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Abstract: Naturally occurring benzophenones represent a relatively small group of plant metabolites
with narrow distribution, mainly in members of Clusiaceae, Gentianaceae, Hypericaceae, Poly-
galaceae, Myrtaceae, etc.; however, there were reports of several compounds derived from microor-
ganisms belonging to the Aspergillaceae and Valsaceae families and propolis. Benzophenones exhibit
many biological activities, such as antioxidant, anti-inflammatory, cytotoxic, antimicrobial, etc. Few
reviews on benzophenones that have appeared in the literature were focused on their prenylated
derivatives. Summarized information on structural diversity, distribution, and biological activities of
simple oxygenated naturally occurring benzophenones and their glycosides has not been found in
the literature. Until 2000, only benzophenone C-glycosides were known to occur in nature. Since
then, many O-glycosides have been isolated, structurally, and biologically characterized. This review
covers the years from 1850 to 2023 and was compiled using databases such as Chemical Abstracts,
Scopus, Google Scholar, PubMed, and ResearchGate. Based on their degree of oxidation, 210 chemical
structures of benzophenone derivatives and glycosides were grouped into six categories. In addition,
in one group of 40 miscellaneous benzophenones, where one or several protons are replaced by
a methyl, alcohol, carboxyl, or acyl group, glycosidic forms with such an aglycone and dimeric
compounds with xanthone was included. Simple oxygenated benzophenones and their glycosides
were found in 77 plant genera belonging to 44 families. The allergy-associated bezophenone-1,
benzophenone-2 and benzophenone-3 have limited distribution across natural sources. A wide
range of biological activities (antioxidant, anti-inflammatory, cytotoxic, antitumor, cytoprotective,
antimicrobial, MAO-A, antiarthritic, anticholinesterase, anti-atherosclerotic, laxative, etc.) of simple
oxygenated benzophenones and their glycosides that appeared in the literature were discussed.

Keywords: simple oxygenated benzophenones; C-glycosides; O-glycosides; structural diversity;
distribution; biological and pharmacological properties

1. Introduction

Naturally occurring benzophenones are considered compounds derived from diphenyl-
methanone (Figure 1), in which one or several protons are replaced by hydroxyl, alkyl,
alkyloxy groups, or halogen atoms. So far, unsubstituted benzophenone has been found in
nature only in Iris adriatica [1] and Hemidesmus indicus [2].
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Figure 1. The structure of unsubstituted benzophenone. 
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Figure 1. The structure of unsubstituted benzophenone.

Despite the large number of isolated compounds over the past 50 years, the few
published reviews focused almost entirely on prenylated benzophenones [3–5]. Singh and
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Bharate reviewed naturally occurring benzophenones with a phloroglucinol ring up to
December 2005 [6]. Up to now, a systematic review of the existing naturally occurring
simple oxygenated benzophenones and their glycosides has not been performed. This
review compiles references from 1850 to 2023 using databases like Chemical Abstracts,
Scopus, Google Scholar, PubMed, and ResearchGate. The main goal of this review is
to summarize the available information on structural diversity of simple oxygenated
benzophenones. A consensus classification of this group of compounds is also lacking. If the
biogenesis of xanthones is considered, it can be seen that ring A and the attached CO group
are produced by the shikimate pathway, while ring B is formed in the acetate–malonate
pathway [7], yielding an oxygenated benzophenone intermediate, which subsequently
undergoes molecular dehydration to give xanthone. Furthermore, it has been reported that
the transformation can be accomplished from a benzophenone glycoside by elimination
of the glycosidic moiety and subsequent dehydration [8]. Therefore, simple oxygenated
benzophenones and their glycosides are precursors in the biogenesis of xanthones. Thus,
the classification for the biosynthetically related xanthones provided by Mandal et al. [9] is
used in this review. Special attention is given to benzophenone C- and O-glycosides. The
second goal of this review is to summarize the published information on the distribution
of simple oxygenated benzophenones and their glycosides. Some synthetic hydroxy and
methoxy benzophenones are heavily used in sunscreens and in personal care cosmetic
products and both associated with allergy and photoallergy [10]. This review tries to
answer which of these compounds are found in natural sources. This review’s third task is
to summarize the biological properties of this class of naturally occurring compounds.

2. Structural Diversity of Simply Oxygenated Benzophenones
2.1. Monooxygenated Benzophenones

Only two naturally occurring benzophenones (Figure 2), which have a hydroxyl
or methoxy group in para position to carbonyl function, were reported in the literature.
p-Hydroxybenzophenone 1 was isolated from 1,2-dichloroethylene extract of Talauma
mexicana (DC.) G.Don leaves [11] and p-methoxybenzophenone 2 was found as a component
of the essential oil of Costus speciosus (J.Koenig) Sm. [12].
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2.2. Dioxygenated Bezophenones

The literature survey showed three compounds, 3–5 (Figure 3), isolated from the
endophytic moss Polytrichastrum formosum (Hedw.) G.L. Smith [13], while 6 was found
in Pogonatum inflexum (Lindb.) Sande Lac. [14]. The nitrogen-containing derivatives of
2,4-dihydrobenzophenone 7 and 8 were isolated from the ethanol extract of the moss
Polytrichum commune Hedw. [15]. Compounds 9–11 were found in Polytrichastrum for-
mosum [13,16] and compound 12 was detected in Pogonatum inflexum [14]. All of these
compounds possess 2,4-dioxygenation pattern only in one of the phenyl rings. O-glycosidic
forms of the deoxygenated benzophenones have not been discovered so far, but there was
a report of a C-glycoside, namely hyperinone 13, isolated from Hypericum styphelioides
A.Rich. [17].
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2.3. Trioxygenated Bezophenones

The first reports of isolated trioxygenated simple benzophenones date from nearly a
century and a half ago, when Jobst and Hesse began to study the composition of Coto and
Paracoto barks. Although the origin of the two barks remains still unknown, it can be safely
assumed that they belong to the Lauraceae family [18]. The first isolated compound was
cotoin 14 (Figure 4), which was obtained from a diethyl ether extract of Coto bark [19,20].
Hydrocotoine 15 and methylhydrocotoine 16 were subsequently isolated from an alcoholic
extract of Paracoto bark [20]. More than a decade later, thanks to the outstanding work of
Ciamiciani and Silber, the structures of these compounds were finally established [21–24].
2,4,6-Trihydroxybenzophenone 17 and 2,4-dihydroxy-6-methoxybenzophenone 18 were
found to be major components in the methanol extract of leaves and stems of Helichrysum
triplinerve DC. [25].

Most of the simply oxygenated naturally occurring benzophenones with 2,4,6-oxygenation
patterns were alkyloxy derivatives. Sixteen compounds from this group have been reported
to date, fourteen of which have been found in species of the genus Hypericum. The first
alkyloxy benzophenone 19 was discovered in 1978 by Bohlmann and Suwita in the root
of Leontonyx squarrosus DC and aerial parts of L. spathulatus Less. [26]. Eleven years later,
four more compounds, 20–23, belonging to this group were isolated from Helichrysum
asperum (Thunb.) Hilliard and B.L.Burtt [27]. Phytochemical studies of the aerial parts
of Hypericum sampsonii Hance led to the isolation of seven new compounds, 24, 25 [28];
sampbenzophenones D-G (26–29) [29]; and 33 [30]. The compounds hyperinokone 30,
elegaphenone 31, and hyperinagasone 32 were isolated from H. nokoense Ohwi [31], H.
elegans Steph. ex Willd. [32] and H. nagasawae Hayata [33], respectively. In 1968, the isolation
of a trioxygenated benzophenone cearoin 34 from extracts of Dalbergia cearensis Ducke and
D. miscolobium Benth. was reported [34]. It was the first natural benzophenone with 2,4,5-
trioxygenation pattern. In addition, two compounds with the same oxygenation pattern,
35 and 36, were isolated from D. odorifera T. C. Chen [35] and Securidaca longipedunculata
Fresen [36], respectively. Two benzophenones, 37 and 38, possessing 2,3,4-trioxygenation
patterns were isolated from S. inappendiculata Hassk [37]. In addition, compound 39 with
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the same oxygenation was isolated from the dichloromethane extract of S. diversifolia (L.)
Blake [38]. The only two trioxygenated benzophenones with oxygenation on both rings
were 40 and 41 isolated from Tolpis webbii Sch. Bip. [39] and Securidaca longepedunculata
Fresen. [36], respectively.
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Fourteen glycosides of trioxygenated benzophenones (Figure 5) mostly sharing a
common 2,4,6-trioxygenation pattern have been reported to date. The first tryoxygenated
C-glycoside malaferin A 42 was isolated from an ethanolic extract of twigs and leaves of
Malania oleifera Chun and S.K.Lee [40], while a di-C-glycoside arrilanin G 43 was obtained
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from an ethanolic extract of the stem bark of Polygala rillate Buch.-Ham. ex D.Don [41].
2,4,6-Trihydroxybenzophenone 17 was the most common aglycon of the O-glycosides of the
of trioxygenated benzophenones. Garcimangosone D 44 was its first O-glycoside isolated
from the ethanol extract of Garcinia mangostana L. fruits [42]. Furthermore, four 6-O-biosides
of 17 including tricornoside A 46 (from Polygala tricornis Gagnep.) [43], pyrafortunoside B
47, and C 48 (from Pyracantha fortuneana (Maxim.) H. Li) [44] as well as piperwallioside A
49 (from Piper wallichii (Miq.) Hand.-Mazz.) [45] were isolated from the respective species.
Two 4-O-glycosides of 17 (50 and 51) were isolated from the ethanol extract of the Psidium
guajava L. leaves [46,47]. The phytochemical investigations of Polygala tenuifolia Willd.
led to the isolation of three O-glycosides of 2,4-dihydroxy-6-methoxybenzophenone 18,
namely tenuiside B 52 and C 45 [48] as well as the O-bioside tenuiphenone A 53 [49]. In
addition, a O-bioside 54 of 4-hydroxy-2,6-dimethoxybenzophenone was found in P. sibirica
var. megalopha Franch. [50]. An O-glycoside pruniflonone B 55 having an unusual aglycone
(3,4,5-trihydroxybenzophenone) was isolated from the methanol extract of Cratoxylum
formosum (Jack) Dyer roots [51].
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2.4. Tetraoxygenated Bezophenones

