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Abstract: Demarcating a plant species’ actual and potential biogeographical distribution is crucial for
understanding the key environmental variables shaping its habitat conditions. We used MaxEnt and
species distribution modeling to predict the likely range of China’s endangered species, Handelioden-
dron bodinieri (H. Lév.) Rehder, based on forty-four validated distribution records and eight selected
environmental variables. Combined with percentage contribution and permutation importance, the
jackknife statistical method was applied to test and evaluate pertinent factors restricting the potential
distribution of H. bodinieri. The response curves of critical bioclimatic factors were employed to
determine the potential species range. The generated MaxEnt model was confirmed to have excellent
simulation accuracy. The current core potential distribution areas are concentrated in the Guangxi and
Guizhou provinces of Southwest China, with a significant inter-regional difference. The precipitation
of the warmest quarter (Bio18) and minimum temperature of the coldest month (Bio6) had the greatest
impact on the distribution area of H. bodinieri. The findings could provide useful information and a
reasonable reference for managers to enhance the protection of this declining species.

Keywords: Handeliodendron bodinieri; MaxEnt; species distribution model (SDM); environmental
factor; potential range

1. Introduction

Climate change has become the biggest threat to protecting and maintaining global bio-
diversity [1,2]. Global warming and drought constitute the main climate change stressors
on biota. The fundamental abiotic alterations disturb or damage species’ habitats by chang-
ing the cardinal environmental attributes of temperature and precipitation [3,4]. Nature
responds by modifying the structure, function and composition of biological communities
and species distribution patterns at different scales [5,6]. In extreme cases, the diversity
and stability of local and regional ecosystems could be disrupted and endangered [7].

Climate change has wrought far-reaching impacts on a broad range of plant functions
and physiological processes. They include regeneration, growth pattern, morphology,
anatomy, and reproductive behavior, which are key determinants of plant species dis-
tribution on a large scale [8,9]. These harmful and aberrant influences have accelerated
shifting, contraction and fragmentation in the global geographical distribution patterns
of many plant species. The changes have induced migration, reproductive failure and a
raised mortality rate, thus increasing the number of globally endangered plant species [10].
Moreover, the survival of existing endangered plant species could be jeopardized due to
straining beyond the tipping point [11].
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The cumulative and serious impacts of climate change have disrupted the stability
and operation of ecosystems [12,13]. For example, drastic short-term changes could kill
individuals with weak adaptability and poor dissemination ability. The affected species
would experience range shrinkage and local extinction [14]. Therefore, understanding
the intricate relationships between potential suitable distribution patterns of endangered
plants and environmental factors is critical for conservation. The knowledge can foster the
monitoring and restoration of declining populations, improve resource management, and
assess and abate anthropogenic impacts [15,16].

Species distribution models (e.g., MaxEnt, Garp, Bioclim, and Climex) are important
tools to assess climate change’s impacts on altering the distribution of suitable areas for
plant species [17,18]. These models can establish a connection between a species’ geograph-
ical distribution and environmental variables through statistical response functions. The
analysis can predict potential suitable areas and future species distribution at different
times in climate change scenarios [19,20]. Among these modeling approaches, the Max-
imum Entropy (MaxEnt) model is one of the most popular for modeling plant species
distributions and their environmental niches. Its common adoption can be attributed to
parsimonious data requirements, using only categorical and presence data as input vari-
ables for the species in question [21,22]. In addition, even with small sample sizes and data
gaps, its forecast precision can remain stable and reliable [23,24]. The method can directly
generate a spatially open habitat suitability map and evaluate the significance level of indi-
vidual environmental variables using a built-in jackknife test [25,26]. The MaxEnt has been
widely applied to different research fields, including conservation, ecology and evolution.
More importantly, it has been employed to identify ecological niches and compare niche
similarities between species pairs in geographic and environmental space [27,28].

