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Abstract: Bioenergetic models are tools that allow the evaluation of the effect of environmental
variables on fish growth. Successful implementation of this approach has been achieved in a few
elasmobranch species. Our objective was to develop a bioenergetic model for Mustelus schmitti. The
model developed showed a good fit to the field data available and accurately described the growth of
this species. The practical example developed in this study provides novel population estimates of
prey consumption and daily ration for the species. Results also indicate that this species would be
susceptible to the effects of climate change. In the simulated climate change scenarios, the energy
budget of M. schmitti was significantly altered, with increased food consumption and impaired
growth. While there exists a number of limitations for the model developed in this article, namely its
limitation to immature individuals, and its restricted temperature model, it provides an important
tool for the management of this and other shark populations under heavy exploitation.

Keywords: modelling; elasmobranches; chondrichthyes; climate change; ecology

1. Introduction

The conservation of elasmobranches is currently a priority for the resource manage-
ment plans of several countries (e.g., Mediterranean countries, the USA, Canada, and
Australia [1]). Many elasmobranch species constitute major fisheries resources, providing
food and income for people worldwide [2]. While it is true that fishing, by-catch, and habi-
tat destruction are the major threats for most elasmobranches, the fate of elasmobranches is
even more uncertain under the current scenario of climate change [3–5]. The shifts in the
abiotic conditions, a product of climate change, are expected to produce severe impacts
on marine organisms and consequently originate socioeconomic disruptions according to
the Intergovernmental Panel on Climate Change [6,7]. Predicting how fish growth can be
affected by external environmental factors has, therefore, become a priority in fisheries
management [5].

The development of bioenergetic models provides a potentially powerful approach
for predicting how changes in environmental variables can impact on fish individual
growth, which can then be extrapolated to population levels [8–10]. Bioenergetic models
are mathematical tools that are used to predict the growth, reproduction, and survival of
fish in different environmental conditions. These models are based on the principles of
bioenergetics, which is the study of how organisms acquire and use energy. In fisheries
assessment, bioenergetic models are used to estimate the amount of food that a fish needs
to consume in order to maintain its body weight and grow [8,10,11]. The models take into
account factors such as the metabolic rate, the water temperature, the food availability, and
the size and age structure of the species. Successful implementation of such an approach
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has so far been performed only on a handful of elasmobranch species (for example, [8]). A
recent review has only found ten studies dealing with the bioenergetics of elasmobranches,
and only four developing bioenergetics models [10].

A bioenergetics model describes the use of energy of an organism, and how it is
distributed between the main metabolic processes. Depending on the specifics of the
base model employed, it has seven main processes: growth, respiration, consumption,
reproduction, specific dynamic action, excretion, and egestion. Being a mechanistic model,
one of the processes can be estimated if the rest are known [12,13]. If, for example, the
consumption rate is known, bioenergetics models can be used to predict growth and/or
reproduction, both of which are crucial for survival at both the individual and population
levels. The most common way an animal increases its energetic demand is via elevated
respiration, which mostly proxies activity levels [14,15]. The standard metabolic rate (SMR),
a main component of the respiration process can also be affected by changes in water
temperature. In ectotherms, SMR increases approximately exponentially when temperature
increases [16]. Active metabolic rate sometimes equated to routine metabolic rate (RMR;
see [16] for a full treatment of terminology of metabolic rates) can be increased during
migrations, predator/prey interactions, mating behavior, tides, temperature, or human
disturbances (e.g., [15,17,18]). To supply an increased metabolic demand, an animal can
either increase its food consumption or use the energy from growth or reproduction [8,9].

It should be clear now that in order to simulate these processes, bioenergetics models
require a wealth of information, not only on the biology of species being studied but also
on the abiotic characteristics of the environment in which the target species inhabits, as well
as on other biological components of the ecosystem. Such an abundance of information is
available only on a handful of species, many of which are not elasmobranches [7]. In the
vast majority of bioenergetics studies, the estimates needed to develop a functional model
are taken from the literature, from ecologically or taxonomically close species [19]. A few
exceptions are those studies that conduct the experimental or field assessments necessary
to feed the model-specific estimates (for example, [8]).

Traditionally, bioenergetics models have been employed on planktonic bony fish
species, which have short lifespans and relatively simple behaviors and are usually the
target of industrial fishing and subjected to strong management plans [19–21]. These
species are generally abundant and ecologically and taxonomically uniform, which makes
borrowing data from other similar species less error-prone. That is not the case for elas-
mobranches, which are mostly demersal and have long lifespans and complex mating
and young-rearing behaviors [22]. Additionally, they are taxonomically and ecologically
much more diverse [23], making data borrowing much more error-prone. Luckily, some
species are quite abundant and subjected to continuous exploitation, which, to some extent,
makes them the target of scientific inquiry. One such species is the triakid Mustelus schmitti.
The genus Mustelus is an important cosmopolitan group of sharks with broad distribu-
tion across the continental shelves of several countries [24]. This species is a small-sized
demersal coastal shark [24], it is viviparous and forms sexual aggregations near nursery
areas [25]. It feeds mainly on benthic prey, primarily crustaceans and polychaeta worms,
but larger individuals also prey on benthic fish. It itself is prey to other larger sharks
that inhabit its distribution areas, such as Notorynchus cepedianus, Carcharhinus brachyurus,
Carcharias taurus, and Sphyrna tiburo. It is extensively exploited by commercial and artisanal
fisheries along its distribution [24,26] and represents one of the most landed sharks in the
coastal waters of the Southwestern Atlantic Ocean [27]. In fact, continued fishing intensity
and population decline trends over the last decades have led the International Union for
Conservation of Nature (IUCN) Red List of Threatened Species to categorize this species as
critically endangered [28]. Additionally, the habitat of this shark encompasses one of the
most intensely studied marine areas of Argentina, El Rincon (38–42◦ S, <50 m depth). This
area, covering approximately 45,000 km2, is the main fishing ground for the industrial fleets
targeting this shark [29]. The literature on M. schmitti from the authors of this article alone
covers reproduction, trophic ecology, age and growth, and metabolic dynamics [26,30–34],
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and provides most of the needed information to develop a bioenergetics model based
on species-specific estimates. In addition, many other articles on M. schmitti have been
published, which together provide a deep understanding of these and other biological and
ecological aspects of this shark [25,27,35–41]. All this information provides an abundance
of scientific literature, that makes this species an ideal first candidate for modeling.