This group includes eighteen hydroxy and methoxy tetraoxygenated benzophenones
(Figure 6). Only three compounds (56–58) have substituents on ring A but not in B and
share a common 2,3,4,5-tetraoxygenation pattern. Compounds 56 and 57 were isolated
from the wood of Machaerium scleroxylon Tul. [52,53], while 58 was found in the roots of
Securidaca longipedunculata [54]. Four compounds (59–62) share a common phloroglucinol
oxygenation pattern in ring A and a monooxygenation in ring B. The first occurrence in
nature of compounds 59–62 was reported for Morus alba L. [55], Aniba duckei Kosterm. [56],
Gentiana lutea L. [57], and for Allanblackia floribunda Oliv. [58], respectively. Compounds
63–65 possess a rare 2,4,5-trioxynation pattern of ring A and structurally differ by the
position of the hydroxyl group in ring B. The former two compounds, 64 and 65, were
isolated from the heartwood of Dalbergia melanoxylon Guill. and Perr. [59,60] while the
latter 66 was found in D. cochinchinensis Pierre [61]. Compounds 66–69 shared a common
pyrogallol-like ring A and monooxygenated ring B. These compounds were reported as the
first to occur in biogenetically different plant species: 66 in Securidaca diversifolia [38]; 67 in
Anemarrhena asphodeloides Bunge [62]; 68 in Oroxylum indicum (L.) (L.) Benth. ex Kurz [63];
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and 69 in Garcinia mangostana [64]. Compounds 70–73 possess di-oxygenation on both rings
and were found in Garcinia cantleyana Whit. var. cantleyana [65], Hypericum lanceolatum
Lam. [66], Garcinia eugenifolia Wall. ex T. Anderson [67], and Syzygium polyanthum (Wight)
Walp. [68], respectively.
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To date, 24 C-glycosides of tetraoxygenated benzophenones (Figure 7) have been
isolated from the plant sources. The aglycone of most of these compounds is iriflophenone
59. The first occurrence of iriflofenone-3-C-β-D-glucoside 74 was reported for the leaf
extracts of the ferns Hypodematium fauriei (Kodama) Tagawa and H. crenatum (Forssk.)
Kuhn [69]. Two phytochemical studies on mango tree bark and leaves led to the isolation of
the galloyl esters 75–77 [70,71] and one p-hydroxybenzoyl ester 78 [71] of 74. Further galloyl
and p-hydroxybenzoyl esters 79–84, as well as an ester of 3,4-dihydroxy-5-methoxybenzoic
acid 85, were isolated from the ethanol extract of the leaves of Mangifera indica [72,73].
A mixed C,O-diglycoside 86 was isolated from water extract of aerial parts of Cyclopia
genistoides (L.) R.Br. [74]. A di-C-glycoside 87 of iriflophenone 59 was isolated from the
leaves extract of Aquilaria sinensis (Lour.) Spreng. [75]. Five C-glycosides 88–92 of 2,4′,6-
trihydoxy-4-methoxybenzophenone 60 were found in leaves of Mangifera indica [72,73].
The only C-galactosyl benzophenone 93 known up to now was isolated from the leaves of
the mango tree [76]. The only C-glycoside of 2,6,3′-trihydroxy-4-methoxybenzophenone
rhodanthenone C 94 was isolated from a methanolic extract of the aerial parts of Gentiana
rhodantha Franch. ex Hemsl. [77]. The di-C-glucosides 95 and 96 were isolated from Polygala
tenuifolia [49] and P. glomerata Lour. (P. chinensis L.) [78], respectively. Di-C glucoside
pseuduvarioside 97 was isolated from the leaves extract of Pseuduvaria fragrans Y.C.F.Su,
Chaowasku and R.M.K.Saunders [79].



Diversity 2023, 15, 1030 7 of 39Diversity 2023, 15, x FOR PEER REVIEW 7 of 41 
 

 

 
Figure 7. The structures of C-glycosides of tetraoxygenated benzophenones. 

Some C-glycosyl tetraoxygenated benzophenones (Figure 8) form rare spirocyclic 
systems. The first compound from this group was aquilarinoside A 98, which was isolated 
from hydroethanolic extract of Aquilaria sinensis leaves [80]. Compound 99, similar to 98 
but with β-configuration of fructofuranose, was isolated from hydroethanolic extract of 
mango tree leaves [76]. In addition, 100 and 101 were found in leaf extract from the later 
plant [81,82]. Compounds 102 and 103 were isolated from the later plant source differed 
from 99 and 101, respectively, by the cyclization type of fructose unit [76]. 

Figure 7. The structures of C-glycosides of tetraoxygenated benzophenones.

Some C-glycosyl tetraoxygenated benzophenones (Figure 8) form rare spirocyclic
systems. The first compound from this group was aquilarinoside A 98, which was isolated
from hydroethanolic extract of Aquilaria sinensis leaves [80]. Compound 99, similar to 98
but with β-configuration of fructofuranose, was isolated from hydroethanolic extract of
mango tree leaves [76]. In addition, 100 and 101 were found in leaf extract from the later
plant [81,82]. Compounds 102 and 103 were isolated from the later plant source differed
from 99 and 101, respectively, by the cyclization type of fructose unit [76].
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More than twenty O-glycosides of tetraoxygenated benzophenones (Figure 9) have
been isolated, so far. Most of these compounds (104–121) share iriflophenone 59 as their
aglycone. The first O-glycoside of iriflophenone 104 was isolated from Coleogyne ramosissima
Torr. [83]. Three acylated derivatives, 105–107, of 104 were found in the leaves of Plan-
chonella obovata (R.Br.) Pierre [84]. Iriflophenone-2-O-α-L-rhamnoside 108 and its acylated
derivatives 109–112 were reported for Aquilaria sinensis leaves and flower buds [75,85,86].
The methyl ester 113 of the later compound was isolated from the pericarps of A. yunna-
nensis S. C. Huang [87]. The presence of five biosides 114–118 of iriflophenone 59 in A.
sinensis was established [85,88]. In addition, a 2-O-β-D-xylopyranoside 119 and a 2-O-α-
L-arabinopyranoside 120 of 59 were reported for A. sinensis [86] and Mangifera indica [76],
respectively. The only glycoside 121 with sugar connected to position 4 of iriflophenone
was found in Davallia solida (G.Forst.) Sw. rhizomes [89]. Three compounds, 122–124,
possess 2,4′,6-trihydroxy-4-methoxybenzophenone 60 as aglycone. The former compound
122 was isolated from the aerial parts of Gnidia involucrata Steud. ex A.Rich. [90]. The latter
two compounds 123 and 124 were reported for nut shell of Phaleria macrocarpa (Scheff.)
Boerl. fruits [91] and for roots of Vangueria agrestis (Schweinf. ex Hiern) Lantz [92], re-
spectively. Mahkoside A 125 was isolated from the ethanolic extract of Phlaleria macrocarpa
pits [93]. The tetraoxygenated benzophenone 61 was an aglycone of three glycosides, 126–
128, that were isolated from Gentiana rhodantha Franch. ex Hemsl. [77], G. verna L. subsp.
pontica (Soltok.) Hayek [94] and Garcinia mangostana fruit pericarp [95], respectively. The
tetraoxygenated benzophenone O-glycosides 129–132 that possess unique aglycones were
found in Gentiana verna subsp. pontica [94], Tripterospermum japonicum (Siebold and Zucc.)
Maxim. [96], Cratoxylum formosum [97], and Anemarrhena asphodeloides [98], respectively.

2.5. Pentaoxygenated Benzophenones

More than 20 non-glycosylated (aglycones) naturally occurring pentaoxygenated
benzophenones (Figure 10) representing seven oxygenation patterns have been reported,
so far. Maclurin 133 was the firstly found pentaoxygenated benzophenone possessing
2,3′,4,4′,6-pentaoxygenation pattern. It was isolated in 1850 by Wagner from Maclura
tinctoria (L.) Steud. [99,100] but its structure was finally established in 1895 by Ciamician and
Silber [101]. Methoxy derivatives 134–138 of maclurin were found in Garcinia subelliptica
Merr. [102], G. multiflora Champ. ex Benth. [103], G. mangostana [104], G. livingstonei
T.Anderson [105], and G. mangostana [106], respectively. Compounds 139 and 140 were the
only methylenedioxy-benzophenones with 2,3′,4,4′,6-pentaoxygenation pattern originally
isolated from Aniba pseudocoto bark [20,22]. Compounds 141 and 142 were found in Garcinia
subelliptica [107] and G. smeathmannii (Planch. and Triana) Oliv. [108], respectively, and
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shared a common 2,2′,3′,4,6-pentaoxygenation pattern. Compounds 143–148, possessing a
common 2,3′,4,5′,6-pentaoxygenation pattern, were originally isolated from G. pedunculata
Roxb. ex Buch.-Ham. [109], G. mangostana [106], G. hombroniana Pierre [110], G. speciosa
Wall. [111], Hypericum annulatum Moris [8], and H. sampsonii [112], respectively. The rare
compounds 149 and 150 share common ring A and differ in ring B; both were isolated
from Dalbergia melanoxylon [59,113]. Compounds 151–153 possess a common 3,3′,4,5,5′-
pentaoxygenation pattern. The former 151 and 152 were isolated from the twigs of Garcinia
cantleyana var. cantleyana [65] while the later 153 was found in the pericarp of mangosteen
(G. mangostana) [114]. The sole compound 154 with 2,3,3′,4,4′-pentaoxygenation pattern
was isolated from the Securidaca diversifolia roots [38].
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More than fifteen C-glycosylated derivatives of the pentaoxygenated benzophenones
(Figure 11) have been found in plants, so far. Most of these compounds possess a 2,3′,4,4′,6-
pentaoxygenation pattern. The first report for naturally occurring C-glycosylated pentaoxy-
genated benzophenones dated from 1984 when Tanaka and coworkers isolated maclurin-
3-C-β-D-glucoside 155 along with its galloyl and p-hydroxybenzoyl esters 156–159 from
the Mangifera indica leaves [70]. Further galloyl esters 160 and 161 [71] as well as methoxy
derivatives 162 [81] and 163 [72] of 155 were found in the same plant source. Additional
methoxy derivatives 164–166 of 155 were isolated from the aerial parts of Polygala telephioides
Willd. [115,116]. The only di-C-glycoside 167 and C,O-glycoside 168 of pentaoxygenated
benzophenones were isolated from an ethanolic extract of P. glomerata [78]. Compound 169
is the only benzophenone C-glycoside with 2,3′,4′5′,6-pentaoxygenation pattern that was
isolated from the aerial parts of Hypericum humifusum L. ssp. austral Rouy et Foue [117].
C-glycosyl benzophenones 170 and 171 share common ring A with 2,3,5,6-oxygenation
patters and differ in the hydroxyl place in ring B. The former was isolated from Gnidia
involucrata [90] while the later was found in Polygala telephioides [115].

Over 30 O-glycosides of pentaoxygenated benzophenones (Figure 12) have been
reported to occur in plant species, so far. Contrary to C-glycosides, only six O-glycosides
with 2,3′,4,4′,6-pentaoxygenation patterns 172–177 have been encountered. Maclurin-6-O-β-
D-glucopyranoside 172 was simultaneously isolated from Gentiana verna subsp. pontica [94]
and from G. rhodantha [77]. Compounds 173, 174, and 177 were isolated from Dobinea
delavayi (Baill.) Baill. roots [118,119], while 175 and 176 were found in aerial parts of
Polygala tenuifolia [48] and Garcinia livingstonei [105], respectively. The vast majority of
O-glycosides (178–205) possess aglycones with 2,3′,4,5′,6-pentaoxygenation pattern and
glycosylation at position 6(2), 4 or 3′(5′). The arabinofuranosides 178 and 179 were isolated
from the aerial parts of Hypericum annulatum [120], while 180–183 were found in H. thasium
Griseb. [121,122]. The 6(2)-O-rhamosides 187 and 188 were isolated from H. elegans [123]
and H. pseudopetiolatum Keller, respectively. In addition, compounds 189–191 were also
found in later species [124]. Further acylated rhamosides 192 and 193 of 143 were isolated
from the aerial parts of H. seniawinii Maxim. [125]. The 6(2)-O-rhamnosides 194–196 of
145 were found in aerial parts of H. wightianum Wall. ex Wight et Arn. [126]. Only three
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O-xylopyranosides 197–199 of penataoxygenated benzophenones were originally isolated
from H. thasium [121], while only two O-arabinopyranosides 200 and 201 were found in
H. humifusum [117]. Compounds 202 and 203 isolated from the later plant [117] possess
glycosylation at position 4, while 204 and 205 were found in H. sampsonii [112] and H.
ellipticum Hook. [127], respectively, the sugar was attached at position 5′(3′) position. The
compounds 206 and 207 share rare 2,2′,4,5′,6-pentaoxygenation patterns that were isolated
from H. annulatum [8] and Garcinia mangostana [128], respectively.
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2.6. Hexaxygenated Benzophenones

Hexaxygenated benzophenones were rarely found in nature. To date, only three
compounds, 208–210 (Figure 13), have been isolated from Garcinia mangostana [128,129].

