bees
experience a reduced or altered floral resource spatial and temporal availability in agri-
cultural landscapes [4]). This may result in inadequate nutrition, affecting colony health
and, ultimately, resulting in mortality [15,16], as colonies experiencing nutritional stress in
poor resource landscapes are more prone to die in response to additional stressors [15,17].
Landscape composition has been suggested to be a key factor for honey bee colony devel-
opment, with studies showing impacts on colony production [18–20], winter mortality [21],
and development success for pollination services [22].

Additionally, landscapes are also influenced by climate through changes in the amount
of flowering resources, phenology, and nectar production [23]. Climate also drives colonies’
behaviour by shaping their interaction with the landscape through foraging activities [24],
and by affecting how colonies respond to diseases and additional stressors [25].

Colony losses show high temporal and spatial variability [26,27], indicating a high
influence of its past [28] and present environmental context. With this in mind, colony
development and success should be context-dependent, with geographical differences
affecting its behaviour and plasticity [29]. Nonetheless, field studies that evaluate colony
development under different landscape scenarios are scarce [29,30], and spatio-temporally
variable factors, including floral resource availability and climate, are usually poorly consid-
ered [31]. In most studies exploring the impact of landscape on honey bee colony develop-
ment, satellite images are used to categorize general landscape composition (e.g., urban vs.
agricultural [19]). However, these images usually have low resolution [32]; the qualitative
categories resulting from these analyses are static and lack ecological relevance, as they do
not quantify floral resources availability through time and space. More accurate resource
evaluations are essential to explore the impacts of landscape composition on honey bee
colony development.

The need to contextualize the development of colonies with their external environ-
mental context is also relevant when considering the use of colony strength data for
environmental risk assessment purposes [33,34]. If the background variability of honey bee
colony size is to be considered for the definition of specific protection goals at the European
level [34], there is an urgent need to document “normal” colony development in several
representative landscapes.

The main goal of this study was to assess the impact of external environmental factors
on honey bee colony development, by comparing three southern European landscapes
located in the Iberian Peninsula with temporal and spatial variation in climatic conditions
and resource availability. We hypothesize that there are key environmental variables
leading colony development which could be used to evaluate the potential development of
colonies under different landscapes.

Furthermore, we aimed to document the most important plant species used as nectar
and pollen resources in these areas, as well as showing the trends of colony development in
these landscapes. To accomplish these goals and to overcome the caveats of previous stud-
ies, we monitored colony development and key climatic variables, identified the main plant
species used as nectar and pollen sources, and described temporal changes in floral resource
availability to relate intrinsic colony parameters with external environmental variables.

2. Materials and Methods
2.1. Study Areas and Experimental Design

The study was carried out during three consecutive years in 10 km × 10 km study
windows centered on three study apiaries that were installed at least a 1 km distance
from other apiaries. The locations of these study areas are as follows: 2018 in Burgos
(Spain), 2019 in Lousã (Portugal), and 2020 in Idanha-a-Nova (Portugal). The Burgos study
window (42◦16′51.0′′ N 3◦46′02.8′′ W) was mainly composed of agricultural fields, being
highly dominated by cereal crops, alfalfa, and sunflower. The study window in Lousã
(40◦02′53.6′′ N 8◦14′38.9′′ W) was composed of broadleaf and deciduous forests, with
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large areas of shrubland. Finally, the study window from Idanha-a-Nova (39◦51′33.0′′ N
7◦09′49.7′′ W) was an agricultural area, composed mostly of cattle pastures, with a few
intensively managed permanent crops. Visual representation of the study windows can be
found in the Supplementary Materials.

Each apiary consisted of five Apis mellifera iberiensis colonies in Langstroth hives
provided by a professional beekeeper (with a complete track record of all the beekeeping
practices applied). The colonies containing new queens were installed a year before
monitoring; the colonies were managed according to local beekeeping practices and treated
for varroa mites in the beginning (February–April) and at the end (July–September) of the
season. Supplementary feeding in the form of sugar paste was provided at the beginning
of the season in all apiaries due to the cold temperatures. All colonies were equipped with
a Beeyard® scale that transmitted hourly weight and temperature data.