Handeliodendron bodinieri (H. Lév.) Rehder (Sapindaceae) is a rare native monotypic
plant species endemic to China. The range of the endangered small tree is confined to the
karst region of the northwest Guangxi and south Guizhou provinces in Southwest China
at a 500–900 m altitude [29]. This species is a semi-deciduous broad-leaf tree reaching up
to 20 m in height. Its flowers are unisexual, with an aborted stamen or pistil in dioecious
trees [30]. Although female plants bear fruits every year, the fruit abortion rate is high,
resulting in poor natural regeneration. The oil-rich seeds are heavily consumed as food
by granivorous wild animals, including invertebrates and rodents, which constitutes an
important reproductive deprivation [31]. Another cause of population decline is excessive
human seed collection to meet industrial and food uses, including for biodiesel extraction,
as a source of protein, and as edible oil [30]. It is also harvested for its fine timber to make
high-quality furniture. The natural and human pressures have jointly contributed to its
continual decline.

In addition, the karst terrain is characterized by a finely divided mosaic of steep
rocky hills and outcrops, with skeletal soil interrupted by depressions with thick and
fertile soils. The physical environment comprises a varied habitat patchwork marked by
considerable spatial heterogeneity in soil, water, and nutrients. The considerable habi-
tat fragmentation is unfavorable to seed germination, rendering the species vulnerable
to extinction. With a shrinking fragmented range, a small declining wild population,
and intensification of negative forces [32], the endangered tree has been designated a
second-level protected species under the List of National Key Protected Wild Plants (2021)
in China (https://www.gov.cn/zhengce/zhengceku/2021-09/09/content_5636409.htm,
1 July 2023). The species has received extensive scientific investigations regarding popula-
tion structure, spatial distribution, phytochemistry, reproductive ecology, genetic diversity,
propagation, and population conservation [30,33]. Habitat fragmentation and drought
stress have been increasingly recognized as important factors in protecting endangered
species in China’s karst landscape. Excessive human seed collection has decimated living
plants and degraded the quantity and quality of soil seed banks. Therefore, it is necessary
and important to predict how global climate change will impact the potentially suitable
distribution of H. bodinieri in China.

https://www.gov.cn/zhengce/zhengceku/2021-09/09/content_5636409.htm


Diversity 2023, 15, 1033 3 of 13

This study aimed to explore the suitable habitat distribution of H. bodinieri at the
regional scale and focused on the following aims: (1) to define and demarcate the potential
spatial distribution pattern; (2) to determine the correlation between the potential suitable
distribution pattern and environmental factors.

2. Materials and Methods
2.1. Establishing Species Occurrence Records

The research data are the occurrence records of H. bodinieri from 1930 to 2019. They
were collected from the Chinese Virtual Herbarium (http://www.cvh.ac.cn (accessed on
6 July 2023)), the Plant Photo Bank of China (http://www.Plantphotophoto.cn (accessed on
6 July 2023)), the National Specimen Information Infrastructure (http://www.n-sii.org.cn/
(accessed on 6 July 2023)), and the published literature. Each record was scrutinized for data
quality and suitability. Duplicated records and those with unclear latitude and longitude
information were rejected. Finally, 44 valid occurrence records of H. bodinieri were included
in this study. The longitude and latitude data of geographic distribution points were
obtained from ArcGIS (10.2). The distribution points were stored in a CSV file sorted by
species name and longitude, and latitude of the distribution points (Figure 1).
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Figure 1. The images of H. bodinieri and its actual distribution area (white circles) in two provinces of
Southwest China. The pictures on the left side show the flowers, fruits, and complete plants of the
H. bodinieri from top to bottom.