This approach provides a holistic and multifaceted understanding of the intricate
interplay between biological, ecological, and physiological aspects, which is pivotal for
informed and sustainable exploitation of aquatic resources [7,42]. The integration of these
diverse data sources into a bioenergetics modeling framework is particularly powerful
because it enables the quantification of energy flow within the ecosystem [43]. In a science-
based fisheries management context, this comprehensive framework empowers decision-
makers with the ability to optimize fishing quotas and practices, aligning them with
the species’ ecological role, life history, and physiological requirements. It also aids in
forecasting the potential consequences of different management scenarios, such as harvest
restrictions or habitat conservation measures, on both the target species and the broader
ecosystem [7,44].

The aim of this research was to develop a bioenergetics model for M. schmitti and
apply it as an assessment tool for proper conservation and fisheries management of this
elasmobranch. With that aim, we developed algorithms using both traditionally obtained
fisheries statistics data and experimental data, allowing us to provide a tool that can be
adapted to other highly exploited elasmobranchs worldwide. We employed the extensive
biological databases compiled by our team, comprising biological parameters of the species,
population dynamics, trophic ecology, respirometry data, and age and growth data. Finally,
we applied the model to simulate the fate of an M. schmitti population under two predicted
global warming scenarios.

2. Materials and Methods
2.1. Bioenergetics Model

The bioenergetics fish model we used in this work is a modification and adaptation
of the one developed by Rudstam [45], Ware [46], Beauchamp et al. [47], Trudel et al. [48]
and Kamezawa et al. [49], who modified it for chum salmon [12]. We incorporated other
parametrizations [8] and adjusted this model to better incorporate the particular biological
and physiological features of a demersal shark. The bioenergetics model developed was
used to predict the daily survival, daily body weight, and food consumption of 3000 sexless
individuals over a maximum age of 7 years. This species is known to reach sexual maturity
approximately at that age, so we modeled juvenile individuals to leave reproduction costs
aside [32]. Predictions were summarized as the average weight and length, food consumed,
and the amount of energy needed by an average individual each year.

The parameter values used as input in the model were specified based on research and
experimental results (most of them published in [15,26,30,31,33,34,50–52]) or from literature-
reported results on closely related species. The individual processes and parameters are
described below.

2.1.1. Growth

The growth rate (dW/dt, gshark × d−1) of an individual (non-reproductive) M. schmitti
was calculated as weight increment per unit of weight (W, gshark) per time:

dW/dt = (C − (R + S + F + E)) × (CALp/CALs) ×W

where C is consumption, E is excretion, F is egestion or losses due to feces, R is respiration or
losses through metabolism, and S is specific dynamic action or losses due to energy costs of
digesting food. All rates except the caloric conversion rate between prey and shark (CALp/CALs,
unitless) are in the units of grams prey/gram shark/day (gprey × gshark

−1 × d−1).
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M. schmitti caloric density was set to be 1294 cal × gshark
−1, based on calorimetric

determinations (Molina, unpublished data); 1100 and 991 cal/gprey
−1 was used for the prey,

either polychaetes or crabs [30].

2.1.2. Consumption

Realized consumption (C) was estimated as the proportion of the maximum daily
ration for an individual at a particular mass and temperature [11,12]. This consumption is
also affected by the rate at which the species can digest food and able to consume more prey,
which also depends on temperature [53]. The consumption function used in the model is
taken from Kishi et al. [12]:

C = Cmax × p × f (T) × DR

Cmax = ac ×Wbc

where Cmax = maximum specific consumption rate in gprey × gshark
−1 × d−1, the values

of which were determined from Molina and Lopez Cazorla [30], p = prey—the specific
proportion of Cmax, determined from a modeled projection of M. schmitti diet for each day
of the year (see below for details), f(T) = temperature-dependence function for consumption,
T = water temperature in ◦C, DR = digestion rate, expressed as a proportion. ac is the
intercept of the mass-dependence function for a 1 gshark at the optimum water temperature,
bc is the coefficient of the mass dependence, and W = wet weight in g.

Considering the flexibility of the M. schmitti diet, research from Anegada Bay was used
to rebuild a “generalized” diet. The Prey-Specific Index of Relative Importance (PSIRI) [54]
was used as the criteria to identify the two most important prey items. Polychaetes and
crabs were found to be the dominant prey and made up this generalized diet. For modelling
simplicity, it was considered that the food available for M. schmitti was geographically stable
and the same regardless of age, despite studies documenting regional and ontogenetic
variations in its composition [30,37]. The seasonal change in the PSIRI was used to build a
model of the daily proportional contribution of each prey to the diet of the sharks (Figure 1).

Diversity 2023, 15, x FOR PEER REVIEW 4 of 23 
 

 

costs of digesting food. All rates except the caloric conversion rate between prey and shark 
(CALp/CALs, unitless) are in the units of grams prey/gram shark/day (g prey × g shark−1 × d−1).  

M. schmitti caloric density was set to be 1294 cal × g shark−1, based on calorimetric de-
terminations (Molina, unpublished data); 1100 and 991 cal/ g prey−1 was used for the prey, 
either polychaetes or crabs [30]. 