2.2. Resources Availability

Each study window was mapped using open-source GIS databases, following the use
of CORINE land cover (level 3) to classify each polygon according to its land use category.
Land cover of each polygon was later confirmed through field observations. To evaluate
the cover (%), abundance (number of open flowers/m2), and diversity of flowering plant
species in each land use category, a minimum of two and a maximum of 20 sampling points,
in different polygons from each category (within a 1.5 km radius from the apiary), were
visited and visually assessed. At the Burgos landscape, this assessment was performed
only for three months, whereas at Idanha and Lousã it was performed simultaneously
with population assessment of colonies (once every 20 days for five months). For the
Burgos landscape, a 1 m2 square was used to estimate the overall polygon diversity and
the abundance of each flowering plant species. Since both sampling frequency and the
method to access polygon diversity and abundance in the Burgos landscape were found
to be insufficient to capture the spatio-temporal resource availability, landscape data from
Burgos was removed from the analysis and floral composition was compared only between
Idanha and Lousã.

For the Idanha and Lousã landscapes, the polygon diversity and abundance of each
flowering plant species was evaluated at the polygon level by using an estimate within
a representative area. Furthermore, to evaluate resource availability at each sampling
point, a resource score per m2 was calculated. Each flowering plant species was classified
according to a “Bee friendliness (BF) value” that was calculated based on each plant species
beekeeping interest, nectar and pollen production, and overall honey bee visits [35]. The
BF values of plant species not included in Alves da Silva et al. [35] were calculated as
the average BF value of the genus or family. The BF value was multiplied by the flower
abundance per m2. To evaluate the total resource score of a certain land use category, the
resource scores per m2 of the polygons belonging to the same land use category were
averaged and multiplied by the entire area of that category in the landscape.

Therefore, for each sampling date, each land use category was associated with a semi-
quantitative value of resource offer (resource score), which was used to assess the temporal
changes in resource availability in each study window.

2.3. Resources Collection

The amount and diversity of resources collected by honey bees was assessed through
pollen traps and melissopalynological analyses for the three apiaries. Pollen traps (4.8 mm
mesh) were installed for 24 h at the entrance of the colonies during each observation
day. Pollen trapping periods longer than 24 h were avoided since bees can change their
behaviour (e.g., increase foraging effort) if pollen is continuously removed [36]. After
harvest, pollen samples were cleaned for debris, weighed (±0.01 g), and kept at −20 ◦C.
Later, samples were dried at 40 ◦C for 48 h. For each sampling date and apiary, pollen
samples from the five hives were homogenized and a common sample was sent to a certified
laboratory for palynological analysis. In the laboratory, the pollen samples were completely
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homogenized in water and pollen types were identified in a sub-sample of about 2.5 µg,
mostly identified to plant family, genus, or species (based on the DIN-Norm-10760 [37]).
The botanical composition of each sample was assessed by counting 500 pollen grains in
the sample.

Melissopalynological analysis was performed using honey samples, collected from the
harvested honey (pooled from all hives), to assess the most used plant species for nectar
foraging. The percentage of pollen in the palynological analysis was calculated following
Louveaux et al. [38], with a total of 1200 grains identified in each sample.

To examine the amount of collected pollen for each species and to avoid overrepresen-
tation of smaller grains when considering only grain numbers, pollen diameter was used
to calculate the weight of each pollen species, as follows [39]:

Massi,j =
(ni x di)j

∑i (ni x di)j
×Massj,

where i is the contribution of each pollen species to total mass (Mass, g) of collected pollen
in a sample j, by weighing the species’ occurrence frequency (ni, number of pollen grains
of species i averaged between the two sub-samples) by the pollen grain species-specific
diameter (di).

The sum of pollen analyzed in each date throughout the season was calculated to have
an overall representation of the most important flowering resources in the area. Pollen
types representing <4% of the sample were considered minor and were reported in the
other category.