2.2. Selecting Environmental Variables

Nineteen bioclimatic variables, including bioclimatic parameters, monthly temper-
ature and precipitation data, were extracted from the WorldClim database, version 2.0
(http://www.worldclim.org (accessed on 6 July 2023)) using the ‘Extract value by points’
function in DIVA-GIS 7.5 [34] (Table 1). The annual temperature and precipitation vari-
ables, considered too general, were deleted from the dataset [35,36]. Pearson correlation
coefficients (r) between environmental variables were calculated. The strongly associated
environmental factors |r > 0.8| were removed to reduce model overfitting due to mul-
ticollinearity and improve simulation accuracy [37,38]. Ultimately, eight of the nineteen
variables were retained as evaluator variables.

http://www.cvh.ac.cn
http://www.Plantphotophoto.cn
http://www.n-sii.org.cn/
http://www.worldclim.org
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Table 1. List of environmental variables considered in the course of model development. The eight
variables with the code in bold font were chosen for the MaxEnt modeling study.

Code Environmental Variable Unit

Bio1 Annual mean temperature ◦C

Bio2 Mean diurnal range (mean of monthly (maximum
temp-minimum temp))

◦C

Bio3 Isothermality (Bio2/Bio7) (×100) -
Bio4 Temperature seasonality (standard deviation×100) ◦C
Bio5 Maximum temperature of the warmest month ◦C
Bio6 Minimum temperature of the coldest month ◦C
Bio7 Temperature annual range (Bio5-Bio6) ◦C
Bio8 Mean temperature of the wettest quarter ◦C
Bio9 Mean temperature of the driest quarter ◦C

Bio10 Mean temperature of the warmest quarter ◦C
Bio11 Mean temperature of the coldest quarter ◦C
Bio12 Annual precipitation mm
Bio13 Precipitation of the wettest month mm
Bio14 Precipitation of the driest month mm
Bio15 Precipitation seasonality (coefficient of variation) -
Bio16 Precipitation of the wettest quarter mm
Bio17 Precipitation of the driest quarter mm
Bio18 Precipitation of the warmest quarter mm
Bio19 Precipitation of the coldest quarter mm

2.3. MaxEnt Modeling of Species Distribution

The eight selected environmental variables and species occurrence records of H. bod-
inieri were loaded into MaxEnt 3.3. The package “ENMeval” of R 4.02 was used to create
and evaluate the models [39,40]. For diverse environmental variables used in prediction,
the jackknife test yielded training, test, and area under the curve (AUC) gains for three sce-
narios (without variables, with only one variable and with all variables). Then, the AUC of
the receiver operating characteristic curve (ROC) was calculated to measure the accuracy
of the generated models [36]. The AUC value has a range of 0–1. A higher AUC value
indicates a considerable deviation in the geographic distribution of the simulation object
from a random distribution. It also means a stronger correlation between the simulation
result and the environmental variables, i.e., the model has a better prediction accuracy [41].
The AUC statistic is classified into five performance categories: excellent (0.9–1.0), good
(0.8–0.9), fair (0.7–0.8), poor (0.6–0.7), and fail (0.5–0.6) [42]. Based on the optimal threshold
of environmental factors (occurrence-probability) generated by MaxEnt, the final output
with a 0–1 range was divided into five potential distribution areas using the reclassify
tool of ArcGIS software: fail (0–0.15), poor (0.15–0.3), fair (0.3–0.45), good (0.45–0.6), and
excellent (>0.6) [38,41].

3. Results
3.1. Evaluating Model Performance

The lines of omission from the training data were close to forecasted omission rates in
the model, signifying the correct fitting of the training data, and the test and training data
were unique (Figure 2a). The AUC value for the reconstructed MaxEnt was 0.99 (Figure 2b),
indicating excellent prediction accuracy of the model, including the selected variables.
This model is assessed to be reliable for defining suitable areas for introducing H. bodinieri
in China.



Diversity 2023, 15, 1033 5 of 13

Diversity 2023, 15, x FOR PEER REVIEW 5 of 13 
 

 

ure 2b), indicating excellent prediction accuracy of the model, including the selected var-
iables. This model is assessed to be reliable for defining suitable areas for introducing H. 
bodinieri in China. 