2.1.2. Consumption 
Realized consumption (C) was estimated as the proportion of the maximum daily 

ration for an individual at a particular mass and temperature [11,12]. This consumption is 
also affected by the rate at which the species can digest food and able to consume more 
prey, which also depends on temperature [53]. The consumption function used in the 
model is taken from Kishi et al. [12]: 

C = Cmax × p × f(T) × DR   

Cmax = ac × Wbc   

where Cmax = maximum specific consumption rate in g prey × g shark−1 × d−1, the values of which 
were determined from Molina and Lopez Cazorla [30], p = prey—the specific proportion 
of Cmax, determined from a modeled projection of M. schmitti diet for each day of the year 
(see below for details), f(T) = temperature-dependence function for consumption, T = wa-
ter temperature in °C, DR = digestion rate, expressed as a proportion. ac is the intercept of 
the mass-dependence function for a 1 g shark at the optimum water temperature, bc is the 
coefficient of the mass dependence, and W = wet weight in g. 

Considering the flexibility of the M. schmitti diet, research from Anegada Bay was 
used to rebuild a “generalized” diet. The Prey-Specific Index of Relative Importance 
(PSIRI) [54] was used as the criteria to identify the two most important prey items. Poly-
chaetes and crabs were found to be the dominant prey and made up this generalized diet. 
For modelling simplicity, it was considered that the food available for M. schmitti was 
geographically stable and the same regardless of age, despite studies documenting re-
gional and ontogenetic variations in its composition [30,37]. The seasonal change in the 
PSIRI was used to build a model of the daily proportional contribution of each prey to the 
diet of the sharks (Figure 1). 

 
Figure 1. Prey proportion models for polychaetes (red) and crabs (blue) as a function of the day of 
the year. 

Figure 1. Prey proportion models for polychaetes (red) and crabs (blue) as a function of the day of
the year.



Diversity 2023, 15, 1118 5 of 22

Digestion rates for chondrichthyans have seldom been studied (e.g., [55]); therefore, we
have taken the analytical approach outlined in the seminal work of He and Wurtsbaugh [53]
who provide an empirical model of gastric evacuation rates for fish in general. This
parameter is expressed as the times per day the fish can empty its stomach, which depends
on temperature by the following exponential equation [53]:

DR = 24 × (di × exp(dc×T))

where 24 represents the number of hours in a day, and the rest of the equation is the hourly
digestion rate, where di and dc are the empirical intercepts and proportionality constant,
and T is the water temperature in ◦C.

Estimates for ac and bc were determined using available information on stomach
repletion and egestion times [31]. The estimates produced are well within the ranges
previously estimated for other species of elasmobranches [8,56]. We use the temperature
dependence function found in Thornton and Lessem [57] that has been shown to effectively
describe the relationship of temperature with the proportion of Cmax available to the shark
and can graphically be represented as the product of two sigmoid curves (similar to a Q10
relationship) [8]. The shape of the curve is governed by xk1–4 and te1–4 parameters [12,49],
which we estimated from sea bottom temperature models for the El Rincon area [51] and
trophic ecology data [30,31,37].

2.1.3. Respiration

The respiration rate is the amount of energy used for routine metabolism and it
depends on body weight, water temperature, and activity rate:

R = ar ×Wbr × g(T) × 0.5 + ar ×Wbr × g(T) × ACT × 0.5 × 2.94

g(T) = Q10
(T−Tref)/10

ACT = 1 + ((RMR − SMR)/SMR)

where ar is the intercept of the allometric mass function (gprey × gshark
−1 × d−1), br is the

slope of the allometric mass function (unitless), g(T) is Q10 temperature correction function
(modified from 8) for standard metabolic rate, and ACT represents the proportional increase in
metabolic expenditure from standard to routine metabolic rate (i.e., active metabolism). The
value 0.5 represents the proportion of time the individual is in each metabolic state each day
(resting vs. active). Q10 = temperature sensitivity, T = temperature experienced by the shark (◦C),
and Tref = reference temperature that corresponds to the values of ar and br. 2.94 is a conversion
factor from g O2 × gshark

−1 × d−1 from into gprey × gshark
−1 × d−1 [13].

Parameters for the respiration function were obtained directly from experiments
performed on M. antarcticus (Table 1; [15]) a taxonomically and ecologically similar species,
as captivity in M. schmitti for long periods of time has been shown to be unsuccessful
(Molina, unpublished data).

S, F, and E were assumed to be proportional to realized consumption (Du Preez et al.
1988, 1990 [8,12,13]). Caloric densities of prey and sharks were assumed to have remained
constant throughout the year for simplicity.
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Table 1. Bioenergetic model parameters, values, units, sampling distributions, and information sources for Mustelus schmitti.

Parameter Name Parameter Description and Symbol Value Sampling Distribution Units Sources

Initial weight W 200 Normal (µ = 200, σ = 35) g [26,32,58]
Consumption Cmax intercept (ac) 0.28 Log-normal (log-µ = 0.28, log-σ = 0.2) gprey/gshark/day [30,38,58]

Cmax/weight exponent (bc) 0.3 - unitless [30,38,58]
R intercept 0.016 - unitless [53]
R constant 0.06 - unitless [53]

Respiration MR/weight intercept (ar) 0.256 Log-normal (log-µ = 0.256, log-σ = 0.1) gO2/gshark/day [15]
MR/weight exponent (br) −0.38 - unitless [15]

Routine metabolic rate RMR 0.208 Log-normal (log-µ = 0.208, log-σ = 0.17) gO2/kg/day [15]
Standard metabolic rate SMR 0.168 Log-normal (log-µ = 0.168, log-σ = 0.13) gO2/kg/day [15]

Maximum temperature for respiration RTM 22 - ◦C [15,27]
Temperature effect on respiration RQ10 2.3 - unitless [15]