2.7. Uncategorized and Miscellaneous Benzophenones

In addition to the compounds shown so far, there are data on benzophenone deriva-
tives (Figure 14) in which one or several protons are replaced by a methyl, alcohol, carboxyl,
or acyl group, and dimeric compounds with xanthone have also been found. Some glyco-
sides of this class benzophenones have been detected, as well. The first records of this type
of benzophenone appeared in 1963 when 6-hydroxy-2,4-dimethoxy-3-methylbenzophenone
211 and its isomer 2-hydroxy-4,6-dimethoxy-3-methylbenzophenone 212 were isolated from
the essential oil of Leptospermum luehmannii F.M.Bailey [130]. Eighteen years later, bis(2-
hydroxy-4,6-dimethoxy-3-methylphenyl)methanone 213 was found in a benzene extract of
the wood of Qualea lubouriauana [131].
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For the first time, beishouwubenzophenone 214 was isolated from root tubers of
Cynanchum auriculatum Royle ex Wight [132]. Morintrifolin A 215 and B 216 were ob-
tained from hydromethanolic extract of Morinda citrifolia L. roots [133]. Compound 217
was found in an extract of the Anemarrhena asphodeloides roots [134]. The adducts of
3,3′,4,4′-trihydroxybenzophenone, and 2-hydroxypropionic acid 218–221 were isolated
from Ranunculus ssp. The former three compounds were found in R. ternatus DC. [135,136],
while the later was obtained from R. muricatus Moench [137]. The benzophenones 222–228
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have been isolated from fungi mostly belonging to Ascomycota group. Nidulalin B 222
was found in a dichloromethane extract of Emericella nidulans var. lata (Thom and Raper)
Subram. [138], while cytosporaphenone A 223 was obtained from an ethyl acetate extract
of Cytospora rhizophorae Kohlm. and E. Kohlm. [139]. Wentiphenone A 224 was discovered
in the ethyl acetate extract of Aspergillus wentii Wehmer [140], while 225 was isolated from
the fermentation broth of A. fumigatus Fresen. SWZ01 [141]. A halogenated benzophenone
226 was discovered in an extract of A. flavipes PJ03-11 [142], while 227 and 228 were found
in A. terreus Thom [143] and A. wentii [144], respectively. Garcihombrianone 229, which
was found in the roots of Garcinia hombroniana Pierre [145], can be viewed as two ben-
zophenone molecules sharing a common benzene nucleus. Three benzophenone-xanthone
dimers 230–232 were isolated from roots of G. dulcis (Roxb.) Kurz [146]. Benzophenone
O-glucosides 233 and 234 were found in Mitracarpus villosus (Sw.) DC. [147] and Dobinea
delavayi [119]. Seven benzophenone O-glucosides 235–241, some of which were galloyl
esters, were isolated from the leaves or fruits of Psidium guajava [47,148–150], while 242 was
found in P. littorale Raddi [151]. Compounds 243 and 244 were isolated from Cassia senna
var. angustifolia L. [152], while 245 and 246 were found in C. abbreviata Oliv. [153]. The only
C-glycoside 247 of this class of miscellaneous benzophenones was isolated from Aquilaria
sinensis [154]. Two N-containing benzophenones 248 and 249 were found in the moss
Pogonatum spinulosum Mitt. [155], while 250 was detected in Anemarrhena asphodeloides [62].

3. Distribution of Naturally Occurring Simply Oxygenated Benzophenones

The distribution of the benzophenones from Figures 2–14 is provided in Table 1. Up
to now, simple oxygenated benzophenones and their glycosides have been established in
77 plant genera distributed in 44 families, from which the family Corallinaceae belong to
the division Rhodophyta; the family Polytrichaceae to division Bryophyta; the families
Davalliaceae, Dryopteridaceae, and Hypodematiaceae to the division Polypodiophyta;
and 36 families from the division Magnoliophyta. The simply oxygenated benzophenones
are isolated from various plant organs, mainly from aerial parts, leaves, roots, rhizomes,
barks, and wood of angiosperms. They are less commonly found in stems, twigs, flowers,
and fruits of angiosperms; the thallus of mosses and leaves; and rhizomes of ferns. There
are only a few cases in which the compound from this group is obtained using essential
oils or a thallus of algae. Of all 250 reported compounds, the largest number of repre-
sentatives 51 were isolated from the Hypericaceae family, followed by 43 representatives
from Anacardiaceae, 36 from Clusiaceae, 24 from Polygalaceae, 22 from Thymelaeaceae,
and 18 from Fabaceae. In addition, there are data on the isolation of one compound from
Nepalese propolis and seven from microorganisms belonging to the Aspergillaceae and
Valsaceae families.

Table 1. Distribution of naturally occurring simply oxygenated benzophenones.

Family Species Compounds

Division Rhodophyta
Corallinaceae Jania rubens (L.) J.V. Lamouroux 159T [156]

Division Bryophyta
Polytrichaceae Polytrichum commune Hedw. 7, 8T [15]

Polytrichastrum formosum (Hedw.) G.L. Smith 3, 4, 5, 11T [13], 9, 10T [16]
Pogonatum inflexum (Lindb.) Sande Lac. 6, 12T [14]

P. spinulosum Mitt. 248, 249T [155]
Division Polypodiophyta

Davalliaceae Davallia solida (G. Forst.) Sw. 121RH [89]
Dryopteridaceae Dryopteris ramosa (C.Hope) C.Chr. 74L [157]

Hypodematiaceae Hypodematium fauriei (Kodama) Tagawa 74L [69]
Hypodematium crenatium (Forssk.) Kuhn. 74L [69]
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Table 1. Cont.

Family Species Compounds

Division Magnoliophyta
Anacardiaceae Dobinea delavayi (Baill.) Baill. 121, 174, 177, 234R [119], 134, 173R [118]

Mangifera indica L.

59, 93, 103, 102, 99L [76], 60, 104, 120, 98, 162L [81],
74P, B, L, 77B, L, 78B, L, 160P, B, 161P [71], 75, 155, 156,

157, 158, 159L [70], 88, 89, 90, 163, 79, 80, 81L [72], 91,
92, 82, 83, 84, 85L [73], 122L [158], 100 [81], 101L [82]

Annonaceae Huberantha jenkinsii (Hook.f. and Thomson)
Chaowasku 74, 87L [159]

Polyalthia cerasoides (Roxb.) Bedd. (Huberantha
cerasoides (Roxb.) Chaowasku) 74, 104TW [160]

Pseuduvaria fragrans Y. C. F. Su, Chaowasku
and R. M. K. Saunders 97L [79]

Apocynaceae
Cynanchum auriculatum Royle ex Wight

(Vincetoxicum auriculatum (Royle ex Wight)
Kuntze)

214ND [132]

Cynanchum bungee Decne. 214R [161]
C. otophyllum C. K. Schneid 214RH [162]

Asparagaceae Anemarrhena asphodeloides Bunge 59, 132RH [89], 60 RH [163], 67, 250RH [62], 74, 104,
122, 125RH [164], 217 RH [134]

Asphodelaceae Aloe vera Burm. f. 34L [165]

Asteraceae Helichrysum asperum (Thunb.) Hilliard and
B.L.Burtt 20, 21, 22, 23AP [27]

H. triplinerve DC. 17, 18, 19AP [25]
Leontonyx spathulatus Less. (Thunb.)

(Helichrysum litorale Bolus) 19R [26]

Tolpis webbii Sch. Bip 40AP [39]
Tolpis sp. 40AP [39]

Bignoniaceae Oroxylum indicum (L.) Benth. ex Kurz 68S [63]
Campanulaceae Codonopsis pilosula Franch. 34R [166]

Cistaceae
Fumana montana Pomel.

(Fumana ericoides subsp. montana (Pomel)
Maire)

104WP [167]

Clusiaceae Allanblackia floribunda Oliv. 15, 62W [58]
Garcinia assigu Lauterb. 133B [168]

G. cantleyana Whitm. var. cantleyana Whitm. 69, 70, 151, 152TW [65]
G. dulcis (Roxb.) Kurz 230, 231, 232R [146]

G. eugenifolia Wall. ex T.Anderson 69, 72R [67]
G. hombroniana Pierre 61, 135B [169], 145B [110], 229R [145]

G. livingstonei T. Anderson 135, 137, 176W, TW [105]
G. mackeaniana Craib 137L [170]

G. mangostana L.

44F [42], 61, 144, 138R [106], 69, 143F [64], 127F [171],
128F [95], 133W [172], 135, 153,F [114], 136B [104],

145B [173], 172F [114,174], 207, 209F [128], 208, 210F

[129]
G. multiflora Champ. ex Benth. 61, 133, 135S [103]

G. pedunculata Roxb. ex Buch.-Ham. 143W [109]
G. porrecta Laness. 146B [175]

G. preussii Engl. 44L [176]
G. smeathmannii (Planch. and Triana) Oliv. 142B [108]

G. speciosa Wall. 143, 135, 137, 145, 146S [111]
G. subelliptica Merr. 134W [102], 141W [107]

G. virgata Vieill. ex Guillaumin 14B [177]
G. xanthochymus Hook. f. ex T. Anderson 133F [178]

Symphonia globulifera L. f. 133W [179]
Tovomita longifolia (Rich.) Hochr. 19L [180]

Combretaceae Laguncularia racemosa (L.) C. F. Gaertn. 133B [181]
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Table 1. Cont.