 
Figure 2. The validation of the model predicting H. bodinieri distribution: (a) omission rate; and (b) 
ROC curve. 

3.2. Key Environmental Factors and Validating Modeling Results 
Eight variables, after removing collinearity, were determined as key environmental 

variables affecting the potential distribution of H. bodinieri, according to the contributions 
to the MaxEnt modeling process by the jackknife test (Table 2). Of these, Bio18 (precipita-
tion of the warmest quarter), Bio6 (minimum temperature of the coldest month), and Bio2 
(mean diurnal range) had the highest contributions of 32.7%, 26.3%, and 20.5%, respec-
tively (total contribution exceeding 79.5%; Table 2). Meanwhile, Bio6 (75.7%), Bio2 (13%), 
and Bio18 (6.9%) had the highest permutation importance values (Table 2). Therefore, 
these three bioclimatic factors (Bio18, Bio6, Bio2) were the main drivers of the modern 
geographical distribution of H. bodinieri. 

Table 2. Percent contribution and permutation importance levels of the eight environmental varia-
bles included in the MaxEnt, ranked by percentage contribution. 

Code Bioclimatic Variable Percent Con-
tribution 

Permutation 
Importance  

Bio18 Precipitation of the warmest quarter 32.7 6.9 
Bio6 Minimum temperature of the coldest month 26.3 75.7 
Bio2 Mean diurnal range 20.5 13 

Bio15 Precipitation seasonality  8.4 2.1 
Bio4 Temperature seasonality 7.7 0.3 

Bio14 Precipitation of the driest month 3.1 1.3 
Bio13 Precipitation of the wettest month 0.9 0.4 
Bio10 Mean temperature of the warmest quarter 0.4 0.2 

Bio6 demonstrated the highest gain in regularized training and testing. Bio18 had the 
highest gain in AUC, indicating its leading contribution to the distribution of H. bodinieri 
(Figure 3). Bio2 and Bio13 had secondary contributions to the H. bodinieri distribution un-
der the three gain patterns. In contrast, Bio10 had the lowest gain and the least importance, 
with little effect on predicting species distribution (Figure 3). The results showed that tem-
perature exerted a greater effect on H. bodinieri distribution than precipitation (Figure 3, 
Table 2). 

Figure 2. The validation of the model predicting H. bodinieri distribution: (a) omission rate; and
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3.2. Key Environmental Factors and Validating Modeling Results

Eight variables, after removing collinearity, were determined as key environmental
variables affecting the potential distribution of H. bodinieri, according to the contributions to
the MaxEnt modeling process by the jackknife test (Table 2). Of these, Bio18 (precipitation
of the warmest quarter), Bio6 (minimum temperature of the coldest month), and Bio2 (mean
diurnal range) had the highest contributions of 32.7%, 26.3%, and 20.5%, respectively (total
contribution exceeding 79.5%; Table 2). Meanwhile, Bio6 (75.7%), Bio2 (13%), and Bio18
(6.9%) had the highest permutation importance values (Table 2). Therefore, these three
bioclimatic factors (Bio18, Bio6, Bio2) were the main drivers of the modern geographical
distribution of H. bodinieri.

Table 2. Percent contribution and permutation importance levels of the eight environmental variables
included in the MaxEnt, ranked by percentage contribution.