Specific dynamic action sda 0.3 Normal (µ = 0.3, σ = 0.3) unitless [8]
Egestion Proportion of consumption (peg) 0.2 Normal (µ = 0.2, σ = 0.03) proportion [8]
Excretion Proportion of consumption (pex) 0.08 Normal (µ = 0.08, σ = 0.04) proportion [8]

Effect of temperature on consumption Proportion C 1 (xk1) 0.1 - proportion [57]
Proportion C 2 (xk2) 0.85 - proportion [57]
Proportion C 3 (xk3) 0.98 - proportion [57]
Proportion C 4 (xk4) 0.2 - proportion [57]

T◦ 1 (te1) 7 - ◦C [40]
T◦ 2 (te2) 10 - ◦C [40]
T◦ 3 (te3) 14.9 - ◦C [24]
T◦ 4 (te4) 22 - ◦C [40]

Fish caloric density CALS 1294 - cal/gshark [15]
Prey (Polychaetes) caloric density CALp1 991 - cal/gcrab [8]

Prey (Crabs) caloric density CALp2 1300 - cal/gcrab [8]
Prey availability Cden1 and Cdem2 Uniform (+/−20% of model output) [30,58]
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2.2. Temperature

A daily temperature function, starting on the 1 January and ending on the 31 December,
was developed using a continuous data series of daily bottom temperature for the El
Rincón coastal area between 1980 and 2016, modeled by Elisio et al. [51]. This last study
modeled daily temperature for the different depth ranges over the area. The daily bottom
temperature considered in the present study was the average condition over the region for
the 2000–2008 period (modeled period in the present study). It must be noted that the El
Rincón coastal area corresponds to the locations where the biological data used to develop
and calibrate the model were collected. The function generated a historical average water
temperature for each day of the year in the models (Figure 2) which was fed to the various
functions requiring a temperature input.
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2.3. Model Uncertainties, Simulated Variability, and Monte Carlo Methods

Unlike other models that employ fixed parameters, we opted for the use of sampling
distributions for several point estimates (sensu [8,9,59]). These probability distributions
were defined based on either assumptions about the distributions of input variables (from
recommendations in [8,9,59]) or driven by the distributions observed in the data of M.
schmitti compiled by the authors. The possible sampling distributions were (1) normal
distributions, used for variables that are symmetrical around the mean (i.e., T, initial W,
constants for S, E, and F); (2) log-normal distributions, used for right-skewed variables with
a lower limit of zero and no upper bound (i.e., SMR, RMR, intercepts); and (3) uniform dis-
tributions, used for variables with an upper and lower limit, where sampling probabilities
are constant between the limits (i.e., prey proportions).

2.3.1. Individual-Level Variability

Several sources of individual variability in the growth of M. schmitti were simulated:
initial weight, weight-specific consumption and respiration intercepts, and egestion, excre-
tion, and specific dynamic action constants. To emulate differences in growth efficiency,
variability in the ar and ac parameters was incorporated by assigning each individual
the normally distributed mean and standard deviation estimates (from the experimental
data) to a log-normal distribution. Similarly, initial weight, S, E, and F were incorporated
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in the model as estimates from a normal distribution. These sources of variation were
programmed to vary for each individual and remain constant for the entirety of each
individual’s simulation.

2.3.2. Environmental-Level Variability

We incorporated two sources of environmental variability, daily temperature and prey
availability. For each day of the simulation, each individual was assigned a daily water
temperature from a normal distribution with the mean equal to the average temperature
predicted by the temperature model and a standard deviation of 1 ◦C. These variations
would emulate both daily spatial oscillations in the bottom temperature as well as tempera-
tures unpredicted by the temperature model. The proportion of Cmax for polychaetes and
crabs available for each day was provided by the previously described model based on PSRI
and was fed to a uniform distribution, with a and b estimated as the model output +/−20%.
These variations in prey availability seek to emulate the patched distribution of prey along
the feeding areas of the sharks. These two sources of variability were programmed to
change each day, as opposed to the individual variability sources, which were different for
each individual for the entire simulation.

2.3.3. Monte Carlo Simulations

Model estimates of growth were run 3000 times, each representing an individual M.
schmitti being born on 1 January. To ensure realistic initial sizes, initial W was based on
observed weight-at-birth information [26,31,59,60]. A mean and standard deviation (SD) of
weight-at-birth was estimated and fed to a normal distribution, which provided values for
each individual. The model stopped on the 31 December of the seventh year, with a total of
2921 days modeled per individual shark, resulting in 8,763,000 model outcomes. From the
raw data produced, centralization and variability statistics were derived and computed.

All model parameters are summarized in Table 1.

2.4. High Temperature Scenarios

We ran two scenarios, a baseline using current simulated bottom water tempera-
tures [51] and two high water temperature scenarios. The high-temperature simulations
examined the effect of a daily temperature change of +2 and +4 on the predicted growth of
individuals, based on “moderate” and “severe” general ocean warming scenarios predicted
for the year 2100 according to the IPCC 2022 report [6]. In these scenarios, we assumed
that the foraging behavior would remain unchanged in response to the increased water
temperatures and that the dynamics of prey abundance would also remain unchanged. To
assess the effect of these scenarios on consumption, assuming growth is stable (i.e., as per
the von Bertalanffy growth model), we fitted our bioenergetics model to estimate consump-
tion and input weights generated by the von Bertalanffy growth model (taken from [32]).
With these estimates, predicted weight-at-age, length-at-age, consumption-at-age, and
respiration-at-age between scenarios were compared by fitting non-linear least square
models to each scenario and then comparing them using a traditional significance test.
Growth in weight was converted to total length by reversing the following equation [31]:

W = 4.287 × 10−06TL2.950

where W is the total weight in g, and TL is the total length in cm. The value 2.95 is the
allometric coefficient of the length-weight relationship [31].