2.4. Colony Development Parameters

From each apiary from the three landscapes, the five study colonies were subjected to
health, strength, brood, and provision assessments every 20 days according to the protocol
from Capela et al. [40]. Colony strength, i.e., the adult population, was assessed by weighing
all the frames from the nest and honey suppers with and without bees, multiplying the
weight difference by the weight of a single bee. Brood and beebread were assessed by
analyzing high-quality images of each comb using the DeepBee® software [41], which
classifies each alveolus by its content (eggs, larvae, pupae, nectar, honey, pollen, or “other”).
Since nectar/honey cells are highly variable in weight, nectar/honey weight was calculated
by subtracting the weight of wood frames, wax, brood, and beebread from the total frame
weight. Disease prevalence was monitored by detecting clinical signs of the most common
diseases. The levels of varroa mites were measured at each visit by counting the natural
mite fall over a 48 h period, using the bottom board method [42], confirming low varroa
levels for the duration of the study. During the field season, a log was kept of all colony
and beekeeping activities (e.g., swarming events, supplementary feeding, and adding
honey supper).

The hourly scale data were used to calculate the daily colony weight variation by
subtracting the colony weight registered at 1 a.m. of each day with the value from the
previous day at 1 a.m., since the colonies are not actively foraging at this period.

2.5. Climatic Variables

In each apiary, rainfall, wind speed and direction, solar radiation, temperature, and
relative air humidity were registered every 15 min by a meteorological station (Watchdog
2900ET). Rainfall, solar radiation, and temperature (considered for all landscapes from
1 March to 21 September) were used to derive potential foraging minutes for each apiary. If
rain was registered in the 15 min period, the potential foraging minutes were automatically
set to zero. In the absence of rain, the potential foraging minutes per day (with a 15 min
step) were calculated using the formula below, based on the work from Vicens & Bosch [43]:

rs = 2261.9e−0.164t
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where t is the external temperature (◦C) and rs is the solar radiation threshold in w/m2.
When the real solar radiation was higher than the calculated threshold rs, it was assumed
that bees were able to carry out foraging activities. If the real solar radiation was lower than
the calculated threshold, bees would not be able to perform foraging activities (represented
by the gray area in Figure 1).
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Figure 1. Solar radiation and temperature thresholds determining honey bee foraging activity.
Foraging occurs above the grey area according to Vicens & Bosch (2000). The yellow area represents
a theoretical threshold, in which the environmental variables are still sub-optimal allowing low
foraging activity. Optimal environmental conditions allowing high foraging activity are assumed
above the yellow area.

Furthermore, we developed a theoretical threshold of optimal and sub-optimal en-
vironmental conditions that lead to low foraging activity (sub-optimal environmental
conditions; represented by the yellow area in Figure 1) or high foraging activity (optimal
environmental conditions; represented by the area above the yellow area in Figure 1). Envi-
ronmental conditions were considered optimal when the ratio between real solar radiation
and the threshold was above 3 (shown in Figure 1 in the area above the yellow area).

2.6. Data Analysis

To assess which variables could affect overall colony weight dynamics, Linear Mixed
Models (LMM) fitted by the Restricted Maximum Likelihood (REML) estimation method
were used: daily available foraging minutes, minutes of low and high foraging activity,
landscape resource score, and colony strength (number of adult bees) were considered
explanatory variables and the colony daily weight variation (Cw) the response variable
(Log X + 10). Colony ID was used as a random factor. For this analysis, only the productive
season was considered, i.e., 120 days starting from when the weight of the colonies started
to increase: from 25 April to 22 August in Lousã, and from 19 March to 16 July in Idanha.
The daily foraging minutes and weight variation were calculated for each day using daily
data, while the resources and colony strength were interpolated based on the assessments
every 20 days. For interpolation, a FORECAST function (linear regression) was applied
between two consecutive data points. Colonies that swarmed or lost the queen during the
study were removed from the analysis. Therefore, for daily weight variation and colony
strength, three colonies were considered for Lousã and five colonies for Idanha.