Code Bioclimatic Variable Percent
Contribution

Permutation
Importance

Bio18 Precipitation of the warmest quarter 32.7 6.9
Bio6 Minimum temperature of the coldest month 26.3 75.7
Bio2 Mean diurnal range 20.5 13
Bio15 Precipitation seasonality 8.4 2.1
Bio4 Temperature seasonality 7.7 0.3
Bio14 Precipitation of the driest month 3.1 1.3
Bio13 Precipitation of the wettest month 0.9 0.4
Bio10 Mean temperature of the warmest quarter 0.4 0.2

Bio6 demonstrated the highest gain in regularized training and testing. Bio18 had the
highest gain in AUC, indicating its leading contribution to the distribution of H. bodinieri
(Figure 3). Bio2 and Bio13 had secondary contributions to the H. bodinieri distribution under
the three gain patterns. In contrast, Bio10 had the lowest gain and the least importance,
with little effect on predicting species distribution (Figure 3). The results showed that
temperature exerted a greater effect on H. bodinieri distribution than precipitation (Figure 3,
Table 2).
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The response curves built by MaxEnt between environmental variables and the proba-
bility of species presence indicated the influence of environmental stresses on the target
species occurrence (Figure 4). Bio2, Bio4, Bio6, Bio10, Bio15, and Bio18 showed single-
peaked curves, indicating that H. bodinieri had significantly adapted to these environmental
variables. The response curves of Bio6 (minimum temperature of the coldest month) and
Bio18 (precipitation in the wettest quarter) illustrated the effect of changing bioclimatic
values on the distribution probability of H. bodinieri (Figure 4). Below −5 ◦C, the distribu-
tion probability was almost zero, and the suitable range of the minimum temperature of
the coldest month (Bio6) for H. bodinieri was 2–5 ◦C. This result provides a strong basis for
defining the extreme temperature range of H. bodinieri during winter in China. Moreover,
when the precipitation in the wettest quarter (Bio18) was 580–720 mm, the distribution
probability of H. bodinieri reached a peak. This result indicates the most suitable rainfall
amount and temperature for its survival (Figure 4).

3.3. Predicting the Suitable Habitat of H. Bodinieri in China

The potential suitable distribution of H. bodinieri predicted by MaxEnt showed that
the suitable area for the present climatic conditions is mainly located in the Southwest
China provinces of Sichuan, Guizhou, Yunnan, Guangxi, and Guangdong (Figure 5). By
habitat suitability, the total areas for the fail, poor, fair, good, and excellent suitability were
116.4 × 104 km2, 8.35 × 104 km2, 3.22 × 104 km2, 1.85 × 104 km2, and 1.93 × 104 km2,
respectively, comprising 12.13%, 0.87%, 0.34%, 0.19%, and 0.20% of China’s total land area
(960 × 104 km2) (Table 3). Guangxi and Guizhou provinces had relatively large areas with
excellent suitability at 1.19 × 104 km2 and 0.71 × 104 km2 (Table 3). Notably, the size
of the current potential distribution is significantly larger than the present occurrence of
H. bodinieri in China.
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Table 3. Predicted suitable areas for H. bodinieri under the current climate in various provinces or
autonomous regions (104 km2). The ratio denotes the predicted suitable area divided by the total
land area of the respective province or autonomous.

Province or Autonomous Region
Predicted Suitable Area Ratio

Fail Poor Fair Good Excellent

Guangxi 15.87 2.10 1.15 0.50 1.19
Guizhou 10.99 1.92 1.11 1.22 0.71

Guangdong 14.72 0.64 0.06 0.05 0.03
Sichuan 42.42 2.29 0.63 0.06 0.00
Yunnan 32.40 1.40 0.27 0.02 0.00

Total 116.4 8.35 3.22 1.85 1.93
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4. Discussion

The response relationship between species distribution and environmental factors
is one of the important research topics in ecology to predict the species’ geographical
distributions and abundance distribution patterns [2,43]. This study was the first to explore
the impacts of climate change on the geographical range and environmental suitability
of the habitat of H. bodinieri in China using MaxEnt modeling. In this work, 44 valid
occurrence records were used to conduct the analysis (Figure 1), which effectively solved
the overfitting phenomenon in small samples and ensured the accuracy and stability of
the simulation. Eight key environmental factors were chosen based on the contribution
rate of each factor to the MaxEnt (Table 2). The final threshold-independent AUC reached
0.99 (Figure 2b), indicating that the MaxEnt predicted a high degree of fit between the
habitat range and the actual suitable habitat of H. bodinieri. The results also demonstrated
that MaxEnt could avoid overfitting and achieve a good prediction of species distribution
areas despite a small sample size. It could provide an effective tool to protect and manage
endangered species with an extremely small population [44].