2.5. Practical Application

To showcase how the bioenergetic model can be applied in real-life scenarios, we
conducted an estimation of the annual prey biomass consumption for stocks of M. schmitti
in Anegada Bay. The abundance of the stock was determined based on the best available
estimates from previous stock assessments for the area in front of the bay and further north
in the common fishing ground of Argentina and Uruguay [24,61–63]. Although the age
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distribution of M. schmitti is expected to vary over time and across different locations, for our
calculations, we made the assumption that the age class distribution of this stock resembled
that of the age study performed within Anegada Bay by Molina and collaborators [32]. The
bay comprises an area of 1550 km2 with many different areas and islands. We considered
this total area as homogeneous for extrapolating the abundance obtained from averaging
the estimates found in the bibliography [24,61–63]. This total abundance was partitioned by
the proportions of each age group and then divided by the mean weight-at-age to obtain an
estimate of the number of individuals. Finally, this estimate was multiplied by the amount
of prey consumed per shark per age class to obtain the estimated prey consumption of the
stock per age class. Daily ration was estimated following Bethea et al. [64] as the percentage
of body weight ingested per day.

2.6. Statistical Analysis

The computational work, programming, and scripts were created in an R (R version
4.2.2) environment (R core team, [65]). For this task, we employed a series of additional
packages, as well as for the development of graphics and other materials. These are
‘ggplot2′, ‘rvest’, ‘lattice’, ‘stringr’, ‘nlstools’, ‘FSA’, ‘lme4′, ‘car’, ‘MASS’, and ‘bbmle’. The
model scripts used are available in Supplementary Materials.

3. Results

The baseline model-predicted median weights-at-age closely matched the von Berta-
lanffy growth model derived from observed size-at-age field data (Figure 3). There is,
however, an important dispersion in the data simulated by the model (∼=18%), as a product
of the sampling distributions used on the point estimates. The simulated growth reached
an average of 846 g (n = 3000) for the seventh year of life. Growth rates increased from
0.6 gshark × d−1 for year 0+ fish to 2.36 gshark × d−1 for seven-year-old (y.o.) fish. When the
growth is observed as total length, as converted with the equation provided in Section 2.5,
M. schmitti reaches 65 cm by the end of their 7th year of life. In their first two years of
life, the juveniles grow approximately 5 cm per year, slowing down to 3 cm between their
6th and 7th year (Figure 4). The growth curve is in turn derived from the interaction of
consumption and respiration. The interaction between these two components defines an
effective growth season from the beginning of autumn, with a slight depression in winter,
to early summer. The growth rate then diminishes greatly until next autumn (Figure 3).
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Consumption showed a yearly bimodal behavior with peaks in the seasons with
intermediate temperatures and two drops, one more pronounced during summer and the
other less during winter (Figure 5). It increased almost twofold from 0+ fish to 7 y.o. fish,
from 0.35 to 0.52 gprey × gshark

−1 × d−1, respectively. Respiration costs followed water
temperature closely. It reaches a maximum in summer and a minimum in winter (Figure 6).
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continuous bar at the bottom of the figure, with the baseline line at the base, moderate in the middle,
and severe on top.
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on top.

In the previous figures [3–6], the effects of increased temperatures for the two climate
change scenarios, moderate (+2 ◦C), and severe (+4 ◦C) on the modeled variables can be
observed. An increase in water temperature produced an increase in energy expenditure
for the individuals, preventing them from reaching the baseline growth, especially in the
severe scenario (Figure 3). If weights are converted to total length via the length-weight
relationship (Figure 4), the individuals in the warmer simulations are also unable to attain
baseline total length. For the moderate warming scenario, the reduction in age-specific
average weights was between 5.6 and 18.1% compared to the baseline; the overall average
decrease in weight-at-age (averaged over all ages) was 13.8%.

This reduction intensifies under severe warming conditions, with age-specific average
weights between 10.3 and 46.4% smaller, and an overall average decrease of 34.6% (Table 2).
The simulated climate change scenarios greatly affected estimated consumption as well.
In the moderate scenario, the behavior of the consumption model remained the same, but
the summer consumption depression is no longer bigger than the winter depression, to
compensate for the higher cost of respiration and activity at higher temperatures (Figure 5).
In the severe scenario, the behavior of the consumption model is altered; the winter
depression disappears, showing a yearly unimodal pattern (Figure 5). The moderate
scenario presented a 13.73% average yearly increase in consumption, while the severe
showed an 18.29% increase in comparison with the baseline (Table 3). Respiration was
also affected by the increase in temperature in the simulations. Under severe warming,
younger individuals showed increased respiration expenditure in comparison to their older
counterparts. This ontogenetic difference is not as notable for the moderate scenario nor
the baseline model (Figure 6, Table 4).

Annual energy requirements were between 2500 (age +0) and 5000 (aye 7) Kcal under
baseline conditions for an average shark to sustain continuous growth. In the moderate
scenario, an average M. schmitti individual would have to procure an average of 8 cal per
gram of body weight per day to sustain baseline growth. Sharks under the severe scenario
would have to procure 20 cal per gram of body weight. The greater percentile difference
was registered for +0 age in the severe scenario, where the need for energy doubles (Table 4).
Total prey biomass consumption per shark was between 30 and 160 kg throughout the
years modeled. If growth is held stable (i.e., as per the von Bertalanffy growth model),
consumption increases by 11.5% on average in the moderate scenario and 19.4% in the
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severe scenario. This means an increase of 14.1 kg and 18.5 kg on average in prey biomass
consumption per shark for the moderate and severe scenarios (Table 2).

Table 2. Summarized simulated outputs of the growth bioenergetics model in the baseline, moderate
(+2 ◦C), and severe (+4 ◦C) scenarios of water warming for Mustelus schmitti. Age-specific mean
growth (in g), confidence interval (CI, in g), growth rate (g × d−1), and percentile difference (%D)
between the corresponding scenario and the baseline.