Family Species Compounds

Costaceae
Costus speciosus (J. Konig) Sm. (Cheilocostus

speciosus (J. Konig) C. Specht = Hellenia speciosa
(J. Koenig) S.R.Dutta)

2EO [12]

Crassulaceae Sedum aizoon L. 59, 104ND [182]
Datiscaceae Datisca cannabina L. 34WP [183]

Diospyraceae
(Ebenaceae) Diospyros kaki Thunb. 44L [184]

Fabaceae (Leguminosae)
Acacia catechu (L.) Willd. (A. catechuoides (Roxb.)
Benth. = Senegalia catechu (L.f.) P. J. H. Hurter

and Mabb.)
133W [185]

A. catechuoides (Roxb.) Benth. (A. catechu (L.)
Willd. = Senegalia catechu (L.f.) P. J. H. Hurter

and Mabb.)
133W [185]

A. sundra (Roxb.) DC. (Senegalia chundra (Roxb.
ex Rottler) Maslin) 133W [185]

Calliandra umbellifera Benth. 104ND [186]
Cassia abbreviata Oliv. 245, 246B [153]

C. senna var. angustifolia L. (Senna alexandrina
Mill. = C. angustifolia M. Vahl) 243, 244F [152]

Cyclopia genistoides (L.) Vent. 74, 155S, L [187], 86S, L [65], 104WP [188]
C. pubescens Eckl. and Zeyh. 86, 155S, L [189]

C. subternata Vogel (Cyclopia falcata (Harv.)
Kies) 74WP [190]

Dalbergia cearensis Ducke 34W [34], 57W [191]
D. cochinchinensis Pierre ex Laness. 65S [61]

D. congesta Graham ex Wight. and Arn. 34R [192]
D. cultrata Graham ex Benth. 34B [193]

D. latifolia Roxb. 34W [194]
D. melanoxylon Guill. and Perr. 34, 63, 150W [59], 64, 149W [113]

D. miscolobium Benth. (D. violacea (Vogel)
Malme) 34W [34], 57W [191]

D. odorifera T. Chen 34W [195], 35W [35], 65W [196]
D. parviflora Roxb. 34W [197]

D. sissoo Roxb. 34W [198]
D. volubilis Roxb. 34W [199]

Machaerium scleroxylon Tul. 56W [52], 57W [53]
Pterocarpus santalinus L. f. 34W [200], 150W [201]

Gentianaceae Centaurium erythraea Rafin. 61CC [202]
Gentiana lutea L. 61RH [57]

G. rhodantha Franch. ex Hemsl. 94, 126, 172WP [77]
G. verna L. subsp. pontica (Soltok.) Hayek 127, 129, 172AP [94]

Swertia chirayita (Roxb. ex Fleming) H. Karst. 59, 133WP [203]
Tripterospermum japonicum (Sieb. and Zucc.)

Maxim. (Tripterospermum trinervium (Thunb.)
H.Ohashi and H.Nakai)

130AP [96]

Hypericaceae Cratoxylum formosum Benth. and Hook. f. ex
Dyer 55L [44], 131S [97]

Hypericum androsaemum L. 17, 61CC [204]
H. annulatum Moris 147, 206AP [8], 178, 179AP [120], 184AP [205]
H. beanii N. Robson 44AP [206]
H. densiflorum Pursh 31AP [207]
H. elatoides R. Celler 44, 241AP [208]

H. elegans Stephan ex Willd. 184, 187, 206AP [123], 31AP [32]
H. ellipticum Hook. 205AP [127]

H. humifusum L. 169, 202, 203, 200, 201AP [117]
H. pseudopetiolatum var. kiusianum (Y. Kimura)

Y. Kimura (H. kiusianum Koidz.) 188, 189, 190, 191AP [124]
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Table 1. Cont.

Family Species Compounds

H. lanceolatum Lam. 71L, B [66]
H. maculatum Crantz 147, 178, 179AP [209]
H. nagasawae Hayata 32AP [33]

H. nokoense Ohwi 19, 30AP [31]
H. przewalskii Maxim. 71, 19WP [210], 185, 186AP [211]

H. sampsonii Hance 44WP [212], 148, 188, 204AP [112], 19, 26, 27, 28, 29AP

[29], 24, 25WP [28], 33AP [30]
H. seniawinii Maxim. 192, 193AP [125]

H. styphelioides A. Rich 13L [17]
H. thasium Griseb. 44, 197, 198, 199, 181AP [121], 180, 182, 183AP [122]

H. wightianum Wall. ex Wight. and Arn. 194, 195, 196WP [126]

Iridaceae Belamcanda chinensis (L.) DC. (Iris domestica (L.)
Goldblatt and Mabb.) 59RH [213], 104, 122RH [214]

Iris adriatica Trin. ex Mitić 60RH [1]
I. dichotoma Pall. 104, 122RH [214]
I. florentiana L. 59RH [215]
I. germanica L. 59ND [216]

I. humilis Georgi 59, 60RH [217]
I. lactea Pall. 59RH, L, 60RH [218]

I. pallida Lam. 60RH [219]
I. pumila L. 59, 60RH, AP [217]

I. potaninii Maxim. 59AP [220]
I. scariosa Willd. ex Link 59RH [221]

I. tectorum Maxim. 104, 122RH [214]
I. variegata L. 59, 60RH, AP, FL [217]

Lamiaceae Salvia miltiorrhiza Bunge 108R [222]
Lauraceae Aniba duckei Kosterm. (Aniba rosodora Ducke) 14W [223], 60W [56]

Coto (unidentified sp.) 14B [19,20]
Lindera fruticosa Hemsl. (L. neesiana (Wall. ex

Nees) Kurz) 37R [224], 38R [225]

Nectandra coto Rusby 14, 15, 16, 139, 140B [226]
Paracoto (unidentified sp.) 15, 16, 139B [20], 140B [22]

Malvaceae Cola nitida Schott and Endl. 34F [227]

Magnoliaceae Talauma mexicana (DC.) G. Don (Magnolia
mexicana DC.) 1L [11]

Moraceae Morus tinctoria L. (Maclura tinctoria (L.) Steud.
= Chlorophora tinctoria (L.) Benth.) 133W [99]

Morus alba L. 59, 133W [55]
Myrtaceae Eucalyptus hemiphloia Roxb. 133ND [228]

E. maideni F. Muell. 44BR [229]
Leptospermum luehmannii F. M. Bailey 211, 212L [130]

Myrtus communis L. 34AP [230]

Psidium guajava L. 44L [150], 50L [46], 51, 235L [47], 104L [231], 236,
237F [148], 238, 239, 240L [149], 241L [150,232]

P. littorale Raddi (P. cattleyanum Sabine) 50, 237, 242L [151]
Syzygium polyanthum (Wight) Walp. 34, 73, 133L [68]

Olacaceae Malania oleifera Chun and S. K. Lee 42, 44TW [40]
Paeoniaceae Paeonia x suffruticosa Andrews 104R [233]

Passifloraceae Passiflora tripartita (Juss.) Poir. 237F [234]
Piperaceae Piper wallichii (Miq.) Hand.-Mazz. 49S [45]

Polygalaceae Polygala arillata Bush.-Ham. ex D. Don 43B [41]
P. arvensis Willd. 44S, L, R [235]

P. glomerata Lour. (Polygala chinensis L.) 43, 95, 96, 167, 168WP [78]
P. tricornis Gagnep. (Polygala karensium Kurz) 44, 46R [43]

P. sibirica L. 175R [236]
P. sibirica L. var. megalopha Franch. 54WP [50]
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Table 1. Cont.

Family Species Compounds

P. telephioides Willd. 44, 166WP [116], 164, 165, 171WP [115]
P. tenuifolia Willd. 45, 52, 175AP [48], 53, 95B [49]

Securidaca diversifolia (L.) S. F. Blake 39, 66, 154R [38],
S. inappendiculata Hassk. 37, 38R [37]

S. longipedunculata Fresen. 37RB [237], 36, 38, 39, 41R [36], 58R [54]
Ranunculaceae Ranunculus muricatus L. 221AP [137]

R. ternatus Thunb. 218R [135], 219, 220R [136]

Rhamnaceae Frangula purshiana (DC.) A. Gray ex J. G.
Cooper 16B [238]

Rosaceae Coleogyne ramosissima Torr 104AP [83]
Pyracantha fortuneana (Maxim.) H. L. Li 44, 47, 48F [44]

Rubiaceae Coffea arabica L. 74L [239]
Mitracarpus villosus (Sw.) DC. (Mitracarpus

hirtus (L.) DC.) 233L [147]

Morinda citrifolia L. 215, 216R [133]
Vangueria agrestis (Schweinf. ex Hiern) Lantz. 122, 124R [92]

Sapindaceae Litchi sinensis Sonn. 44F [240]
Sapotaceae Planchonella obovata (R.Br.) Pierre. 104, 105, 106, 107L [84]
Theaceae Camellia sinensis (L.) Kuntze (Thea sinensis L.) 44ND [241]

Thymelaeaceae Aquilaria crassna Pierre ex Lecomte 74, 87, 108L [242]

A. sinensis (Lour.) Gilg
59, 98L [80], 74, 114L [88], 87, 108L [75], 104, 247S

[154], 115, 116, 117, 118, 109L [85], 110, 111, 112,
119FB [86]

A. malaccensis Lam. 74, 108, 109L [243]
A. yunnanensis S.C.Huang 104, 108, 109, 113F [87]

Gnidia involucrata Steud. ex A.Rich. 122, 170AP [90]
Phaleria macrocarpa (Scheff.) Boerl. 60L [244], 122L, F [245,246], 125F [247], 123F [91]

P. nisidai Kanehira 108L [248]
Vochysiaceae Qualea lubouriauana Paula 213W [131]

Division Ascomycetes

Aspergillaceae Aspergillus flavipes (Bainier and Sartory) Thom
and Church 226, 227, 228 [142]

Aspergillus fumigatus Fresen. 225 [141]
Thom 227 [143]

Aspergillus wentii Wehmer 224 [140], 228 [144]
Emericella nidulans var. lata (Thom and Raper)
Subram. (Aspergillus latus (Thom and Raper)

A.J.Chen, Frisvad and Samson)
222 [138]

Valsaceae Cytospora rhizophorae Kohlm. and E. Kohlm. 223 [139]
Other sources

Nepalese Propolis 34 [249]
L leaves; EO essential oil; T talus; RH rhizomes; R roots; P peels; B bark; TW twigs; ND not detected; AP aerial parts;
WP whole plant; S stem; W wood; F fruit; CC cultured cells; FL flower; RB root bark; BR branches; FB flower buds

It should also be noted that the least numerous groups of simply oxygenated ben-
zophenones are those with mono- and hexaoxygenation. The former group includes only
two representatives isolated from Talauma mexicana (Magnoliaceae) and Costus speciosus
(Costaceae), while the later consists of three representatives obtained from Garcinia man-
gostana (Clusiaceae). Dioxygenated benzophenones number 11 compounds, one of which
was isolated from Hypericum styphelioides (Hypericaceae), while the remaining 10 were
found in mosses from Polytrichaceae. Trioxygenated benzophenones comprise 42 com-
pounds detected in species of Clusiaceae (1 compound), Olacaceae (1), Piperaceae (1),
Fabaceae (2), Rosaceae (2), Myrtaceae (2), Lauraceae (3), Asteraceae (8), Hypericaceae (11),
and Polygalaceae (11). The most numerous groups are those of pentaoxygenated and
tetraoxygenated benzophenones. The former group consists of 75 representatives found in
members of Gentianaceae (1), Moraceae (1), Thymelaeaceae (1), Lauraceae (2), Fabaceae
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(2), Polygalaceae (8), Anacardiaceae (12), Clusiaceae (16), and Hypericaceae (32) while
the latter include 77 compounds isolated from species of Annonaceae (1), Rosaceae (1),
Davalliaceae (1), Rubiaceae (1), Myrtaceae (1), Bignoniaceae (1), Lauraceae (1), Moraceae (1),
Hypodematiaceae (2), Asparagaceae (2), Hypericaceae (2), Sapotaceae (3), Polygalaceae (4),
Clusiaceae (5), Gentianaceae (5), Fabaceae (6), Thymelaeaceae (17), and Anacardiaceae (23).