For this analysis, only the Lousã and Idanha datasets were used. Each dataset was
analyzed separately, and explanatory variables were checked for collinearity by performing
a data exploration; variables with high variance inflation factor values (VIF > 5; ref. [44])
were eliminated from the analyses. Testing models with different explanatory variables
was performed by comparing Akaike values (AIC), and the models with the lowest AIC
were selected. Analyses were performed using the Brodgar software (version 2.7.5).
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3. Results
3.1. Resources Availability

The overall resource score for the two tested landscapes (Lousã and Idanha) showed
a clear difference in the amount of resource availability and their temporal dynamics
(Figure 2A,B). The Lousã landscape presented a high resource score, with a peak in May
followed by a strong decline (Figure 2A). In contrast, the resource score in the Idanha
landscape was low, presenting a peak in March followed by an almost linear decrease until
July (Figure 2B).

Diversity 2023, 15, x FOR PEER REVIEW 6 of 16 
 

 

The daily foraging minutes and weight variation were calculated for each day using daily 
data, while the resources and colony strength were interpolated based on the assessments 
every 20 days. For interpolation, a FORECAST function (linear regression) was applied 
between two consecutive data points. Colonies that swarmed or lost the queen during the 
study were removed from the analysis. Therefore, for daily weight variation and colony 
strength, three colonies were considered for Lousã and five colonies for Idanha. 

For this analysis, only the Lousã and Idanha datasets were used. Each dataset was 
analyzed separately, and explanatory variables were checked for collinearity by perform-
ing a data exploration; variables with high variance inflation factor values (VIF > 5;[44]) 
were eliminated from the analyses. Testing models with different explanatory variables 
was performed by comparing Akaike values (AIC), and the models with the lowest AIC 
were selected. Analyses were performed using the Brodgar software (version 2.7.5). 

3. Results 
3.1. Resources Availability 

The overall resource score for the two tested landscapes (Lousã and Idanha) showed 
a clear difference in the amount of resource availability and their temporal dynamics (Fig-
ure 2A,B). The Lousã landscape presented a high resource score, with a peak in May fol-
lowed by a strong decline (Figure 2A). In contrast, the resource score in the Idanha land-
scape was low, presenting a peak in March followed by an almost linear decrease until 
July (Figure 2B). 

 

 

Figure 2. Resource score for the (A) Lousã and (B) Idanha landscapes (10 km × 10 km). Note the 
difference in scale of the resource score between landscapes. 

3.2. Resources Collection 
Considering the three landscapes, the colonies foraged for pollen from at least 37 dif-

ferent plant taxa throughout the season (Figure 3A). The genera Rubus, Eucalyptus, and 
Trifolium were collected in more than one landscape, while other genera such as Erica 
and Castanea were only found in Lousã. 

In the Burgos landscape, sunflower (Helianthus annus), and clover (Trifolium sp.) were 
the most visited species for nectar collection. Clover was also the main nectar resource in 
the Idanha landscape, while in Lousã the bees foraged on heather (Erica sp.) and chestnut 
trees (Castanea sativa) for nectar collection (Figure 3). 

Figure 2. Resource score for the (A) Lousã and (B) Idanha landscapes (10 km × 10 km). Note the
difference in scale of the resource score between landscapes.

3.2. Resources Collection

Considering the three landscapes, the colonies foraged for pollen from at least 37 dif-
ferent plant taxa throughout the season (Figure 3A). The genera Rubus, Eucalyptus, and
Trifolium were collected in more than one landscape, while other genera such as Erica and
Castanea were only found in Lousã.

In the Burgos landscape, sunflower (Helianthus annus), and clover (Trifolium sp.) were
the most visited species for nectar collection. Clover was also the main nectar resource in
the Idanha landscape, while in Lousã the bees foraged on heather (Erica sp.) and chestnut
trees (Castanea sativa) for nectar collection (Figure 3).