Growth

Baseline Moderate Severe

Age Mean CI Rate Mean CI Rate %D Mean CI Rate %D

0+ 220.38 38.58 0.60 205.84 35.81 0.56 6.598 196.59 28.92 0.54 10.79
1 288.94 49.84 0.79 268.17 47.85 0.73 7.189 233.84 38.40 0.64 19.07
2 365.84 59.85 1.00 336.99 60.16 0.92 7.886 274.00 48.10 0.75 25.10
3 446.94 75.89 1.22 406.55 77.78 1.11 9.037 318.43 61.91 0.87 28.75
4 538.43 94.33 1.48 483.40 94.86 1.32 10.22 362.98 74.07 0.99 32.59
5 634.50 111.29 1.74 566.68 108.95 1.55 10.69 409.42 96.83 1.12 35.47
6 740.46 131.78 2.03 658.24 131.86 1.80 11.1 469.49 108.93 1.29 36.59
7 846.12 152.58 2.32 747.54 147.97 2.05 11.65 527.51 118.58 1.45 37.66

Table 3. Summarized simulated outputs of the consumption bioenergetics model in the baseline,
moderate (+2 ◦C), and severe (+4 ◦C) scenarios of water warming for Mustelus schmitti. Age-specific
mean consumption (in gprey × gshark

−1 × d−1), confidence interval (CI, in gprey × gshark
−1 × d−1),

yearly kilograms of prey consumed (KPY) by a shark weighting mean weight as per Table 2, and
percentile difference (%D) between the corresponding scenario and the baseline.

Consumption

Baseline Moderate Severe

Age Mean CI KPY Mean CI KPY %D Mean CI KPY %D

0+ 0.35 0.32 28.08 0.38 0.19 30.35 8.065 0.37 0.19 29.99 6.79
1 0.40 0.35 41.75 0.40 0.21 42.30 1.315 0.45 0.22 47.14 12.91
2 0.41 0.36 54.66 0.50 0.23 66.20 21.12 0.57 0.25 75.98 39.02
3 0.45 0.41 73.63 0.54 0.26 87.67 19.06 0.57 0.26 92.67 25.85
4 0.48 0.42 94.89 0.54 0.27 105.52 11.21 0.53 0.29 104.52 10.15
5 0.50 0.45 115.88 0.57 0.29 135.57 13.83 0.59 0.31 137.62 18.76
6 0.55 0.45 149.47 0.57 0.30 186.93 3.693 0.69 0.32 186.93 25.06
7 0.52 0.46 160.62 0.59 0.31 177.10 12.56 0.62 0.34 192.55 19.88

Table 4. Summarized energy requirements output from the respiration portion of the bioenergetic
model in the baseline, moderate (+2 ◦C), and severe (+4 ◦C) scenarios of water warming for Mustelus
schmitti. Age-specific mean daily energy requirements (in cal × gshark

−1 × d−1), confidence interval
(CI, in gprey × gshark

−1 × d−1), yearly kilograms of prey consumed (in Kcal) by a shark weighting
mean weight as per Table 2, and percentile difference (%D) between the corresponding scenario and
the baseline.

Energy Requirements

Baseline Moderate Severe

Age Daily (cal) Anual (Kcal) Daily (cal) Anual (Kcal) %D Daily (cal) Anual (Kcal) %D

0+ 30.14 2424.33 47.16 3543.39 46.16 71.16 5106.36 110.63
1 26.52 2796.98 40.71 3985.02 42.48 61.11 5215.64 86.47
2 23.97 3200.79 35.78 4400.65 37.49 53.63 5363.97 67.58
3 23.05 3759.42 33.80 5015.48 33.41 50.94 5920.70 57.49
4 21.10 4147.55 30.97 5463.91 31.74 46.79 6199.20 49.47
5 19.74 4572.15 28.55 5905.91 29.17 43.40 6486.16 41.86
6 16.75 4528.16 23.86 5731.63 26.58 35.98 6165.39 36.16
7 17.41 5377.22 24.47 6678.03 24.19 37.29 7179.42 33.52
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The results obtained for the practical example of the application of the model are
outlined in Table 5. In total, the stock up to 7 y.o. sharks in Anegada Bay would consume
a yearly 1,260,900.2 t of prey, between polychaetes and crabs. Prey consumption follows
age-specific abundances, with age 1 individuals consuming the most, and age 7 the least.
Daily rations were on average 4.58% for baseline, 5.25% for moderate, and 5.50% for severe
scenarios. The daily ration estimated using these data can be converted to daily grams
of prey consumption per shark, which mostly falls within the ranges of field observa-
tions of weight-specific average stomach content weights (Figure 7, except predictions for
ages 2 and 3).

Table 5. Age-specific stock abundances, prey consumption, and daily ration estimates for the stock of
Mustelus schmitti inhabiting Anegada Bay.

Stock Abundances Prey Consumed (t) Daily Ration (%W)

Age Proportion Abundance (t) N estimated Baseline Moderate Severe Baseline Moderate Severe

0+ 0.16 13,513.5 61,319,230.0 172,200.4 186,088.6 183,895.8 3.5 3.8 3.7
1 0.31 26,107.0 90,354,691.3 377,199.5 382,160.0 425,913.1 4.0 4.0 4.5
2 0.20 16,906.3 46,212,393.1 252,585.9 305,935.6 351,136.1 4.1 5.0 5.7
3 0.16 13,456.0 30,107,273.2 221,690.6 263,953.9 279,003.7 4.5 5.4 5.7
4 0.08 7015.5 13,029,665.2 123,636.9 137,492.5 136,180.8 4.8 5.4 5.3
5 0.03 2242.7 3,534,540.2 40,957.5 47,918.6 48,641.6 5.0 5.9 5.9
6 0.03 2300.2 3,106,390.1 46,431.1 58,066.3 58,066.3 5.5 6.9 6.9
7 0.02 1380.1 1,631,103.4 26,198.2 28,887.3 31,407.5 5.2 5.7 6.2
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Figure 7. Boxplot of the observed weight of stomach contents by age of M. schmitti from field data 
(data taken from [58]). The red dots represent the calculated daily mean prey consumption 
Figure 7. Boxplot of the observed weight of stomach contents by age of M. schmitti from field data
(data taken from [58]). The red dots represent the calculated daily mean prey consumption estimated
by the bioenergetics model. The boxplot contains the median (horizontal line within the box), q1, q3
(lower and upper limits of the box), min-max (whiskers), and outlier points (blue dots).