The allergy-associated benzophenones 3 (bezophenone-3 or BP-3), 5 (benzophenone-1
or BP-1), and 73 (benzophenone-2 or BP-2) [10] have limited distribution across natural
sources. The former two compounds were found only in Polytrichastrum formosum while
the later was detected only in Syzygium polyanthum. The origin of these compounds is
uncertain: whether they are a result of biosynthesis or environmental pollution.

4. Biological Properties of Naturally Occurring Simply Oxygenated Benzophenones

Biological and pharmacological studies on simple oxidized benzophenones and their
glycosides have established various activities, among which the most prominent are an-
tioxidant, anti-inflammatory, cytotoxic, and antimicrobial. Additionally, their influence on
α-glucosidase, fatty acid, and triglyceride metabolism has also been reported. Up to the
beginning of 2023, 250 compounds have been isolated or detected, of which ca 150 have
been pharmacologically tested, which is 60% of all.

4.1. Antioxidant Activities
4.1.1. DPPH Radical Scavenging Activity

The results of in vitro radical scavenging activity assays using 2,2-diphenyl-1-
picrylhydrazyl (DPPH) free radical showed moderate to strong activity for 31 [205,209,250],
55 [51], 61 [169], 133 [103], 137 [51,105], 145 [169], 147, 206 [205,209,250], 208, and 210 [129].
Low or very low radical-scavenging activity was found for 44 [176], 59 [76], 78, 79 [81],
87 [251], 93 [76], 98, 120 [81], 142 [108], 162, 163 [81], 176 [105], 178, 179, 184 [205,209,250],
225 [141], 238, and 241 [232].

4.1.2. ABTS Radical Scavenging Activity

The radical scavenging activity of the benzophenones was confirmed in vitro using
2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+) radical cation-based as-
says. The tested compounds possessed moderate to strong radical scavenging activities.
Compound 13 showed moderate activity (1.93 mM TE) compared to the activity of the
reference antioxidant compounds quercetin (3.33 mM TE) and rutin (2.78 mM TE) [17].
Annulatophenone 147 (91.7%) and its O-glycosides annulatophenonoside 178 (93.35%)
and acetylannulatophenonoside 179 (85.9%) possessed significantly strong ABTS radical
scavenging activity, which is comparable to that of ascorbic acid (96.2%) [209]. The results
of another study showed that neoannulatophenonoside 184 (IC50 = 0.25 µM) showed the
highest ABTS activity, while hypericophenonoside 206 (IC50 = 41.52 µM), elegaphenonoside
187 (IC50 = 87.17 µM), and elegaphenone 31 (IC50 = 379.85 µM) possessed moderate to
lower activity compared to hyperoside (IC50 = 6.61 µM) and BHT (IC50 = 0.08 µM) [250].
Moreover, compounds 145 (IC50 = 4.92 µM), 135 (IC50 = 4.60 µM), and 61 (IC50 = 9.9 µM)
displayed higher inhibition of ABTS•+ than Trolox (IC50 = 10.9 µM) [169]. The results
showed that iriflophenone-3-C-glucoside 74 (1.04 µM TE) scavenged ABTS•+ radicals [252],
while 142 (IC50 > 100 µg/mL) possessed lower activity [108]. Additionally, guavinoside D
241 (IC50 = 29.27 µg/mL) and guavinoside E 238 (IC50 = 32.97 µg/mL) displayed moderate
activity compared to vitamin C (IC50 = 8.53 µg/mL) [232].

4.1.3. FRAP (Ferric Reducing Antioxidant Power) Assay

FRAP activities of compounds annulatophenonoside 178, acetylannulatophenono-
side 179, annulatophenone 147 (0.1 mM) were compared to BHT and Vit C at the same
concentration. In contrast to both glycosides, only their aglycone 147 possessed mod-
erate activity (6.9 mM TE) [209]. Furthermore, compound 31 displayed (942.16 µM TE)
stronger FRAP activity compared to the control hyperoside (421.75 µM TE) [250]. Addi-
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tionally, iriflophenone 3-C-β-D-glucoside 74 (1.2 mmol Fe2+/g) and iriflophenone-3,5-C-β-
D-diglucoside 87 (0.2 mmol Fe2+/g) showed lower FRAP activity as compared to Trolox
(8.0 mmol Fe2+/g) [251].

4.1.4. Inhibition of Lipid Peroxidation

The inhibition of lipid peroxidation of compounds (0.1 mM) compounds 31, 206,
184, and 187 were determined in a linoleic acid system using the ferric thiocyanate (FTC)
method. Only neoannulatophenonoside 184 inhibited the oxidation of linoleic acid for
five days. All tested benzophenones demonstrated lower antioxidant activity compared to
BHT [250]. The antioxidant activity 4-geranyloxy-2,6-dihydroxybenzophenone 19 (70%)
was assessed by monitoring the fluorescence decay of Fe2+-induced oxidation of a model
liposome system [207], while compound 205 exhibited 61% inhibition of Fe2+-induced lipid
peroxidation by using large unilamellar vesicles (LUVs) [127]. Additionally, 151 inhibited
the copper-mediated oxidation of LDL (low-density lipoprotein) with IC50 = 3.6 µM, which
was comparable to that of the positive control probucol (0.6 µM) [65].

4.2. Antiallergic Activity

In the mast cell degranulation experiment, cearoin 34 displayed significant inhibitory
effects on the release of β-glucuronidase (IC50 = 17.9 µM) and histamine (IC50 = 16.3 µM)
from rat mast cells compared to the positive control mepacrine (IC50 = 22.3 µM for β-
glucuronidase and IC50 = 14.7 µM for histamine). The results suggested that 34 could be a
promising antiallergic agent [253].

4.3. Immunosuppressive Activity

Compounds 100 and 101 estimated a good inhibition of concanavalin A-induced
spleen cell proliferation in a concentration-dependent manner (10 to 40 µM). At a concen-
tration of 40 µM, 100 (31.92% ± 3.84) and 101 (31.67% ± 3.43) had a similar immunosup-
pressive activity lower than the activity of positive control dexamethasone (56.99% ± 4.22)
at the same concentration [82].

4.4. Anti-Inflammatory Activity

Rat neutrophil degranulation showed the significant inhibitory ability of cearoin
34 on the release of β-glucuronidase and lysozyme with IC50 values of 7.9 µM and
11.7 µM, respectively, compared to a positive control of trifluoperazine (IC50 = 16.9 µM
for β-glucuronidase and 12.8 µM for lysozyme) [253]. Moreover, 34 showed significant
concentration-dependent inhibition of NO (nitric oxide) production in lipopolysaccharide
(LSP)-activated macrophage-like J774.1 cells with better IC50 = 15.4 µM value than the
positive control NG- monomethyl-L-arginine (L-NMMA) (IC50 = 27.1 µM) [249]. The anti-
inflammatory activities were also investigated by measuring NO production in LSP-induced
RAW 264.7 cells. The results showed that 50 (10 µmol/L) [46], 34 (IC50 = 11.7 µM) [254],
148 (IC50 = 2.40 µM), 204 (IC50 = 2.29 µM), 188 (IC50 = 2.00 µM) compared to the pos-
itive control cadamonin (IC50 = 1.41 µM) [112], and 44 (IC50 = 17.23 µM, compared to
indomethacin IC50 = 15.20 µM) [255] possessed significant inhibitory activity against NO
production. Additionally, the results showed that iriflophenone-2-O-α-L-rhamnoside
108 were able to reduce significantly NO production in RAW 264.7 cells stimulated by
LPS/IFN-
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113 (IC50 = 95.4 µM) [87]. The anti-neuroinflammatory activity of 186 was evaluated by
determining its ability to inhibit the production of NO in LPS-activated BV-2 microglial
cells. The results showed that 186 displayed significant anti-neuroinflammatory activ-
ity (IC50 = 0.61 µM) [211]. Garcimangosone D 44 also exhibited high anti-inflammatory
activities in LPS-stimulated BV-2 microglial cells (IC50 = 14.52 µM) and LPS-stimulated
THP-1 macrophage cells (IC50 = 19.14 µM) compared to indomethacin (IC50 = 17.64 µM and
IC50 = 19.37 µM), respectively [255]. Furthermore, iriflophenone 59 (IC50 = 52.59 µM) and
aquilarinoside A 98 (IC50 = 89.92 µM) showed significant inhibitory activity against neu-
trophil respiratory burst stimulated by PMA [80], while hydrocotoin 15 (IC50 = 11.03 µM)
showed strong inhibitory effects on PGE2 production in RAW 264.7 macrophage cells [256].
In addition, the cyclooxygenase assay of 31 estimated a 13% inhibition of the COX-1 enzyme
and 48% for COX-2 at a concentration of 25 µg/mL [207].

4.5. Estrogenic Activity

Compounds 108 (IC50 = 630 µM) and 59 (IC50 = 700 µM) showed significant binding
abilities to the estrogen receptor (ERα) at 1 mM concentration compared to positive control
of 17β-estradiol (IC50 = 18 nM). Furthermore, 108 and 59 exhibited 80% and 68% inhibition,
respectively, of labeled estradiol binding to Erα at 1 mM [248].