3.3. Colony Development and External Environmental Variables

The colony development rate showed different trends considering the landscape
(Figure 4). In all landscapes, the colony strength increased in Spring, with the peak achieved
in April in Idanha, May in Lousã, and July in Burgos. The total number of brood cells also
varied within colonies and landscapes. Contrary to colony strength, the number of brood
cells in all apiaries had a similar peak at approximately 20,000 cells. Colonies in the Burgos
landscape also produced more honey than the ones from Idanha or Lousã. Nectar/honey
production lasted until 10 August in Burgos (2018), while colonies in Lousã (2019) and
Idanha (2020) managed to increase nectar/honey storage until the middle of July and the
middle of June, respectively. In all the scenarios, the number of beebread cells was kept at
low levels while the colony was growing, and the beebread peak was usually achieved one
to two months after the brood peak.

Overall (from 21 March to 21 September), the weather conditions allowed more daily
foraging minutes in Idanha (2020), followed by Lousã (2019) and Burgos (2018; Figure 5).
On the other hand, when considering only the productive season, Burgos (2018) climatic
conditions granted more daily foraging minutes than Idanha (2020) and Lousã (2019;
Figure 5).
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Figure 5. Daily mean of available foraging minutes in each landscape considering the entire season
and only the productive season.

In Lousã, the variation in colony weight (Cw) was significantly explained by colony
strength (positive relationship; p = 0.0001; Figure 6a) and the total amount of foraging
time (positive relationship; p < 0.0001; Figure 6a) and by the amount of sub-optimal
foraging minutes (negative relationship; p < 0.0001; Figure 6a). However, although resource
availability was positively related to colony weight during the season, it did not explain
a significant proportion of its variation. In contrast, resource availability at Idanha was
the only variable that significantly explained the variation in colony weight (positive
relationship; p < 0.0001; Figure 6b), while foraging times and colony strength were not
significant predictors.
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Figure 6. Visual representation of explanatory variables behaviour in relation to colony weight
variation (WeightAv) at (a) Lousã and (b) Idanha landscapes. PopRange = Colonies strength range;
WeightAv = Weight Variation Average; PopAv = Colony Strength aAverage; resources = landscape
resource score; high foraging = mean daily number of optimal (high) foraging minutes; low foraging
= mean daily number of sub-optimal (low) foraging minutes.
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4. Discussion

Honey bee colonies showed different patterns of colony development within and
between the three landscapes tested, suggesting that intrinsic internal mechanisms drive
colony development while being influenced by external environmental variables. The
resource score applied in this study allowed, for the first time, a semi-quantitative mea-
surement of floral resource availability. In landscapes with low levels of floral resources
(i.e., Idanha) flower availability appears to be a limiting factor for colony development.
On the other hand, in landscapes with high resource levels (i.e., Lousã) climatic variables
limiting seasonal foraging time (foraging minutes) and colony strength (number of foragers)
seem to be the major drivers of colony weight variation.

4.1. Resource Availability in the Landscapes

In all tested scenarios, floral resource availability was expected to be spatio-temporally
dynamic. This expectation was confirmed by field observations of flower resources in
each land use category, and the obtained resource score for Lousã and Idanha showed
significantly different resource availability, later linked with colony development. These
results thus support the importance of accurately quantifying floral resources to assess
their impact on colony development. Data from flower resource production is still scarce
and, when available, is somewhat specific for certain climatic regions [45,46]. Consequently,
we still lack information about important honey bee production areas such as southern
European landscapes. Here, we provide for the first time a semi-quantitative approach for
these regions based on field assessments and on the “Bee Friendly value” from Alves da
Silva et al. [35]. Field assessments provide real estimates of floral availability and diversity
in the landscape, while the BF value enables us to score plant species based on their nectar
and pollen production and frequency of visits by honey bees. Although this approach does
not directly measure nectar and pollen production, considering the lack of bibliographic
information for nectar and pollen production and the highly time-consuming task of
obtaining them in the field, the approach used here is a good proxy for resource availability.