The climate offers the most important factors shaping the physical geography of
habitats and species distribution [45]. This main factor influences changes in constituent
factors such as annual average temperature, extreme temperature, and annual average
precipitation. Such changes can lead to the loss and fragmentation of species’ habitats,
seriously threatening endangered species with confined natural distribution and increasing
their extinction risk [1,46].

Our results identified Bio18 (precipitation of the warmest quarter) as the main factor
molding the potential distribution of H. bodinieri. The results pinpointed 580–720 mm as
the most suitable range for precipitation of the warmest quarter (Figure 4), which may be
related to the physiological characteristics of H. bodinieri. Based on existing distribution
data, this endangered plant is mainly found in karst habitats with deficient surface runoff
and sporadic occurrences of small soil pockets interspersed among many rock outcrops [47].
On fine and hot summer days, the strong sunshine vaporizes a large amount of soil water.
Therefore, plenty of water is needed in the warm season to meet transpiration consumption
and maintain normal physiology in such fragmented and harsh karst habitats.

Moreover, June to August is a critical period for ripening H. bodinieri fruits and
seeds [48]. The higher precipitation of the warmest quarter benefits plant growth and
development. It can also raise atmospheric humidity and soil moisture content to foster
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fruit growth and maturation and improve seed quality [49,50]. Proper seed development is
critical for the species’ reproductive prospects. If the seeds fail to mature, it will depress
the population’s natural regeneration ability, reducing species distribution and diffusion to
exacerbate the population’s decline.

Temperature substantially determines plant life activities and biochemical processes
and plays an important role in shaping plant distribution [51,52]. Temperature can expand
the plant’s adaptability amplitude to habitat conditions and environmental changes within
a certain range [37]. However, when a given temperature peak is exceeded, the habitat
range shrinks or disappears [53]. The optimum minimum temperature of the coldest month
(Bio6) is about 2–5 ◦C, indicating that the growth and development of H. bodinieri demand
a certain heat level. Other studies showed that temperature could significantly favor the
dormancy release of seeds, and appropriately low temperatures in the coldest month can
break seed dormancy and promote subsequent germination [54]. Nevertheless, too low a
temperature can cause injurious freezing, frost damage, and even inactivation of seeds [55],
thus trimming the viable seeds for subsequent germination.

Our results predicted the potential distribution area that H. bodinieri may disseminate
and spread in China beyond its current range (Figures 1 and 5). The spatial discrepancy
between actual and potential ranges might be related to the limited scope of current research
on H. bodinieri, focusing on biological characteristics [30,33]. Moreover, research data that
accurately describe species’ environmental requirements are scarce. Most individuals of
H. bodinieri are distributed in disjointed, harsh, and mountainous karst habitats with largely
inaccessible terrain. Therefore, it is difficult to acquire reliable and representative data
to assess this endangered species’ actual distribution area accurately. On the other hand,
MaxEnt has the inherent trait of evaluating only niche-based species presence data. The
model predicts the species’ fundamental niche rather than the realized niche, which may
result in overestimation [56,57]. Furthermore, predicting species distribution requires the
consideration of physiological constraints, response to external factors and drivers, and
competition in ecological communities. As it takes time for such factors to take effect,
species’ actual geographical distribution may lag behind climate change [58].