4. Discussion
4.1. The Bioenergetic Model

In this article, the bioenergetics of Mustelus schmitti were incorporated into a model
that accurately predicted its growth, food consumption, and energy demands [30,32,37,58].
The focus was on this particular species due to its extensive research history, the wide
distribution of the family Triakidae, and its protagonism in many of the most productive
fisheries of elasmobranches worldwide [66–70]. In that sense, the model for this species
could serve as a surrogate for understanding the relationship between disturbance, energy
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expenditure, and feeding opportunities in other shark species [71–74], particularly for those
belonging to the widely distributed family Triakidae.

The main contribution of this study is the bioenergetic model per se, which allows
for quantitative comparisons across different model variations and age groups, different
environmental conditions, prey abundances, prey types, activity levels, etc. [75,76]. Model
predictions for growth closely follow the mean sizes (both in weight and length) from
field-sampled individuals [32,37]. Prey consumption estimated as size-specific daily prey
biomass consumption also falls within the expected ranges for the species (Figure 7).
Considering that these variables are well within the range of real parameters, predictions
made about energy requirements and extrapolated prey biomasses needed are also likely
to be accurate [77–80]. In this regard, the model provides an estimate not only of the
food required for a population of M. schmitti to thrive but also an estimate of the standing
abundance of the invertebrates that this species preys upon.

Another contribution of this study pertains to its practical example: the Anegada
Bay conditions. Although these estimates can be improved by incorporating population-
specific information, these preliminary assessments provide a quantitative framework for
understanding how this population interacts with the environment [23,81]. The area used
in the practical example has an important ecological value as it holds greatly biodiverse
communities, owing to a high environmental complexity, composed of diverse aquatic
environments such as wide muddy intertidal zones, sandy bottom beds, sand and gravel
beaches, islands [26,82], and more recently, Magallana gigas reefs [83]. The refuge offered
within the waters of this bay makes it an ideal nursery area [84] for many fish species, most
of which are important, highly exploited, fisheries resources, among which M. schmitti
stands out [30–32,50,85].

What was previously described should make clear that adequate management of
fishery activities and conservation of the biodiversity of Anegada Bay should be a high pri-
ority [84] for the local government, a task in which the model developed in this article could
be used effectively. Applying this bioenergetic model to other shark populations, with
appropriate adjustments for species-specific parameters, could provide valuable compara-
tive data. Such comparative studies could help identify population-specific vulnerabilities,
assess the impacts of human activities, and design tailored conservation and management
strategies for different shark populations [69,74].

An additional contribution of this work is that it provides estimates on the relationship
of these sharks with their environment and their impact on ecosystem productivity and
benthic species. While our estimates might seem rather high (more than a million tons of
benthic prey), when converted to the total daily ration, it would represent an average of
4.6% of their body weight (Table 5), which is not only consistent with the field observations
made by Molina and Lopez Cazorla [30] on site (Figure 7) but also similar (if even lower)
for what was found for other shark species (see [64]). Improving upon these models
would allow for better risk assessments associated with trophic transfer, uptake rates, and
exposure to biotoxins or persistent contaminants through prey consumption [79,85–87].

4.2. Climate Change Scenarios

Bioenergetic models for fish are particularly relevant in the context of climate change,
as they can help predict how changes in environmental conditions such as water tempera-
ture, and food availability may impact fish populations [88,89]. Climate change is expected
to have significant impacts on fish populations, as rising temperatures are likely to alter the
distribution and abundance of prey species [88,90–92]. In turn, changes in food availability
may further affect growth, reproduction, and survivability [75,93,94].

In this work, the bioenergetics model developed for M. schmitti allowed for predictions
on the potential effects of climate change on the energy budgets of the species. As expected,
a warmer water temperature increased the energy requirements of M. schmitti, leading to
an increase in food consumption. However, if food is restricted and does not keep pace
with the increased demand, the model predicted notable reductions in growth, as would be



Diversity 2023, 15, 1118 15 of 22

reasonable to expect according to current research [95]. The amount of prey consumed by
this species in our practical example is also notable. The prediction of younger individuals
foraging for much more prey biomass than older juveniles highlights the importance of
nursery areas for sharks, as the high productivity of these environments is needed to sustain
the rapid growth these animals need [96,97].

In the water warming scenarios, this consumption is increased between 14% and 20%,
depending on the scenario, which would imply higher predation pressure for the benthic
communities that sustain these and other species [31,85,98,99]. Daily rations estimated for
the baseline parameters are within reasonable ranges [64], and warmer conditions do not
seem to impact these estimates too much; however, scaling these estimates according to
fish biomass greatly increases the prey biomass needed by each cohort (Table 5).