4.2. Resource Collection

The composition of floral resources collected by honey bees also varied between land-
scapes, most likely reflecting the documented differences between the study landscapes. In
the Burgos landscape, Genista spp. and Salix spp. were the most visited genera for pollen
collection, while the sunflower was the main resource for nectar collection. Despite the high
presence of arable land (66% used for cereal crops, 9% sunflower, 3% alfalfa), the colonies
relied on the use of trees and shrubs to collect pollen for their colony development. A
reliance on these types of resources has already been shown in several studies [47,48]. Fur-
thermore, bees also relied on wildflowers from the genera Trifolium spp., Centaurea spp., and
Onobrychis spp., and from the Cistaceae family before the sunflower bloom. The use of these
resources shows that bees are able to find small patches of natural habitats in an agricultural
landscape dominated by crop fields, which is essential for their development [15,39].

In Idanha, the landscape was also dominated by arable land, although it was mostly
permanent pastures. These include grasslands with grass and other herbaceous plants
(e.g., Trifolium spp. and Echium spp.), which were evidently used by bees for pollen and
nectar collection. A previous study conducted in the same region identified other relevant
species (besides Echium spp.) for honey production (i.e., Erica spp., Lavandula spp., and
Campanula spp. [49]). These were also observed in the study area, though with a lower
percentage of coverage, evidencing the local influence of the plant communities.

In Lousã, the landscape was dominated by forest and shrubland, with only a small pro-
portion of arable land. Here, the bees collected pollen and nectar from heather (Erica spp.),
chestnut (Castanea sativa), and brambles (Rubus sp.). These species are commonly found in
forested areas and used by honey bees in Portugal [50,51]. Moreover, in both Portuguese
landscapes (i.e., Lousã and Idanha), bees used eucalyptus spp. flowers [52]. This plant
genus is widely distributed in Portugal, with a high proportion of forested area being
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covered by eucalyptus monoculture [53]. These areas are used by beekeepers mainly in the
littoral area to produce honey during the winter.

4.3. Colony Development

Regional differences in landscape composition and weather conditions contributed
to a differential development of the colonies. In Burgos, colonies were able to maintain a
large brood size during a prolonged period (approximately 20,000 alveoli for three months),
leading to high population levels until August. Interestingly, the population peak was
achieved right before the sunflower blooming period, ensuring that many forager bees
collected resources from this nectar-rich crop, simultaneously providing the highly needed
pollination services for this crop. In this scenario, both beekeepers and farmers benefit
from the presence of non-arable polygons in the landscape, which are necessary to support
the growth of colonies to reach their peak strength prior to sunflower blooming. This
scenario, (reaching their population peak before the sunflower boom) has already been
documented in one of the most comprehensive studies to measure detailed honey bee
colony dynamic data under real beekeeping management conditions [30]. In Idanha
and Lousã, the maximum colony sizes were similar, but showed a slight chronological
desynchronization. These levels of brood (from 20 to 28 thousand alveoli) have also
been measured in other experiments during summer months [29]. Nonetheless, as in
this study, these levels are highly variable and the authors concluded that the year of the
test significantly affected brood production [29], evidencing an influence of the climatic
variables. Indeed, this desynchronization between the study sites can be explained by
the temporal pattern of brood rearing, as brood production is closely related to diet and
external temperature [54,55]. Remarkably, in all apiaries, the levels of beebread peaked later
in the season, after the peak of brood levels. As the brood pheromone [56,57] is one of the
main drivers of colony mechanisms for pollen foraging, it may be expected that a reduction
in brood production may induce reduced pollen collection. Nonetheless, in late season,
when the nectar/sugar availability is reduced, the forager bees change their foraging efforts
towards pollen [58], leading to the accumulation of beebread in the colony, which becomes
essential for winter bee rearing when pollen availability is scarce.

The colonies installed in agricultural areas (i.e., Burgos and Idanha) had a higher honey
yield than in the forested area (i.e., Lousã). The mean daily available foraging minutes, as
well as the achieved population levels, can partially explain these differences. Nonetheless,
we hypothesized that the landscape resources availability would also play a fundamental
role on colony production levels. From the Idanha analysis, it was possible to conclude
that the available resources play a significant role in the daily weight variation. On the
other hand, in the Lousã analysis, the landscape resources did not explain a significant
variation in colony daily weight change. In this case, we hypothesize that environmental
conditions for foraging and colony strength are more limiting than the availability of floral
resources. Furthermore, when the environmental conditions are sub-optimal for foraging
activity (i.e., low foraging), the colony has a poorer performance.