Notwithstanding, this species has thus far failed to colonize a larger extent of its
suitable areas. This inability could be explained by extrinsic factors, including soil quality
unsuitability, soil spatial discontinuity, interspecific competition, geographical barriers,
human disturbance, and other unfavorable or stressful habitat conditions [59]. The lack of
sufficient field data was one of the reasons for conducting this study. The results showed
that the suitability area of H. bodinieri was only 7 × 104 km2 (Table 3), mainly distributed in
the Guangxi and Guizhou provinces, indicating a geographically confined suitability area.

The narrow spatial distribution is also related to the innate biological characteristics
of H. bodinieri fruits. The fruits have a relatively large size that is difficult to spread over a
long distance by wind. Most fruits randomly fall on microhabitats around the mother tree
after ripening, creating a strong density dependence effect. Moreover, the fruits contain
a large amount of oil, commonly consumed by rodents and other wildlife after falling
to the ground [31]. In addition, the excessive collection of seeds by humans for oil and
food has contributed to population decline [30]. The heavy natural seed predation and
human harvesting have jointly curtailed the soil seed bank and seeds for subsequent ger-
mination. Such constraints demand more stringent requirements to protect and expand
the range of H. bodinieri. Other studies have shown that the constricted spatial spread
of rare and endangered plants is usually attributed to dispersal limitations and demo-
graphic stochasticity [60,61]. The resulting short-range dispersal distance can bring spatial
aggregation [61]. Aggregated distribution may lead to patchy and mosaic distribution on
the spatial scale and intensify competition among individuals of the species for limited
environmental resources [47]. In sum, the combined consequences of the low reproductive
survival rate and deleterious human activities have notably shrunk its distribution area and
population size.
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Our analysis identified suitable habitats for the ex situ conservation of H. bodinieri,
providing a critical basis to protect its potential habitat. The distribution area, mainly
the karst mountain region, denotes a unique landform that can provide relatively safe
refuges for H. bodinieri to adapt more effectively to or survive the intensifying looming
climate change. However, the spatial distribution of plants is influenced by abiotic and
biotic environments, such as temperature, precipitation, altitude, presence of predators,
human disturbance, geographic barriers, soil and vegetation type, etc. [62]. Especially after
prolonged human interference, many suitable habitats have been eliminated, accompanied
by altered forest land use. Moreover, past herbarium distribution records are not from
the same year, and recent surveys are absent. Therefore, it is necessary to investigate the
endangered plant’s distribution status in detail and combine different biotic and abiotic
factors to predict climate change’s impacts on its distribution [7].

Some measures can be implemented to sustain and expand the range of H. bodinieri.
They entail conducting deeper cognate studies to expand the knowledge base and translate
research findings to enhance conservation practice. They include crucial issues such as
the potential distribution of pollinators and seed dispersers, expanding existing nature
reserves and protecting the surrounding habitat of the existing community, research on the
impact of climate change on ecological relationships between this endangered plant and
the surrounding associated trees [56], establishing new protected areas in high-risk regions
in the context of climate change, protecting existing fruiting mother trees, and increasing
viable seed sources to foster the reproduction and production of offspring. The areas
predicted to be suitable but currently not occupied by the species offer candidate sites for
prioritized conservation and propagation. It is necessary to strengthen habitat protection
further and raise public awareness. Protection policies can be reinforced to reduce human
impacts and implement ex situ protection. More comprehensive and accurate spatial data
can be acquired to refine the H. bodinieri habitat distribution simulation.

5. Conclusions

The suitable areas of H. bodinieri in China were predicted by MaxEnt modeling, gen-
erating excellent outcomes with high accuracy. The highly suitable habitats for this plant
were found primarily in China’s Sichuan, Guizhou, Yunnan, Guangxi, and Guangdong
provinces. The key environmental variables regulating its distribution are the precipitation
of the warmest quarter (Bio18) and minimum temperature of the coldest month (Bio6),
with the optimal conditions at 2–5 ◦C and 580–720 mm, respectively. These results help us
to pinpoint the specific conditions for the optimal growth of the species and provide the
scientific basis to improve the management and conservation of this endangered species.
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