4.6. Cytotoxic and Antitumor Activities
4.6.1. Cytotoxicity on Human Cancer Cell Lines

Cytotoxicity assays performed on cell lines HD-MY-Z (Hodgkin’s lymphoma), K-562
(chronic myeloid leukemia), KE-37 (T-cell leukemia), CCRF-CEM (acute lymphoblastic
leukemia), HL-60 (myeloid leukemia), and Raji cells (non-Hodgkin’s lymphoma) showed
significant antiproliferative activity of elegaphenone 31 with IC50 values of 15.9 µM (HD-
MY-Z), 13.9 µM (K-562), 16.9 µM (KE-37) [32], and 108 with IC50 = 8.9 µM (HL-60) [222].
Furthermore, hyperinagazone 32 exhibited IC50 = 29.05 µM on CCRF-CEM [33], hyperi-
nokone 30 showed IC50 = 36.44, while 19 had IC50 = 27.04 [31]. In addition, a short-term
in vitro assay with 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced Epstein–Barr virus
early antigen (EBV-EA) activation in Raji cells showed a significant inhibitory effect of
maclurin 133, compared to a positive control of the strong antitumor promoter glycyrrhetic
acid (enoxolone) [168]. Assay performed on the MCF-7 cell line (breast adenocarcinoma)
showed significant cytotoxicity of 19 with an IC50 value of 4.8 µg/mL [180]. Very low
cytotoxicity on the MCF-7 cell line showed benzophenones 15 (IC50 > 200 µM) [119], 145
(inhibition < 10% at 20 µM) [169], 146 (IC50 = 119.3 µg/mL) [175], sampbenzophenones D–G
26–29 (IC50 > 40 µM) [29], 7 (IC50 > 100 µM), 8 (IC50 > 100 µM) [15], 172 (IC50 > 100 µM), 127
(IC50 > 100 µM), 143 (IC50 > 100 µM), and 44 (IC50 > 100 µM) [257]. Weak cytotoxicity against
MDA-MB-231 cells was reported for garcimangosone D 44 (IC50 = 67.20 ± 1.19 µM) [255],
hyperprzeone A 19 (IC50 = 123.87 µM), and 71 (IC50 > 200µM) [210]. Another study showed
that 135 (ED50 = 2.56 µM) and 145 (ED50 = 6.91 µM) displayed significant cytotoxic activity
against BCA-1 cell line (human breast cancer) [111]. Additionally, treatment of MCF-7 and
T-47D (infiltrating ductal carcinoma of the breast) cell lines with 59 was reported to result
in increased cell proliferation in a concentration-dependent manner with EqE10 values
of 0.7 µM and 4.9 µM for MCF-7 and T-47D cell lines, respectively [213]. Melanoxoin
150 showed high cytotoxicity against Ca9-22 (gingival carcinoma), with an IC50 value of
0.46 µg/mL [201]. An analysis performed on the HCT-116 cell line (colon cancer with a
mutation in codon 13 of the ras-protooncogene) showed a significant cytotoxicity of 31
(IC50 = 8.2 µg/mL) [207], 208 (IC50 = 1.9 µM), and 210 (IC50 = 1.8 µM) [129]. The results also
showed that compounds 239 (IC50 = 60 µM) and 235 (IC50 = 80.3 µM) inhibited HCT-116
cells growth up to 81.4% and 66.2% at dose of 100 µM, respectively [258]. Low cytotox-
icity on the HCT-116 cell line was reported for 248, 249 (IC50 > 50 µM) [155], 7, 8 [15], 9,
10 [16], 44, 172, 127, 143 with IC50 values > 100 µM [257]. Furthermore, very low cytotoxic
activity against the HT-29 (colorectal adenocarcinoma with epithelial morphology) cell
line possessed garcimangozone D 44 (IC50 > 150 µM) [176]. Moreover, moderate to low
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activity against cellular Col-2 line (human colon cancer) was reported for compounds 135
(ED50 = 11.76 µM) and 145 (ED50 = 20.85 µM) compared to the positive control ellipticine
(ED50 = 2.43 µM) [111]. Assays performed on HepG2 cell line (liver cancer) showed high cy-
totoxicity for 12 [15], 11 (IC50 = 38.14 µM) [13], 250 (IC50 = 153.1 nM), 217 (IC50 = 3161 nM),
and 67 (IC50 = 1764 nM). Additionally, the last four compounds were compared to the
positive control 5-fluorouracil (IC50 = 5659 nM) [62]. Moderate cytotoxicity against HepG2
cell line displayed 145 (IC50 = 9.81 µM) and 138 (IC50 = 19.41 µM) compared to the positive
control sorafenib (IC50 = 2.66 µM) and doxorubicin (IC50 = 3.07 µM). [106]. Furthermore,
very low cytotoxic activity possessed benzophenones 174, 234, 121 [119], 248 (IC50 > 50 µM),
249 (IC50 > 50 µM) [155], and 44, 172, 127, 143 [257]. Furthermore, 250 (IC50 = 180.6 nM),
217 (IC50 = 6250 nM), 96 (IC50 = 1182 nM), and 67 (IC50 = 2274 nM) showed significant
cytotoxicity against Hep3B (liver cancer with epithelial morphology) cells compared to
the positive control 5-fluorouracil (IC50 = 51709 nM) [62]. Additionally, compound 71
showed moderate cytotoxic against SMMC-7721 cells, with IC50 values of 46.91 µM com-
pared to the positive control cisplatin (IC50 = 12.49 µM) [210]. A significant and moderate
cytotoxic effect against KB (human oral nasopharyngeal carcinoma) cells was reported for
135 (ED50 = 2.02 µM) and 145 (ED50 = 14.12 µM), respectively, compared to the positive
control ellipticine (ED50 = 2.19 µM) [111]. Cytotoxicity assays performed on AGS (gastric
adenocarcinoma) and SGC-7901 (human gastric carcinoma) cell lines showed an IC50 value
for 31 was 12.4 µg/mL (AGS) [207], for 241 and 238 were >10 µg/mL (SGC-7901) [232]
and 44 (IC50 = 107.73 µM) (SGC-7901) compared to cisplatin (IC50 = 15.74 µM) [255]. The
cytotoxicity study of 145 on U2OS (human osteosarcoma with epithelial morphology) cell
line demonstrated 27% cell death at 72 h [169]. Benzophenone 210 possessed a significant
cytotoxic potential towards A549 (human alveolar basal epithelial cell adenocarcinoma)
(IC50 = 1.4 µM), while 208 exhibited moderate activity with IC50 = 2.3 µM in compar-
ison to doxorubicin (IC50 = 0.6 µM) [129]. Compounds 135 (ED50 = 5.68 µM) and 145
(ED50 = 12.34 µM) showed a significant and moderate cytotoxic potential, respectively,
against Lu-1 (human lung cancer) cells compared to ellipticinec (ED50 = 2.11 µM) [111].
Benzophenone 19 (4.4 µg/mL) demonstrated significant cytotoxic activities towards H460
(non-small cell lung cancer) [180], while alternative study showed IC50 = 52.13 µM. In the
later research compound 71 (IC50 = 97.13 µM) showed low cytotoxicity against the same cell
line compared to cisplatin (IC50 = 8.78 µM) [210]. Garcimangosone D 44 displayed strong
cytotoxic activity against A-375 cell line (human malignant melanoma) with an IC50 value
of 24.67 µM compared the positive control cisplatin (IC50 = 6.61 µM) [255]. Additionally,
19 (IC50 = 100.21 µM) and 71 (IC50 = 63.67 µM) showed weak cytotoxic activity against
A375 [210]. Cytotoxicity assays performed against cell lines SHSY-5Y (neuroblastoma),
IMR-32 (neuroblastoma with rare areas of organoid differentiation) demonstrated IC50 val-
ues of 16.83 µM (IMR-32) for compound 32 compared to doxorubicin (IC50 = 0.037 µM) [33]
and IC50 values of 25.54 µM and 69.36 µM (SHSY-5Y) for 19 and 71, respectively, com-
pared to cisplatin (IC50 = 4.00 µM) [210]. In addition, 44 was found to possess high
and selective cytotoxicity (IC50 = 27.70 µM) against SHSY-5Y cells compared to cisplatin
(IC50 = 5.14 µM) [255]. Benzophenone 145 (at 20 µM) was reported to cause 49% cell death
after 72 h treatment in DBTRG (human glioblastoma) cell line [169], while 205 inhibited
the proliferation of SF-268 (human brain glioblastoma/astrocytoma) cell line by 73% at a
concentration of 25 µg/mL [127]. Cytotoxicity of 19 was reported to be high against SF-268
cells at a concentration of 2.0 µg/mL [180]. Garcimangosone D 44 was reported to exhibit
cytotoxicity against the SiHa (human cervical squamous cell carcinoma) cell line with an
IC50 value of 64.83 µM compared to a positive control cisplatin (IC50 = 9.87 µM) [255]. The
cytotoxicity test against PANC-1 cell line (pancreatic carcinoma with epithelial morphology)
showed that pogonatone C 248 possessed high activity with an IC50 value of 9.2 µM, while
pogonatone D 249 had moderate activity with an IC50 of 28.3 µM compared to vinblastine
(IC50 = 2.7 µM) [155].
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4.6.2. Cytotoxicity on Animal Cell Lines and Models

The brine shrimp lethality test (BSL) showed high toxicity for maclurin 133 (LD50
= 43.1 µM) [103]. Benzophenone O-glucoside 122 demonstrated cytotoxicity in a dose-
dependent manner with an IC50 value of 83 µg/mL against the NS-1 (mouse myeloma) cell
line [245] and inhibitory ability with an IC50 of 5.1 µg/mL against L1210 (mouse leukemia)
cell line [259]. Aquilaside B 111 and C 112 were found to show moderate cytotoxicity
against SK-MEL (mammalian amelanotic cutaneous melanoma) cells with an IC50 value
of 17.0 and 12.0 µg/mL, respectively, compared to doxorubicin (IC50 = 1.6 µg/mL) [86].
Furthermore, the assay against ASK (rat glioma cell) showed that 135 also possessed
moderate cytotoxic activity with an ED50 value of 9.95 µM compared to ellipticine [111].

4.7. Cytoprotective Effects

The benzophenones 147, 178, 179, 184, and 206 were tested for hepatoprotective effect
against carbon tetrachloride toxicity in isolated rat hepatocytes. The results indicated
that 147, 178, and 179 showed weaker toxic effects compared to CCl4 and in combina-
tion exhibited statistically significant protection against the toxic agent [260]. In addition,
the benzophenone O-glycosides 178, 179, 184, and 206 exhibited cytoprotective effects
in a model of epirubicin-induced cellular toxicity in K-562 cells. The cytoprotective po-
tential was concentration-dependent and more pronounced at the higher concentration
of 25 µM with IC50 values of 1.45–3.51 µM. Furthermore, benzophenones 178, 179, and
184 showed an ability to ameliorate epirubicin-induced anti-clonogenic effects on bone
marrow cell colony-forming units in vitro [205]. It was found that compounds 43, 95, 96,
167, and 168 at a concentration of 10−5 mol/mL showed hepatoprotective activity against
D-galactosamine-induced toxicity in WB- F344 rat hepatic epithelial stem-like cells [78]. Fur-
thermore, guavinoside B 235 was reported to exhibit significant activity on acetaminophen
(APAP)-induced liver injury in vitro and in vivo. In vitro, at a concentration of 30 µM, 235
significantly reduced intracellular ROS levels in HepG2 cells. Additionally, in vivo pretreat-
ment with compound 235 (100 mg/kg/day) significantly alleviated hepatocyte infiltration
and necrosis in C57BL/6 mice, improved serum and liver biochemical parameters such
as ALT, AST, SOD, GSH, ROS, MDA as well as TNF-α levels [261]. It was reported that
iriflofenone-3,5-C-β-diglucoside 87 at a very low concentration (1 ng/mL) showed protec-
tive activity (81.77% cell viability) on cultured P19-derived neurons compared to the control
condition (52.81% cell viability). The results also showed that compound 87 could signifi-
cantly increase the number of neurites (3.77 branches) and stimulate the outgrowth of the
cultured neurons (64.62 µm) compared with the control (number of neurites: 1.71 branches;
length: 40.97 µm) [262]. The protective effects of hyperwightin E 196 and petiolin G 189
against corticosterone-induced PC12 cell injury were assessed. The tested benzophenones
exhibited noticeable neuroprotection at 10 µM. They significantly increased the cell survival
rate from 58.57% (for the model) to 67.89% and 66.23%, respectively, compared to positive
control desipramine (cell viability of 72.33%) [126].