The model used to derive foraging time and the exploration of sub-optimal vs. optimal
climate conditions allowed us to calculate the available foraging minutes. However, it does
not provide a continuous prediction of how a change in climatic variables translates to a
change in foraging activity (the possible number of bees leaving and entering the colony),
and it does not consider the upper limits of solar radiation and temperature. Thus, we
believe this method should be further explored, as it can provide ecologically relevant
endpoints, since climate is one of the main drivers of bee foraging behaviour [24]. Under-
standing the local dynamics between environmental variables and colonies’ status can help
beekeepers to apply better beekeeping practices to reduce colonies mortality [59,60]. This
is particularly relevant considering that beekeeping practices have been appointed as a
major cause influencing colonies’ development and success [61,62].
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Additionally, although pests and diseases were controlled through visual assessment,
to exclusively measure the influence of the landscape context on the colonies, their develop-
ment may still be affected by diseases despite symptoms not being visible [63]. Furthermore,
the genetic variability of colonies may also influence their development [64]. In the cur-
rent study, we tried to reduce the influence of genetic composition by using experimental
colonies from the same region. Hence, we believe that colony development patterns were
strongly linked to environmental conditions in the landscape where the apiaries were
installed [20,29,65].

4.4. Final Remarks

The correlation between landscape composition and honey bee colony development
is not new and, despite the advances made here, still needs to be further explored [31].
However, quantifying floral resources at the landscape-level still presents major limitations.
Most available land cover products lack sufficient local accuracy to correctly describe and
measure the temporal and spatial shifts of floral resources, as they only provide land
use categories [32]. There is still the need to associate flowering composition with land
use categories. On one hand, this might be easily solved in areas mainly composed of
arable land by relying on national databases, which have information on farmers’ activities,
or by using satellite images paired with other techniques (e.g., NDVI) that allow crops
identification [66,67]. On the other hand, in landscapes partially composed of several,
usually small, patches used for local farming, and/or in which the national spatial databases
are incomplete, this task becomes more challenging. Furthermore, flower abundance from
field assessments cannot be used in different areas of the same land use type if the field
topology and climatic characteristics differ. Only by integrating habitat-specific species
composition and phenology with climate variables [67] and nectar and pollen production
(from which there is still a scarcity of data), would it be possible to create landscapes with a
continuous (e.g., daily) spatial and temporal quantification of available resources for honey
bees to mechanistically link the resources collection with their availability.

Some of the plant species present in the study landscapes (i.e., Trifolium sp., Salix sp.,
and Helianthus sp.) are commonly used by honey bees at the European scale [68]. Never-
theless, this study documents the need for regional scale studies with, for example, the use
of sentinel honey bee colonies, which can be a good tool to evaluate resources’ availability
and even potential exposure to plant protection products. This approach was proposed
by the EFSA scientific committee [33] to gather data on pesticide exposure and effects for
a pre- and post-approval environmental risk assessment system and is currently being
applied in some European projects (e.g., INSIGNIA-EU project). Furthermore, the use of
sentinel colonies could overcome the caveats associated with pollen and nectar resources
availability assessments at the landscape scale, as they are extremely laborious and rely
on an anthropomorphic evaluation. The use of sentinel hives could therefore comple-
ment the construction/modelling of detailed landscapes at a regional scale, which are
extremely important for the development of predictive models to overcome the challenges
of field testing.

5. Conclusions

In this study, colonies changed and adapted their behaviour in response to external
variables, leading to different development rates, showing that results from field testing
are extremely context-dependent; intrinsic internal mechanisms drive colony development,
while being influenced by external environmental variables. Therefore, the use of field
testing in environmental risk assessment is valuable for specific contexts, but extrapolations
should be made with caution.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/d15121188/s1, Figure S1: Visual representation of landscapes in
Lousã, Idanha and Burgos.
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