M. schmitti possesses a wide distribution, from the south of Brazil to the Argentinian
Patagonia, with wide variations in temperature across its range. It is fished throughout its
distribution, being a main component of the landings of Argentina, Brazil, and Uruguay
commercial fishing fleets [31,100]. Climate change is expected to have significant impacts
on fisheries resources, with potential consequences for both the fishing industry and
the ecosystems that support it [88,89,101,102]. One of the primary ways that climate
change is expected to affect fisheries resources is through changes in ocean temperatures.
As sea surface temperatures rise, the distribution and abundance of fish species may
shift, potentially altering the composition of fisheries resources in the region [102–104].
The model predicts a drastic increase in consumption to maintain active growth or a
marked decrease in growth if consumption needs cannot be satisfied in the climate change
scenarios explored in this article. This situation may lead to changes in distribution for
M. schmitti, with individuals migrating to more favorable latitudes or depths in favor of
lower water temperatures [105] or change in fitness of different populations or even local
extinctions [94,102,106,107].

Aside from the direct impacts of increasing ocean temperatures on M. schmitti pop-
ulations, the distribution and abundance of various species that serve as the prey of M.
schmitti may also be affected by potential factors such as time-lagged abiotic conditions on
a finer temporal scale. In some cases, marine processes are better explained by time-lagged
ecological variables, such as sea surface temperature rather than simultaneous values [108].
Ocean temperatures are often considered to have an accumulation period prior to being
reflected in higher trophic levels through ocean food chains [109,110]. While, as we have
discussed above, the impacts of climate change on fisheries resources are complex and
multifaceted, providing even limited tools for predicting its effects could prove useful to
mitigate these impacts [7,89,102,111].

4.3. Model Limitations

There are two main limitations to the model developed in this article. First, bioener-
getic models are based on simplifying assumptions about the physiology and behavior
of fish species. While these assumptions are based on empirical data, they may not accu-
rately capture the complexity of real-world conditions, which can vary greatly depending
on the species, life stage, size structure-specific mortality rates, complex behaviors, and
species-species interactions, and may therefore limit their accuracy [74,76,112–115]. Partic-
ularly hot or cold years could change the estimations in this model, as could behavioral
shifts in response to changing salinity, which may affect food conversion or prey selec-
tion [56,72,84,97,112]. Predation risk and competition can all influence the behavior and
energy requirements of fish but were not fully accounted for in this model [116,117]. It
would be expected that predation avoidance involves increased activity, perhaps not con-
templated in our activity parameter [116]. Competition may result in reduced consumption
when another species outcompetes M. schmitti in resource allocation [117]. As a conse-
quence of these interactions, mortality rates are not usually constant among the different
size ranges of a species. As a rule of thumb, it is higher in smaller fish, and as the individuals
become larger, the mortality rate diminishes.
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The factors described in the previous paragraph are too complex, and too little is
known from field observations to incorporate into the model we developed with an ac-
ceptable level of certainty. Second, the model assumes a constant relationship between
temperature and metabolic rate, which may not hold under all conditions [78,91]. While
these gaps in our understanding impose limitations on the extrapolation of the predictions
made in this study, they also point out several avenues for future research that can enhance
the model’s accuracy and applicability. These include the following aspects:

(1) Refinement and calibration: Further refinement of the bioenergetic model can be
achieved by incorporating more precise and species-specific parameters [8,118]. Con-
ducting controlled experimental studies to measure the energy consumption of M.
schmitti, and determining the metabolizable energy of prey species would contribute to
reducing uncertainties and improving model predictions [66,74,77]. Calibration of the
model using independent field sampling data would also enhance its accuracy [115].

(2) Incorporation of ecological factors: The model can be expanded to consider addi-
tional ecological factors that influence the energy requirements and behavior of M.
schmitti [74,114]. Factors such as predation risk, competition, and habitat preferences
can significantly impact the energy dynamics of the species [116,117]. Incorporating
these factors, when sufficient data become available, would improve the model’s
ecological realism and predictive power.

(3) Long-term monitoring and data collection: Long-term monitoring of M. schmitti
populations, including growth rates, prey availability, and environmental condi-
tions, would provide valuable data for validating and updating the model [115,119].
Continued data collection efforts, such as tagging studies and dietary analyses, can
contribute to a better understanding of the species’ energy requirements and feeding
ecology [120].

This work incorporates many biological parameters estimated specifically in this
species, which improved its accuracy when compared to other attempts at modeling
bioenergetics on other species, which borrow most parameters from taxonomically distant
species. In our work, a handful of parameters were indeed borrowed from close species,
such as M. antarcticus and others, which incorporate unknown uncertainties in the model
estimates. Despite that, the inclusion of Monte Carlo techniques and sampling distributions
for point estimates permitted a certain level of variability to be incorporated into the
model [8,9,66].

Despite these limitations, this and other bioenergetic models remain valuable tools
for understanding the energy requirements and behavior of fish species [8,9,74,88]. By
accounting for factors such as food availability, temperature, and predation risk, these
models can provide important insights into the ecology and conservation of fish popu-
lations [7,102] and can inform management decisions aimed at promoting sustainable
fisheries and protecting vulnerable species, such as M. schmitti.

5. Conclusions

The bioenergetic model developed for Mustelus schmitti in this study provides insights
into the energy requirements and growth dynamics of this species. The model predicts the
effects of climate change on the energy budgets of M. schmitti and highlights the potential
impacts of warming water temperatures on food consumption and growth. Continued
research and refinement of the model, along with long-term monitoring efforts, will enhance
its accuracy and applicability, ultimately contributing to the science-based management
of this important marine resource. Future research should focus on incorporating older
age classes of the species, including the distinction between males and females. Adding a
reproduction cost parameter to the model would provide a powerful enhancement to the
model’s capabilities. Also, being able to add more complexity to the algorithms of trophic
ecology would further refine the model. While in its current state, the model has limitations,
it still serves as a valuable tool for understanding the bioenergetics of shark species and can
contribute to the management and conservation of elasmobranch populations in the face
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of environmental change. Testing and applying this model in other locations will ensure
a continued trial and error calibration of the model, which will surely change it from its
current state into an improved version that would better reflect the complexity and nuances
of the life history of this shark.
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