4.8. Antimicrobial Activity
4.8.1. Antibacterial Activity

The benzophenones 19 (MIC = 12.5 µg/mL) [180] and 31 (MIC = 5–12.5 µM) [263] were
reported to have inhibitory activity against Gram-positive Staphylococcus aureus. Iriflofenone-
3-C-β-D-glucoside 74 (MIC = 62.5 µg/mL) also exhibited strong antibacterial activity against
S. aureus in comparison to cefixime, a well-known antibiotic (MIC = 62.5 µg/mL) [157].
Moderate antibacterial activities possessed mitraphenone A 14 (MIC = 50 µM) compared
to moxifloxacin [147] and cearoin 34 (with 15 mm inhibitory zone) compared to a pos-
itive control imipenem (with 30 mm inhibitory zone) [230]. Weak antibacterial activity
against S. aureus was reported for 142 (MIC = 128 µg/mL) [108], 44 (MIC = 250 µg/mL),
241 (MIC = 400 µg/mL) [150], 60 (MIC = 1800 µg/mL), 122 (MIC = 1800 µg/mL) [264],
and melannoin 63 (MIC = 3.1 mg/mL) [60]. Weak antibacterial activity against Bacillus
subtilis was also reported for 74 (MIC = 125 µg/mL) [157], 34 (with 12 mm inhibitory
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zone) [230], 60 (MIC = 1800 µg/mL), and 122 (MIC = 1800 µg/mL) [264]. Elegaphenone
31 showed good antibacterial activity against Enterococcus faecalis (MIC = 7.5 µM) and E.
rivorum (MIC = 12.5 µM) [263]. Mitraphenone A 233 [147] and garcimangosone 44 [176]
showed moderate and weak antibacterial activity against E. faecium with MIC = 50 µM
and MIC > 128 µg/mL, respectively. Significant antibacterial activity against Mycobac-
terium tuberculosis was found for 219 (MIC = 41.67 µg/mL) compared to rifampicin as a
reference drug (MIC = 2.08 µg/mL). Additionally, the combination (1:1) of 219 and gal-
lic acid (MIC = 20.83 µg/mL) was better than that of 219 alone [136]. Furthermore, the
results also showed that 233 (MIC > 50 µM) [147] possessed moderate activity, while 220
(MIC = 266.67 µg/mL) exhibited weak antibacterial activity against M. tuberculosis [136].
Additionally, 19 was reported to exhibit significant activity at a concentration of 12.5 µg/mL
against M. smegmatis [180]. Iriflofenone-3-C-β-D-glucoside 74 (MIC = 62.5 µg/mL) exhib-
ited strong antibacterial activity against Gram-negative bacteria Escherichia coli in com-
parison to cefixime (MIC = 62.5 µg/mL) [157]. Weak and very weak antibacterial activity
against E. coli was reported for garcimangosone D 44 (MIC = 650 µg/mL), guajaphenone A
241 (MIC = 900 µg/mL) [150], 60 (MIC = 900 µg/mL), and 122 (MIC = 900 µg/mL) [264]. A
moderate antibacterial activity against Pseudomonas aeruginosa was determined for cearoin
34 (16 mm inhibitory zone) compared to a standard drug imipenem (with 24 mm inhibitory
zone) [230]. In addition, it was found that elegaphenone 31 enhanced the elimination
of intracellular P. aeruginosa in macrophages exposed to subinhibitory concentrations of
the fluoroquinolone antibiotic norfloxacin [263]. Furthermore, 37 (4 mm inhibitory zone)
showed weak antibacterial activity compared to gentamicin (15 mm inhibitory zone) [237].
In addition, very weak activity against P. putida was found for 60 and 122 with an MIC value
of 900 µg/mL [264]. Cearoin 34 exhibited antibacterial activity against Salmonella typhi with
an inhibitory zone of 18 mm compared to a standard drug imipenem (25 mm) [230]. To date,
antibacterial activity against Klebsiella pneumoniae has been reported only for iriflofenone-3-
C-β-D-glucoside 74, which showed significant activity with an MIC value of 31.1 µg/mL
comparable to the well-known antibiotic cefixime (MIC = 31.1 µg/mL) [157].

4.8.2. Antimycotic Activity

Significant antimycotic activity against Aspergillus fumigatus has been reported for
37 with an inhibitory zone of 11 mm compared to ketoconazole (inhibitory zone of
16 mm) [237]. Compounds 242 (MIC = 25 µg/mL) and 237 (MIC = 25 µg/mL) exhib-
ited better antimycotic activity against Candida glabrata than the positive control flucona-
zole (MIC = 50 µg/mL). The results also showed that compound 50 (MIC = 50 µg/mL)
showed the same antimycotic activity as the positive control. Furthermore, compound 242
(MIC = 25 µg/mL) showed better antimycotic activity against C. krusei than fluconazole
(MIC = 50 µg/mL), while the other compounds, 50 and 237, possessed the same activity as
the positive control [151]. Additionally, compound 124 demonstrated a weak inhibitory
activity (29%) on Cryptococcus neoformans [92].

4.8.3. Antiviral Activity

Benzophenone 66 showed selective and moderate inhibitory activity in vitro against
the proliferation of Herpes simplex type 1 (HSV-1) with an IC50 value of 4 µg/mL compared
to a positive control pirodavir (IC50 = 0.085 µg/mL) [38]. Compound 143 exhibited very
high anti-HIV activity against syncytium formation in the syncytium inhibition assay
(EC50 = 68.88 µM, SI > 1.59) and in the reverse transcriptase assay (IC50 = 271.75 µM) [111].
Furthermore, garcimangosone D 44 exhibited moderate anti-HIV-1 activity with EC50
values of 18.06 µg/mL and TI (therapy index) > 11.07, while malaferin A 42 showed weak
bioactivity with EC50 = 131.70 µg/mL and TI > 1.52 [40]. In addition, foliamangiferoside
A4 92 showed a moderate inhibitory activity against influenza NA (neuraminidase) from
pandemic A/RI/5+/1957 H2N2 influenza A virus (47.4%) and coxsackie B3 virus 3C
protease (53.8%) at a concentration of 100 µM [265].
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4.8.4. Antiparasitic Activity

It was found that compound 122 exhibited considerable growth-suppressing effect
against Trypanosoma brucei with IC50 values of 22.3 µM [92], while cearoin 34 has very weak
activity against Leishmania major (IC50 > 100 µM) [193]. In addition, 38 (IC50 = 18.6 µM) and
58 (IC50 = 28.8 µM) showed ex vivo antiplasmodial activities [54].

4.8.5. Antimalarial Activity

The antimalarial activity of 174 was assessed as weak with an inhibition value of
29.8%, relative to the positive control of chloroquine diphosphate (95.1%) [119].

4.9. Metabolic Syndrome
4.9.1. Antidiabetic Activity

1. α-Glucosidase inhibitory activity

It was found that compounds 227 (IC50 = 0.042 mM) and 228 (IC50 = 0.199 mM) showed
strongerα-glucosidase inhibitory activity than positive control acarbose (IC50 = 0.685 mM) [142].
The results also showed that aquilarisinin 114 (IC50 = 151.6 µg/mL) exhibited a strong in-
hibitory effect against α-glucosidase, which was about twofold that of acarbose (IC50 = 372.6
µg/mL) [88]. The benzophenone 106 showed 91.4% inhibition activity at 10 µg/mL against
the α-glucosidase from Bacillus stearothermophilus compared to acarbose (inhibition = 70.5%
at 40 ng/mL) [84], while compounds 155 and 86 exhibited significant α-glucosidase in-
hibitory activity of 54% and 43%, respectively (at 200 µM), against an enzyme mixture
extracted from rat intestinal acetone powder [74]. Furthermore, inhibitory effect against α-
glucosidase of compounds iriflofenone-2-O-α-L-rhamnoside 108 (IC50 = 143.7 µg/mL) and
iriflofenone-3-C-β-D-glucopyranoside 74 (IC50 = 165.1 µg/mL) was about twofold of that
of acarbose (IC50 = 372.0 µg/mL), while iriflofenone-3,5-C-β-diglucoside 87 (273.6 µg/mL)
showed inhibitory effect almost the same as the positive control [88]. In addition, strong
to moderate α-glucosidase inhibitory activity compared to acarbose (IC50 = 185.25 µM) pos-
sessed benzophenones 162 (IC50 = 284.93 µM), 78 (IC50 = 415.79 µM), 120 (IC50 = 520.94 µM),
60 (IC50 = 657.23 µM), and 79 (IC50 = 834.66 µM) [81].

2. α-Amylase inhibitory activity

Garcimangophenone A 209 (IC50 = 12.2 µM) and B 207 (IC50 = 9.3 µM) showed
significant α-amylase inhibitory activity compared with acarbose (IC50 = 6.4 µM) [128].
Additionally, the results also showed that garcimangophenone C 128 exhibited very strong
α-amylase inhibition with IC50 of 12.9 µM compared to acarbose (IC50 = 6.7 µM) [95].

3. The efficiency of glucose uptake

The assay for glucose uptake stimulatory activity conducted in rat skeletal muscle L6
cells reported that iriflofenone-3-C-β-D-glucoside 74 (100 µg/mL) and iriflofenone-3,5-C-β-
diglucoside 87 (100 µg/mL) showed a glucose uptake enhancement of 234.5% and 119.9%,
respectively, when compared with the blank control (100% uptake). The positive control
insulin (0.5 µM) showed 146.6% enhancement [159].

4.9.2. Antihyperlipidemic Activity

At a dose of 30 µM, compounds 74, 78–81, 88, and 155 [72], as well as 84 (10 µM)
and 85 (10 µM), significantly suppressed triglyceride (TG) and free fatty acid (FFA) accu-
mulation in 3T3-L1 adipocytes [73]. Based on the AMP-activated protein kinase (AMPK)
signaling pathway, several of the abovementioned benzophenones were found to increase
the AMPK enzyme expression and downregulate lipogenic enzyme gene expression such
as SREBP1c (sterol regulatory element-binding protein 1c), FAS (fatty acid synthase), and
HSL (hormone-sensitive lipase). The results showed that compared with the control group,
AMPK gene expression of compounds 58, 74, 78, 88, 122, 155, 163 [72], 82–85, 91, and
92 [73] were significantly increased. All of these compounds significantly suppressed the
SREBP1c level [72,73]. Furthermore, compounds 52, 56–59, 84, 85, 135 [72], and 61–63 [73]
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significantly downregulated HSL gene expression. It was found that 74, 78, 88, 155 [72],
82–85, and 92 [73] significantly reduced FAS gene expression. Additionally, compounds
69 and 143 exhibited better inhibitory activity against FAS than the known FAS inhibitor
EGCG (epigallocatechin gallate) (IC50 = 51.97 µM), returning lower IC50 values of 14.76 µM
and 8.59 µM, respectively [64].

4.9.3. Antihypertensive Activity

It was reported that maclurin-6-O-β-D-glucopyranoside 172 significantly alleviated
the exaggerated vasoconstriction of metabolic syndrome (MetS) aortae and at the same time
showed significant vasodilation of PE (phenylephrine) precontracted aortae. To further
illustrate the mechanism of action, the observed vasodilation was completely blocked by
the nitric oxide (NO) synthase inhibitor Nω-nitro-L-arginine methyl ester hydrochloride
and inhibited by guanylate cyclase inhibitor methylene blue. The results showed that
vasodilation was not affected by the potassium channel blocker, tetraethylammonium,
or the cyclooxygenase inhibitor; indomethacin and 172 stimulated NO generation from
isolated aortae to levels comparable with acetylcholine. Furthermore, 172 inhibited reactive
oxygen species generation in MetS aortae. In conclusion, it could be said that maclurin-6-O-
β-D-glucopyranoside (172) ameliorated the exaggerated vasoconstriction in MetS aortae
through the vasodilatation-NO generation mechanism [171].

4.10. Inhibitory Activities on Platelet Aggregation

Until now, only three compounds possessed inhibitory potential against platelet ag-
gregation induced by one, two, or three inducers such as arachidonic acid (AA), adenosine
diphosphate (ADP), and collagen at 100 µg/mL in human whole blood in vitro. Among the
tested compounds, only 152 exhibited strong inhibitory activity against platelet aggregation
induced by AA (IC50 = 53.6 µM), ADP (IC50 = 125.7 µM), and collagen (IC50 = 178.6 µM).
The results also showed that benzophenone 152 was the only compound effective against
collagen-induced platelet aggregation. Compound 151 demonstrated the strongest inhibi-
tion on platelet aggregation induced by ADP with an IC50 value of 34.7 µM. Additionally,
70 showed selective inhibitory activity on platelet aggregation induced by AA and ADP
with IC50 values of 91.1 µM and 69.5 µM, respectively [65].

4.11. MAO-A Inhibition Activity

It was found that compounds 129 and 172 exhibited significant inhibitory activity
against MAO-A with an IC50 value of 31.3 µM and 41 µM, respectively, compared to the pos-
itive control clorgyline (IC50 = 0.08 µM) [266]. A weak MAO-A inhibitory effect was found
for compounds 180 (IC50 = 111.2 µM), 182 (IC50 = 310.3 µM), and 183 (IC50 = 726.0 µM).
Clorgyline was again used as positive control MAO-A inhibitor with an IC50 value of
0.5 µM [122].

4.12. Antiarthritic Activity

Studies on proapoptotic activity on TNF-α-stimulated synovial cells isolated from
patients with rheumatoid arthritis demonstrated that iriflofenone 3-C-β-glucoside 74 pos-
sessed 71% efficacy, measured as the percent of apoptotic cells [187].

4.13. Anticholinesterase Activity

Elegaphenone 31 was found to possess moderate inhibitory activity against acetyl-
cholinesterase with IC50 value of 192.19 µM, against a positive control of galantamine
hydrobromide (IC50 = 0.43 µM) [250].

4.14. Anti-Atherosclerotic Activity

It was reported that compound 37 (0.40 mM) exhibited inhibitory activity of 54%
against hACAT-1 (human acyl-CoA: cholesterol acyltransferase) compared to the positive
control oleic acid anilide (57% inhibition at 0.3 µM concentration) [224].
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4.15. Laxative Effect

The laxative effect of iriflofenone-2-O-α-L-rhamnoside 108 was estimated in vivo in
male ddY mice (aged 7–10 weeks and 20–35 g body weight) after administration of an
oral dose of 1000 mg/kg. The results showed that benzophenone 108 exhibited slow-
acting laxative activity, as its effect appears 6–8 h after administration and does not cause
subsequent diarrhea [75].

4.16. Negative Effects of Naturally Occurring Simply Oxygenated Benzophenones on Human and
Animal Health and the Environment

However, of the variety and number of benzophenone products of natural and syn-
thetic origin, only a small part of them, in particular those possessing a hydroxyl or methoxy
group in the para position to the carbonyl function, a model of 2,4-dioxygenation and rarer
model of 2,2′4,4′-tetraoxygenation, are among the most tested for negative effects on hu-
mans and the environment. This is due to the fact that these groups of compounds are
among the most commonly used UV absorbing agents, mainly due to their large molar ex-
tinction coefficients in both the UVA and UVB ranges. 2-Hydroxy-4-methoxybenzophenone
(benzophenone-3 or BP-3) 3 is known to have been used for many years as a UV filter
in sunscreen cosmetics [267]. On the other hand, 3 has been shown to be metabolized to
three intermediates in rats, including 2,4-dihydroxybenzophenone (benzophenone-1 or
BP-1) 5, which is formed by demethylation [268]. The latter is also used as a UV filter
in sun protection products. Exposure to elevated levels of 5 may be associated with in-
creased chances of endometriosis diagnosis in women [269], and it has also been reported
to have significant uterotrophic effects to increase the growth of BG-1 human cancer cells
on ovaries and to show high affinity in binding to hERα (human estrogen receptor α),
while 3 showed only a slight estrogenic effect in the assay with MCF-7 human cancer cells
and pS2 protein [270]. Compound 5 was also reported to exhibit greater inhibitory activity
against human KGN 3β-HSD (3β-hydroxysteroid dehydrogenase) with an IC50 = 5.66 µM,
than BP-3 (5.84 µM) [271]. In addition, in vitro yeast-based reporter assay found that
compound 5 has strong estrogenic (EC50 = 1.29 µM), weak antiandrogenic (IC50 > 30 µM),
and mushroom tyrosinase inhibitory activity (IC50 > 50 µM), while 3 has weak estro-
genic (EC50 > 30 µM), antiandrogenic (IC50 > 30 µM), mushroom tyrosinase inhibitory
(IC50 > 50 µM), and moderate antiprogestrogenic activity (IC50 = 11.81 µM). Furthermore,
2,2′,4,4′-tetrahydroxybenzophenone (benzophenone-2 or BP-2) 73 exhibits weak estrogenic
activity (EC50 = 17.29 µM) and significant inhibitory activity against mushroom tyrosinase
(IC50 = 19.7 µM) [272]. A number of studies have been conducted to evaluate the estrogenic
and toxic effects of benzophenone UV filters in fish. It was established that compound 3 at
a concentration of 2.4–312 µg/L affected genes involved in steroidogenesis and hormonal
pathways in zebrafish at different developmental stages [273]. Furthermore, acute toxicity
tests with medaka larvae showed that at 96 h exposure, compounds 3 (LC50 = 4.10 µM) and
5 (LC50 = 2.22 µM) exhibited significantly higher toxicity than 73 (LC50 = 18.43 µM). The
latter at an ecologically relevant concentration (5–50 nM) did not alter locomotion and ox-
idative stress responses of larvae from 24 h to 7-day exposure, while 3 even at 5 nM induced
hypoactivity or changed fish swimming angles [272]. In addition, adverse effects on algae
(Scenedesmus vacuolatus and Desmodesmus subspicatus), freshwater flea (Daphnia magna),
and planarian (Dugesia japonica) altered endocrine signaling gene expression, ultraspiracle
in aquatic invertebrate (Chironomus riparius), and reduced reproductive performance in
Japanese medaka (Oryzias latipes) after exposure to 620 µg/L for 21 days have been reported
for compound 3 [270].

5. Biogenetic Significance of Simply Oxygenated Benzophenones

Simply oxygenated benzophenones are active secondary metabolites and are closely
related to xanthones as their immediate biosynthetic precursors. Biogenetic relationship
between benzophenones and xanthones were discussed in several reviews. The intermedi-
ate benzophenones were built by acetate and shikimate biosynthetic pathways. Further
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intermolecular reaction led to formation of a xanthone. The mechanisms of last formation
step could involve four possible pathways [7,274–276]. The literature data showed that
maclurin 133 is an intermediate in the biosynthesis of macluraxanthone [277], 1,3,5,6- and
1,3,6,7-tetraoxyxanthones from the families Guttiferae and Moraceae [179]. Furthermore,
after feeding Anemarrhena asphodeloides with radiolabeled 1,3,6,7-tetrahydroxyxanthone
and 133, only the latter was efficiently incorporated into mangiferin and isomangiferin,
indicating that C-glucosylation of mangiferin and isomangiferin occurs prior to xanthone
core formation [278]. Additionally, the study of xanthones from Gentiana lutea with the
inclusion of 14C- and 3H-labeled compounds demonstrated that compound 61 (2,3′,4,6-
tetrahydroxybenzophenone) is a precursor of gentisein [279]. A study on Hypericum an-
nulatum showed that an acid and enzymatic hydrolysis of hypericophenonoside 206 led
directly to the formation of 1,3,7-trihydroxyxanthone (gentisein). This finding favored
the hypothesis that some xanthones could be formed in plants by dehydration of 2,2′-
dihydroxybenzophenones, and the intermediate precursors might be benzophenone with
O-glycosilation ortho to the carbonyl function [8]. In general, the formation of the benzophe-
none (C13) skeleton is catalyzed by benzophenone synthase. In cell cultures of Hypericum
androsaemum, this enzyme stepwise condenses one molecule of benzoyl-CoA with three
molecules of malonyl-CoA to provide a tetraketide intermediate, which is cyclized by an in-
tramolecular Claisen condensation to 17 (2,4,6-trihydroxybenzophenone). The subsequent
3′-hydroxylation is catalyzed by cytochrome P450 monooxygenase [280]. In cell cultures
of Centaurium erythraea, the preferred starting substrate for benzophenone synthase is
3-hydroxybenzoyl-CoA, immediately producing compound 61 [202]. In addition, it should
be noted that in fungi, biogenetic benzophenone can be formed from two separate units,
each separately derived from acetate and malonate pathways, or by an anthrone and/or
anthraquinone intermediate derived from a single C16 polyketide chain [281].

6. Conclusions

This review includes more than 280 references to naturally occurring simple oxy-
genated benzophenones covering the years from 1850 up to 2023 and was compiled using
databases such as Chemical Abstracts, Scopus, Google Scholar, PubMed, and Research-
Gate. This article discusses the structural diversity, distribution, and biological activities of
natural simple oxidized benzophenones and their glycosides.

Two hundred and fifty chemical structures belonging to seven groups of benzophenone
derivatives and their glycosides (mono-oxidized, di-oxidized, tri-oxidized, tetra-oxidized,
penta-oxidized, hexa-oxidized, and others that cannot be classified into any of the first six)
were established.

Naturally occurring benzophenones represent a relatively small group of plant metabo-
lites with narrow distribution. Up to now, simple oxygenated benzophenones and their
glycosides have been established in 77 plant genera distributed in 44 families. Of all 250
reported compounds, the largest number of representatives 51 was isolated from the Hyper-
icaceae family, followed by 43 representatives from Anacardiaceae, 36 from Clusiaceae, 24
from Polygalaceae, 22 from Thymelaeaceae, and 18 from Fabaceae. The allergy associated
bezophenone-1, benzophenone-2, and benzophenone-3 have limited distribution across
natural sources.

A wide range of pharmacological activities of simple oxygenated benzophenones
and their glycosides such as antioxidant activities; anti-inflammatory activity; cytotoxic,
antitumor, and cytoprotective activities; antimicrobial activity; MAO-A inhibition activity;
antiarthritic activity; anticholinesterase activity; anti-atherosclerotic activity; laxative effect;
metabolic syndrome; etc., that appeared in the literature were discussed as well.

The authors hope that this review will draw the attention of scientists of simple
oxygenated benzophenones and their glycosides and stimulate them to continue with
phytochemical, pharmacological, and chemotaxonomical studies that could lead to the dis-
covery of compounds that can serve as models for the synthesis of a new pharmacological
agent as well as help to solve certain taxonomical issues.
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